函数单调性教学技巧与分析(图文).

时间:2019-05-15 05:44:33下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《函数单调性教学技巧与分析(图文).》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《函数单调性教学技巧与分析(图文).》。

第一篇:函数单调性教学技巧与分析(图文).

函数单调性教学技巧与分析(图文)

论文导读:函数单调性是函数的重要性质,教学中恰到好处的实例引入,数形的有机结合,重点实际的技巧分析,是学生学好函数单调性这一性质的关键。关键词:注重实例,强化数形,突出技巧

函数单调性是函数的一条重要性质,里面的知识点虽不多,但它的重要性及实际应用却很广,对今后的学习至关重要,如何有效地教学,是学好函数单调性这一性质的关键。

一、恰到好处的实例引入是学好单调性的前提

一堂好的数学课,找准问题的切入点是解决问题的关键,可避免走弯路,接近学生的发展区,实效性强,使难点问题迎刃而解,当然这种切入点的引入,要找学生熟悉的知识点,最好是温故知新的那种。例如,单调性的分析,最好的切入点是引入顶点在原点的抛物线来研究,这个知识点大家熟悉,简单易分析,效果强。图形如下(A)

从图(A)我们看到轴右侧自变量的变化区间在的范围内,随着自变量的增大,函数值也增大,像这样的函数我们把它叫增函数,再看轴的左侧,自变量的变化区间在的范围内,随着自变量的增大,函数值却减小,这样的函数我们把它叫做减函数,函数在某个区间上是增函数,我们称为递增性,在某个区间上是减函数,我们称它为递减性,这种函数在某个区间上递增或递减的性质称为函数的单调性。这样单调性的特点、定义一下子就明确了,而且学生容易理解不走弯路。

二、数形的结合使单调性的学习变得鲜活生动

数学的学习离不开图,有人说,数学是数形的结合,看起来形(即图形)在数学课的教学中至关重要,图形不仅增强人的空间想象力,还可引发发散思维,可提高学习兴趣,形象生动,降低难度,实现一步到位的理论上的跨越,使高深的理论变得简单、清晰、鲜活,学生记忆深刻。例如,单调性的图像特点,我们从引入的实例的抛物线图中看到(见图A),轴的右侧在区间上是增函数,特点是沿着轴正方向图像上升,轴左侧在区间上是减函数,特点是沿着轴正方向图像下降,这样我们可总结规律,凡是在某个区间上图像沿着轴正方向上升的,即为增函数(见图B),在某个区间上图像沿着轴正方向下降的即为减函数(见图C),由图像的特点找到自变量变化的区间,即单调区间,显得轻而易举,根据这个图像特点再去分析复杂的图像,学生很容易找到增函数、减函数、单调区间,这样增函数、减函数、单调区间的确定变得简单化了。

三、重点实际的总结归纳使单调性学习富有规律

通过图像找单调性,确定函数单调区间固然好,但有时不直接给图像时,学生看到函数不会画草图,这样确定单调性对有的同学来说还有一定的难度。数学是有一定规律可循的学科,就单调性的学习而言,让学生知道在中专学习中常遇到的几种函数如一次、二次、反比例函数单调性的判定技巧,使单调性的学习变得简单而富有规律。

例如,1、一次函数单调性的判定,它的单调性取决于,当>0时一次函数的图像在上是增函数,当<0时,一次函数的图像在上是减函数。

2、特殊的二次函数的单调性取决于,在上,当>0时,这个特殊的二次函数是增函数,<0时是减函数。在上正好相反。

3、反比例函数在上,它的单调性取决于,当>0时为减函数,<0时为增函数。

这样在中职学生层面,给一个函数判定单调性的问题学生不再感觉有难度了,函数的这一条重要性质变得浅显易懂,化解了书中的难点,增强了学生学习的自信。

总之,这种恰到好处的实例引入,抓住了问题的关键,图形的有机结合,使单调性的学习变得鲜活生动,带有技巧性的分析,使单独性的学习变得简单而富有规律。

第二篇:函数单调性教学案例分析

“函数的单调性”案例分析 连江一中数学组 李锋

数学概念的教学是培养学生创新精神和实践能力的一个很好的切入点,重视数学概念的发生、发展、形成的过程的体验,让学生进行深入的思考和全方位的探索。对于提高学生学习数学的兴趣,培养学生创新精神和实践能力将是十分有利的。现以《函数的单调性》教学实例来进行分析:

一、案例

课题:函数的单调性(第一课时)

二、实施过程(注:课堂实录已经简化)

1.问题引入

师:我们观察某自来水厂在一天24小时内,水压Y随时间X的的变化情况。不妨设其函数解析式:y=f(x);x[0,24]

师: “在哪些时间段内,水压在逐渐上升?在哪能些时间段内,水压在下降?”(很快得出正确答案。)

师:在某一时间段内水压在上升,实际上是水压Y的值随时间X的增大在逐渐增大,于是我说函数y=f(x)在区间[0,3]上,是单调递增函数。同理,函数y=f(x)在区间[3,9]上是单调递减函数。这就是我们要研究的函数的又一特性——函数的单调性。2.定义探究

师:在某个区间上:①函数值Y随X的增大而增大(图象从左——右,呈上升趋势),就说这个函数在这个区间上是增函数。②函数值Y随X的增大而减小(图象从左——右,呈下降趋势),就说这个函数在这个区间上是减函数。

提出问题1:请同学仔细阅读课本中函数单调性的定义,思考课本定义方法和上面定义方法是否一致?如果一致,定义中哪一句表达了该意思?

生:我认为是一致的.定义中的“当x1<x2时,都有f(x1)<f(x2)”描述了y随x的增大而增大;“当x1<x2时,都有f(x1)>f(x2)”描述了y随x的增大而减少. 师:说得非常正确.定义中用了两个简单的不等关系“x1<x2”和“f(x1)<f(x2)或f(x1)>f(x2)”,它刻划了函数的单调递增或单调递减的性质.这就是数学的魅力!定义中只用了两个简单的不等关系,就刻划出了单调递增和单调递减的性质特征,把文字语言表达为数学语言,简单明了。

师:提出问题2:我们思考这样一个问题:定义中有哪些关键的词语或句子至关重要?能不能把它找出来。(有的同学回答不准确)

生1:我们认为在定义中,有一个词“给定区间”是定义中的关键词语.(阐述了理由)。师:很好,我们在学习任何一个概念的时候,都要善于抓住定义中的关键词语.增函数和减函数都是对相应的区间而言的,离开了相应的区间就根本谈不上函数的增减性.还有没有其他的关键词语?

生2:还有定义中的“任意”和“都有”也是关键词语. 生3:“属于” 也是关键词。师:能解释一下为什么吗?

生3:“属于”就是说两个自变量x1,x2必须取自给定的区间,不能从其他区间上取. 师:那么“任意”和“都有”又如何理解?

生4:“任意”就是指不能取特定的值来判断函数的增减性,而“都有”则是说只要x1<x2,f(x1)就必须都小于f(x2),或f(x1)都大于f(x2).

师:能不能构造一个反例来说明“任意” 和“都有”呢?

(让学生思考,但有些学生仍有困难,我设计了三个判断题)提出问题3:判断下列命题的真假:

①函数y=x2 在(-∞,0)上是减函数,在[0,+∞]上是增函数,所以函数 y=x2 在定义域R上是增函数或是减函数。

②已知函数f(x)=x2(-2≤x≤2)。取x1=-2,x2=1,则x1f(x2),所以函数在区间[-2,2]上是减函数。

③若函数y=1/x在(-∞,0)单调递减,在(0,+∞)也单调递减,则该函数在定义域内单调递减。

(三个问题的提出,引起很大凡响,学生发言踊跃,互相讨论、补充,把本节课推向高潮)师:因此,要判定一个函数的增减性,主要途径就是依照定义,抓住关键,在给定区间内任取两个自变量x1,x2,根据它们的函数值f(x1)和f(x2)的大小来判定。3.定义应用

提出问题4:判断函数f(x)=1/x在(0,+∞)上的单调性,并用单调性的定义加以证明。解:略

师:易知函数f(x)=1/x在(-∞,0)上也是单调递减函数,请同学归纳一下要证明一个函数在某个区间上单调性的方法和步骤? 第八组:①设量;②作差;③判断;④定论。

4.课堂小结(由学生回答)(略)

5.布置作业

(略)

三、案例分析

(一)本节课的设计思路 1.知识目标设计:

(1)在探究中,寻求函数单调性规律并形成概念。

(2)熟练运用函数单调性的概念证明函数在某个区间上的单调性。2.能力目标设计:

(1)通过对单调性概念的发生、发展的分析过程,培养学生的数学意识、逻辑思维能力;(2)通过本节课的教学探究,培养学生用数学语言代替文字语言的表达能力。提高对数学美的鉴赏能力;(3)对学生进行由“特殊”到“一般”的辩证唯物主义教育。3.教学过程设计:

针对本节课教学目标,教学过程分为三个阶段:

(1)问题引入阶段:问题的提出具有实际意义,引起学生的兴趣,锻炼学生的观察能力,又直逼主题,学生容易接受。通过图形的直观感觉,给学生函数单调性的感性认识,为突破难点做好铺垫。从而自然导入主题。

(2)定义探究阶段:本节课的中心内容,围绕三个问题的提出,对定义进行探究,层层深入,发动学生,分组讨论,积极思考,在巡视过程中,启发引导学生,及时掌握学生的动向,寻求函数单调性规律并形成概念。

(3)概念应用阶段:函数的单调性定义应用只设计了问题4,这一过程由学生来完成,使学生自主进行学习,独立探究问题,在解决问题的过程中进行自我评判和调控,会对已有的经验进行反思,总结出解题的步骤和规律。

(二)本案例课堂教学的特点

1、抓住课堂教学的基本原则

(1)主体性原则:尊重学生的主体地位,发挥教师的主导作用,教师创造性地教,学生创造性地学,使教、学的主体共同参与整个教学过程。在本案例课堂教学活动过程中,教师围绕三个阶段,以问题的形式提供给学生,学生主动参与。特别是问题2、3的提出,学生产生许多疑惑,矛盾升级,老师便组织学生开展了互相交流和讨论,适时介入,和学生一起相互启发和梳理,并洞察课堂中发生地各种问题,准确地判断发生问题的原因,能动地、有效地处理这种问题,这一过程体现师生相互平等,教学相长的良好课堂氛围。

(2)探索性原则:教师努力使教学活动富有探索性,为学生创设进行观察、探索、发现的学习环境,鼓励学生质疑问难,大胆联想,激发学生的学习兴趣和创造兴趣,引导学生通过亲身体验获取新知,把教学过程转化为学生自觉进行探索新知的过程,使学生积极主动地在学习中体验探索的乐趣。通过对问题2、3的讨论,大部分学生对单调性概念的发生、发展有了较深刻的理解,探索到函数单调性规律并形成了概念。同时培养了学生用数学语言代替文字语言的表达能力,提高对数学美的鉴赏力。这一教学过程使学生认识到看似简单的定义中有很多值得去推敲,去研究的东西,通过对问题的分析、总结,把包含在概念中的复杂和隐蔽的内涵,层层剥离,进行多层面的展开,从而使教学由表及里,深入清晰地揭示出概念的本质。因为学生理解程度的差异,老师提出问题4,这是本节课的亮点,简单的三个判断题,再一次揭示了概念的本质。把函数单调性概念的探究推向高潮,通过反向思维使学生的思维素质得以提升,促使学生能够在获得对概念理解的同时,逐步学会学习和思考,增长经验和智慧。这一部分课堂效果非常好。

(3)实践性原则:在教学中要重视理论联系实际,要结合实例进行教学,鼓励学生动口、动脑、动手,让学生参与到数学概念的形成过程;要组织有效的练习,引导学生运用所学到的知识去解决实际问题,使学生获得运用知识的能力。函数的单调性定义应用只设计了问题5,典型的反比例函数,这一过程由学生来完成,但学生的证明过程也存在一定问题,老师再次强调定义,对照解答的层次性,再让学生自主订正,使学生自主进行学习,独立探究问题,在解决问题的过程中进行自我评判和调控,会对已有的经验进行反思、质疑,总结出解题的步骤和规律。问题5的提出起到前后呼应,加深印象、画龙点睛的作用,既是对本节课的反馈,又是引发对本节课的思考。由于时间的关系,课上讨论的并不透彻和完美,但给学生课后进一步的思考、探究留下了空间。

(4)激励性原则:要帮助学生实现成功,让学生在学和做中能经常感受到成功的喜悦和愉悦,认识到自身的价值,以此来激励学生的求知欲和成就感,从而培养学生的自尊心和自信心,增强学生的创造动机和创造热情,使学生能不断地追求新知,积极进取,勇于创新。

2、体现能力培养的指导思想

概念教学有利于培养学生的发现能力;有利于培养学生的创新精神;有利于培养学生的实践能力。概念教学的基本目标是帮助学生形成概念,而学生形成概念的关键是发现事物的本质属性或规律。发现是创造的一种重要形式,创造需要一种实践活动的过程。现代著名心理学家布鲁纳认为:“发现不限于那种寻求人类尚未知晓的事物的行为,正确地说,发现包括着用自己的头脑亲自获得知识的一切形式。”由此可以看出,学生用自己的头脑去亲自获得知识也是一种发现。在过程中发现,在发现中创新。因此,在数学教学中,教师要努力创造条件,给学生提供自主探索的机会,给学生充分的思考空间,让学生在观察、实验、归纳、分析的过程中去理解数学概念的形成和发展过程,进行数学的再发现、再创造,培养学生的发现能力和创新能力。

(三)本案例课堂教学引发的反思

1、概念教学的方法应灵活多样 中学数学教材展现在学生面前的往往是由概念到定理,法则再到例题的三步曲,这在一定程度上掩盖了数学概念和思想方法的形成,发展过程,从而也掩盖了数学发现、数学创造、数学应用所经历的思维活动过程,抽象的概念也会给学生造成厌恶的感觉。所以数学概念教学不应简单地给出定义,而应加强概念的引入和概念属性的感知,本案例的引入,从实际生活中提炼,通俗易懂,平易近人。教学时应创设情境,方法灵活多样,激发学生的学习兴趣,让学生积极参与教学活动中来,亲身体验、主动建构,使学生了解知识的发生与发展的背景和过程,使学生对数学的学习感到乐趣。为此,从引进新概念开始就要创造启发式的教学环境,揭示概念的本质属性,并用简单的文字加以表达,在对概念进行结构分析和概念的应用,形成一个生动的概念发生的过程,这一过程需分层次递进,低层次的理解是高层次理解的基础,各层次之间最好不要越级,任何急功近利的想法或做法都是不可取的。

2、正确认识和处理探究过程与时间限定的矛盾

探究活动比较费时间,教师都很重视课堂效率,而且对调控教学节奏,颇有一些办法,是不是一发现学生得到了正确的结论,就让其回答,并结束这个探究过程?由于教学时间的限定,如果探究的不够完美、透彻,或本节课的教学内容没有全部完成,那么总感到一种缺憾,所以在这个矛盾的驱使下,往往追求进度,多讲几个例题,忽略学生的经历。而新课程标准则强调让学生经历“直观感知”、“观察发现”……等思维过程来形成思维能力。这就要求我们要以学生体验、理解、掌握知识为中心,重视数学概念的构作,数学思维的建立,数学意识的形成,所以,教师应设计好每节课的内容与容量,本案例延长了概念的探究过程,重视学生的数学意识、思维品质的培养,使学生懂得数学的意义与价值。虽然只有一个例题,但非常典型,同样收到很好的效果。

落实新课程改革精神,并不是

一、两节课的事,应该体现在课堂教学的每个环节和过程,教师要更新观念,转换角色,力求通过各种不同形式的自主学习,探究活动,让学生体验数学发现和创造的历程,发展他们的创新意识。使课堂教学由知识型向能力型和实践型转化,全面提高学生数学素养。能力增强了,学习成绩自然不会差,以人为本的思想也得到了落实。

第三篇:函数的单调性复习方法与技巧

函数的单调性

一、知识点

1、函数单调性的定义;

2、判断函数单调性(求单调区间)的方法:

(1)从定义入手

(2)从图象入手

(3)从熟悉的函数入手

(4)从复合函数的单调性规律入手

(5)从导数入手

注:先求函数的定义域

3、函数单调性的证明:定义法;导数法。

4、一般规律

(1)若f(x),g(x)均为增函数,则f(x)+g(x)仍为增函数;

(2)若f(x)为增函数,则-f(x)为减函数;

(3)互为反函数的两个函数有相同的单调性;

(4)设yfgx是定义在M上的函数,若f(x)与g(x)的单调性相反,则yfgx在M上是减函数;若f(x)与g(x)的单调性相同,则yfgx在M上是增函数。

二、例题选讲

1、求下列函数的单调区间,并确定每一单调区间上的单调性。

11y1x2y1xx2x33y13xx23x6 3

练习(变式一)求下列函数的单调区间:

1yx2x32ylog12x2x12

2例

2、如果二次函数fxx(a1)x5在,1上是增函数,求f(2)的取值范围。1

2

3、讨论函数fxxaa0的单调性。)x

2ax例

4、是否存在实数a,使函数fxlogax在区间2,4上是增函数?如果存在,说明a

可取哪些值;如果不存在,请说明理由。

练习:(变式一)函数fxlog

备例1.设函数fxax8x9在1,上是增函数,求a的取值范围。x21ax其中a1,证明f(x)在区间0,上是单调函数。

2.(考例4)已知函数f(x)的定义为R,对任意的实数x1,x2都满足f(x1+ x2)=f(x1)+f(x2),当x>0时,f(x)>0,且f(2)=3.(1)试判断f(x)的奇偶性和单调性;

(2)当0,时,fcos23f4m2mcos0对所有的均成立,求实数2m的取值范围。

第四篇:函数单调性

函数单调性概念教学的三个关键点 ──兼谈《函数单调性》的教学设计

北京教育学院宣武分院 彭 林

函数单调性是学生进入高中后较早接触到的一个完全形式化的抽象定义,对于仍然处于经验型逻辑思维发展阶段的高一学生来讲,有较大的学习难度。一直以来,这节课也都是老师教学的难点。最近,在我区“青年教师评优课”上,听了多名教师对这节课不同风格的课堂教学,通过对他们教学案例的研究和思考,笔者认为,在函数单调性概念的教学中,关键是把握住如下三个关键点。

关键点1。学生 学习函数单调性的认知基础是什么?

在这个内容之前,已经教学过一次函数、二次函数、反比例函数等简单函数,函数的变量定义和映射定义,以及函数的表示。对函数是一个刻画某些运动变化数量关系的数学概念,也已经形成初步认识。接踵而来的任务是对函数应该继续研究什么。在数学研究中,建立一个数学概念的意义就是揭示它的本质特征,即共同属性或不变属性。对各种函数模型而言,就是研究它们所描述的运动关系的变化规律,也就是这些运动关系在变化之中的共同属性或不变属性,即“变中不变”的性质。按照这种科学研究的思维方式,使得当前来讨论函数的一些性质,就成为顺理成章的、必要的和有意义的数学活动。至于在多种函数性质中,选择这个时机来讨论函数的单调性而不是其他性质,是因为函数的单调性是学生从已经学习的函数中比较容易发现的一个性质。

就中小学生与单调性相关的经历而言,学生认识函数单调性可以分为四个阶段: 第一阶段,经验感知阶段(小学阶段),知道一个量随另一个量的变化而变化的具体情境,如“随着年龄的增长,我的个子越来越高”,“我认识的字越多,我的知识就越多”等。

第二阶段,形象描述阶段(初中阶段),能用抽象的语言描述一个量随另一个量变化的趋势,如“y随着x的增大而减少”。

第三阶段,抽象概括阶段(高中必修1),能进行脱离具体和直观对象的抽象化、符号化的概括,并通过具体函数,初步体会单调性在研究函数变化中的作用。

第四阶段,认识提升阶段(高中选修系列1、2),要求学生能初步认识导数与单调性的联系。

基于上述认识,函数单调性教学的引入应该从学生的已有认知出发,建立在学生初中已学的一次函数、二次函数以及反比例函数的基础上,即从学生熟悉的常见函数的图象出发,直观感知函数的单调性,完成对函数单调性定义的第一次认识.。

让学生分别作出函数数值有什么变化规律? 的图象,并且观察自变量变化时,函在学生画图的基础上,引导学生观察图象,获得信息:第一个图象从左向右逐渐上升,y随x的增大而增大;第二个图象从左向右逐渐下降,y随x的增大而减小.然后让学生明确,对于自变量变化时,函数值具有这两种变化规律的函数,我们分别称为增函数和减函数.第三个函数图象的上升与下降要分段说明,通过讨论使学生明确函数的单调性是对定义域内某个区间而言的.

在此基础上,教师引导学生用自己的语言描述增函数的定义: 如果函数在某个区间上的图象从左向右逐渐上升,或者如果函数

在某个区间上随自变量x的增大,y也越来越大,我们说函数在该区间上为增函数.

关键点2。为什么要用数学的符号语言定义函数的单调性概念?

对于函数单调性概念的教学而言,有一个很重要的问题,即为什么要进一步形式化。学生在初中已经接触过一次函数、反比例函数、二次函数,对函数的增减性已有初步的认识:随x增大y增大是增函数,随x增大y 减小是减函数。这个观念对他们而言是易于接受的,很形象,他们会觉得这样的定义很好,为什么还要费神去进行符号化呢?如果教师能通过教学设计,让学生感受到进一步符号化、形式化的必要性,造成认知冲突,则学生研究的兴趣就会大大提高,主动性也会更强。其实,数学概念就是一系列常识不断精微化的结果,之所以要进一步形式化,完全是数学精确性、严密性的要求,因为只有达到这种符号化、形式化的程度,才可以进行准确的计算,进行推理论证。

所以,在教学中提出类似如下的问题是非常必要的:

右图是函数函数吗? 的图象,能说出这个函数分别在哪个区间为增函数和减

对于这个问题,学生的困难是难以确定分界点的确切位置.通过讨论,使学生感受到用函数图象判断函数单调性虽然比较直观,但有时不够精确,需要结合解析式进行严密化、精确化的研究,使学生体会到用数量大小关系严格表述函数单调性的必要性,从而将函数的单调性研究从研究函数图象过渡到研究函数的解析式.关键点3:如何用形式化的语言定义函数的单调性?

从数学学科这个整体来看,数学的高度抽象性造成了数学的难懂、难教、难学,解决这一问题的基本途径是顺应学习者的认知规律:在需要和可能的情况下,尽量做到从直观入手,从具体开始,逐步抽象,即数学的思考方式。恰当运用图形语言、自然语言和符号化的形式语言,并进行三者之间必要的转化,可以说,这是学习数学的基本思考方式。而函数单调性这一内容正是体现数学基本思考方式的一个良好载体,教学中应该充分关注到这一点。长此以往,便可使学生在学习知识的同时,学到比知识更重要的东西—学会如何思考?如何进行数学的思考?

一般说,对函数单调性的建构有两个重要过程,一是建构函数单调性的意义,二是通过思维构造把这个意义用数学的形式化语言加以描述。对函数单调性的意义,学生通过对若干函数图象的观察并不难认识,因此,前一过程的建构学习相对比较容易进行。后一过程的进行则有相当的难度,其难就难在用数学的符合语言来描述函数单调性的定义时,如何才能最大限度地通过学生自己的思维活动来完成。这其中有两个难点:

(1)“x增大”如何用符号表示;同样,“f(x)增大”如何用符号表示。(2)“‘随着’x增大,函数f(x)‘也’增大”,如何用符号表示。

用数学符号描述这两种数学意义的最大要害之处,在于要用数学的符号来描述动态的数学对象。

在初中数学中,除了学习函数的初级概念,用y=f(x)表示函数y随着自变量x的变化而变化时,接触到一点动态数学对象的数学符号表示以外,绝大多数都是用数学符号表示静态的数学对象。因此,从用静态的数学符号描述静态的数学对象,到用静态的符号语言刻画动态数学对象,在思维能力层次上存在重大差异,对刚刚由初中进入高中学习的学生而言,无疑是一个很大的挑战!

因此,在教学中可以提出如下问题2: 如何从解析式的角度说明

在上为增函数?

这个问题是形成函数单调性概念的关键。在教学中,教师可以组织学生先分组探究,然后全班交流,相互补充,并及时对学生的发言进行反馈、评价,对普遍出现的问题组织学生讨论,在辨析中达成共识.对于问题2,学生错误的回答主要有两种:

①在给定区间内取两个数,例如1和2,因为函数. ,所以

在上为增②可以用0,1,2,3,4,5验证: 在所以函数上是增函数。

对于这两种错误,教师要引导学生进一步展开思考。例如,指出回答②试图用自然数列来验证结论,而且引入了不等式表示不等关系,但是,只是对有限几个自然数验证不行,只有当所有的比较结果都是一样的:自变量大时,函数值也大,才可以证明它是增函数,那么怎么办?如果有的学生提出:引入非负实数a,只要证明

就可以了,这就把验证的范围由有限扩大到了无限。教师应适时指出这种验证也有局限性,然后再让学生思考怎样做才能实现“任意性”就有坚实的基础了。也就是,从给定的区间内任意取两个自变量,然后求差比较函数值的大小,从而得到正确的回答: 任意取在,有为增函数. ,即,所以这种回答既揭示了单调性的本质,也让学生领悟到两点:(1)两自变量的取值具有任意性;(2)求差比较它们函数值的大小。至此,学生对函数单调性有了理性的认识.在前面研究的基础上,引导学生归纳、抽象出函数单调性的定义,使学生经历从特殊到一般,从具体到抽象的认知过程。

教学中,教师引导学生用严格的数学符号语言归纳、抽象增函数的定义,并让学生类比得到减函数的定义.然后指导学生认真阅读教材中有关单调性的概念,对定义中关键的地方进行强调.同时设计了一组判断题:

判断题:

①②若函数③若函数满足f(2)

和(2,3)上均为增函数,则函数在(1,3)上为增函数.④因为函数减函数.在上都是减函数,所以在上是通过对判断题的讨论,强调三点:

①单调性是对定义域内某个区间而言的,离开了定义域和相应区间就谈不上单调性. ②有的函数在整个定义域内单调(如一次函数),有的函数只在定义域内的某些区间单调(如二次函数),有的函数根本没有单调区间(如常函数).

③函数在定义域内的两个区间A,B上都是增(或减)函数,一般不能认为函数在上是增(或减)函数.

从而加深学生对定义的理解

北京4中常规备课

【教学目标】

1.使学生从形与数两方面理解函数单调性的概念,初步掌握利用函数图象和单调性定义判断、证明函数单调性的方法.

2.通过对函数单调性定义的探究,渗透数形结合数学思想方法,培养学生观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高学生的推理论证能力.

3.通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯,让学生经历从具体到抽象,从特殊到一般,从感性到理性的认知过程.

【教学重点】 函数单调性的概念、判断及证明.

【教学难点】 归纳抽象函数单调性的定义以及根据定义证明函数的单调性. 【教学方法】 教师启发讲授,学生探究学习. 【教学手段】 计算机、投影仪. 【教学过程】

一、创设情境,引入课题 课前布置任务:

(1)由于某种原因,2008年北京奥运会开幕式时间由原定的7月25日推迟到8月8日,请查阅资料说明做出这个决定的主要原因.(2)通过查阅历史资料研究北京奥运会开幕式当天气温变化情况.课上通过交流,可以了解到开幕式推迟主要是天气的原因,北京的天气到8月中旬,平均气温、平均降雨量和平均降雨天数等均开始下降,比较适宜大型国际体育赛事.下图是北京市今年8月8日一天24小时内气温随时间变化的曲线图.引导学生识图,捕捉信息,启发学生思考. 问题:观察图形,能得到什么信息?

预案:(1)当天的最高温度、最低温度以及何时达到;(2)在某时刻的温度;

(3)某些时段温度升高,某些时段温度降低.在生活中,我们关心很多数据的变化规律,了解这些数据的变化规律,对我们的生活是很有帮助的.

问题:还能举出生活中其他的数据变化情况吗? 预案:水位高低、燃油价格、股票价格等.

归纳:用函数观点看,其实就是随着自变量的变化,函数值是变大还是变小. 〖设计意图〗由生活情境引入新课,激发兴趣.

二、归纳探索,形成概念

对于自变量变化时,函数值是变大还是变小,初中同学们就有了一定的认识,但是没有严格的定义,今天我们的任务首先就是建立函数单调性的严格定义.1.借助图象,直观感知

问题1:

分别作出函数数值有什么变化规律? 的图象,并且观察自变量变化时,函

预案:(1)函数

在整个定义域内 y随x的增大而增大;函数

在整个定义域内 y随x的增大而减小.

(2)函数在上 y随x的增大而增大,在上y随x的增大而减小.

(3)函数 在上 y随x的增大而减小,在上y随x的增大而减小.

引导学生进行分类描述(增函数、减函数).同时明确函数的单调性是对定义域内某个区间而言的,是函数的局部性质.

问题2:能不能根据自己的理解说说什么是增函数、减函数? 预案:如果函数

在某个区间上随自变量x的增大,y也越来越大,我们说函数

在某个区间上随自变量x的增大,y越来越小,我们在该区间上为增函数;如果函数说函数在该区间上为减函数.

教师指出:这种认识是从图象的角度得到的,是对函数单调性的直观,描述性的认识. 【设计意图】从图象直观感知函数单调性,完成对函数单调性的第一次认识. 2.探究规律,理性认识

问题1:下图是函数和减函数吗? 的图象,能说出这个函数分别在哪个区间为增函数

学生的困难是难以确定分界点的确切位置.

通过讨论,使学生感受到用函数图象判断函数单调性虽然比较直观,但有时不够精确,需要结合解析式进行严密化、精确化的研究.

〖设计意图〗使学生体会到用数量大小关系严格表述函数单调性的必要性. 问题2:如何从解析式的角度说明

在为增函数?

22预案:(1)在给定区间内取两个数,例如1和2,因为1<2,所以为增函数.

(2)仿(1),取很多组验证均满足,所以(3)任取,所以

在,因为

为增函数.

在为增函数.

在,即对于学生错误的回答,引导学生分别用图形语言和文字语言进行辨析,使学生认识到问题的根源在于自变量不可能被穷举,从而引导学生在给定的区间内任意取两个自变量.

【设计意图】把对单调性的认识由感性上升到理性认识的高度,完成对概念的第二次认识.事实上也给出了证明单调性的方法,为证明单调性做好铺垫.3.抽象思维,形成概念

问题:你能用准确的数学符号语言表述出增函数的定义吗?

师生共同探究,得出增函数严格的定义,然后学生类比得出减函数的定义.(1)板书定义(2)巩固概念 判断题:

①.

②若函数

③若函数 在区间

和(2,3)上均为增函数,则函数

在区间(1,3)上为增函

④因为函数在区间上是减函数.上都是减函数,所以在

通过判断题,强调三点:

①单调性是对定义域内某个区间而言的,离开了定义域和相应区间就谈不上单调性. ②对于某个具体函数的单调区间,可以是整个定义域(如一次函数),可以是定义域内某个区间(如二次函数),也可以根本不单调(如常函数).

③函数在定义域内的两个区间A,B上都是增(或减)函数,一般不能认为函数在上是增(或减)函数.

思考:如何说明一个函数在某个区间上不是单调函数? 【设计意图】让学生由特殊到一般,从具体到抽象归纳出单调性的定义,通过对判断题的辨析,加深学生对定义的理解,完成对概念的第三次认识.三、掌握证法,适当延展

例 证明函数

在上是增函数.

1.分析解决问题

针对学生可能出现的问题,组织学生讨论、交流.

证明:任取 ,设元

求差

变形,断号

∴函数

2.归纳解题步骤

在上是增函数.

定论

引导学生归纳证明函数单调性的步骤:设元、作差、变形、断号、定论.

练习:证明函数

问题:要证明函数

在区间

上是增函数,除了用定义来证,如果可以证得对

在上是增函数.

任意的,且有可以吗? 引导学生分析这种叙述与定义的等价性.让学生尝试用这种等价形式证明函数在

〖设计意图〗初步掌握根据定义证明函数单调性的方法和步骤.等价形式进一步发展可以得到导数法,为用导数方法研究函数单调性埋下伏笔.

四、归纳小结,提高认识

学生交流在本节课学习中的体会、收获,交流学习过程中的体验和感受,师生合作共同完成小结.

1.小结

(1)概念探究过程:直观到抽象、特殊到一般、感性到理性.(2)证明方法和步骤:设元、作差、变形、断号、定论.(3)数学思想方法和思维方法:数形结合,等价转化,类比等. 2.作业

书面作业:课本第60页习题2.3 第4,5,6题. 课后探究:(1)证明:函数

在区间

上是增函数的充要条件是对任意的上是增函数.,且

有.

(2)研究函数的单调性,并结合描点法画出函数的草图.

《函数的单调性》教学设计说明

一、教学内容的分析

函数的单调性是学生在了解函数概念后学习的函数的第一个性质,是函数学习中第一个用数学符号语言刻画的概念,为进一步学习函数其它性质提供了方法依据. 对于函数单调性,学生的认知困难主要在两个方面:(1)要求用准确的数学符号语言去刻画图象的上升与下降,这种由形到数的翻译,从直观到抽象的转变对高一的学生是比较困难的;(2)单调性的证明是学生在函数内容中首次接触到的代数论证内容,而学生在代数方面的推理论证能力是比较薄弱的.根据以上的分析和教学大纲的要求,确定了本节课的重点和难点.

二、教学目标的确定

根据本课教材的特点、教学大纲对本节课的教学要求以及学生的认知水平,从三个不同的方面确定了教学目标,重视单调性概念的形成过程和对概念本质的认识;强调判断、证明函数单调性的方法的落实以及数形结合思想的渗透;突出语言表达能力、推理论证能力的培养和良好思维习惯的养成.

三、教学过程的设计

为达到本节课的教学目标,突出重点,突破难点,教学上采取了以下的措施:(1)在探索概念阶段, 让学生经历从直观到抽象、从特殊到一般、从感性到理性的认知过程,完成对单调性定义的三次认识,使得学生对概念的认识不断深入.

(2)在应用概念阶段,通过对证明过程的分析,帮助学生掌握用定义证明函数单调性的方法和步骤.

(3)考虑到我校学生数学基础较好、思维较为活跃的特点,对判断方法进行适当的延展,加深对定义的理解,同时也为用导数研究单调性埋下伏笔.

第五篇:函数单调性教学与反思

函数单调性教学与反思

教学内容:

(一)引入课题

我国的人口出生率变化曲线(如下图),请同学们观察说出人口出生的大致变化情况。我们可以很方便地从图象观察出人口出生的变化情况,对今后的工作具有一定的指导意义。

下面我们开始研究函数在这方面的主要性质之一―――函数的单调性。

(二)形成概念

1、观察引入

演示动画(1)函数y=2x+1随自变量x 变化的情况

(2)函数y=-2x+1随自变量x 变化的情况

(设计意图:由初中知识过度到今天要学的知识,对初中知识进行深化,激起学生新的认知冲突,从而调动学生积极性)

2、步步深化

演示动画(3)函数y=x2随自变量x 变化的情况,设置启发式问题:

(1)在y轴的右侧部分图象具有什么特点?

(2)指出在y轴的右侧部分自变量与函数值的变化规律?(3)如果在y轴右侧部分取两个点(x1,y1),(x2,y2),当x1

(4)如何用数学符号语言来描述这个规律?

教师补充:这时我们就说函数y=f(x)=x2在(0,+ )上是增函数.(5)反过来,如果y=f(x)在(0,+ )上是增函数,我们能不能得到自变量与函数值的变化规律呢? 类似地分析图象在y轴的左侧部分。

(设计意图:通过启发式提问,实现学生从“图形语言”“文字语言”“符号语言”多方面认识函数的单调性,实现“形”到“数”的转换,另外,我认为学生对“任意性”较难理解,特设计了(3)、(4)问题,步步深入,从而突破难

点,突出重点。)

3、形成概念

注意:(1)变量属于定义域

(2)注意自变量x1、x2取值的任意性

(3)都有f(x1)>f(x2)或f(x1)

(设计意图:体现从简单到复杂、具体到抽象的认知过程。在课堂教学中教师引导学生探索获得知识、技能的途径和方法。通过探索,培养学生的观察能力和运动变化的观点,同时充分利用图形的直观性,渗透了数形结合的思想,学生在探索的过程中品尝到了自己劳作后的甘甜,感受到耕耘后的丰收喜悦,更激起了学生的探索创新意识。)

(三)深化概念

例1 如图6是定义在闭区间[-5,5]上的函数y=f(x)的图象,根据图象说出y=f(x)的单调区间,以及在每一单调区间上,函数y=f(x)是增函数还是减函数.(通过讲解例1,让学生学会通过观察图象写出函数的单调区间。)例2 证明函数f(x)=3x+2在R上是增函数.证明:设x1,x2是R上的任意两个实数,且x1

11xx-=21,(注意变形程度)x1x2x1x2由x1,x2∈(0,+ ),得x1x2>0, 又由x10 ,于是f(x1)-f(x2)>0,即 f(x1)>f(x2)∴f(x)= 1在(0,+ )上是减函数.x(此题是为了进一步加强证明的规范性,严谨性)(设计意图:通过例题的教学,有助于学生内化所学的概念,建构新的知识体系,在例题教学中通过学生的交流,实现师生互动;通过教师针对性点评,有利于深刻理解概念。)

(四)即时训练 课堂练习:

1、书P60 练习1(请同学口答)

2、判断函数f(x)=在(-,0)上是增函数还是减函数并证明你

1x的结论.(设计意图:一个新知识的出现,要达到熟练运用的效果,仅仅了解是不够的,一定量的“重复”是有效的,也是必要的,所谓“温故而知新”、“熟才能生巧”。)反思:

函数单调性是函数的一个重要性质,并且学生是头一次接触函数的单调性,陌生感强。函数单调性,单调区间的概念掌握起来有一定困难,这样会增加学生的负担,不利于学生学习兴趣的激发。学生已有的认知基础是,初中学习过函数的概念,初步认识到函数是一个刻画某些运动变化数量关系的数学概念。进入高中以后,又进一步学习了函数的概念,认识到函数是两个数集之间的一种对应。学生只学过一次函数、反比例函数、正比例函数、二次函数,所以对函数的单调性研究也只能限于这几种函数。学生的现有认知结构中能根据函数的图象观察出“随着自变量x的增大函数值y增大”等变化趋势,所以在教学中要充分利用好函数图象的直观性、发挥好多媒体教学的优势通过一组常见的具体函数例子,引导学生借助初中学过的一次函数、二次函数、反比例函数的图象,从函数图像分析入手,使学生对增、减函数有一个直观的感知。从图象直观感知函数的单调性,完成对函数单调性的第一次认识。

教学中,通过一次函数、二次函数等具体函数的图象及数值变化特征的研究,得到“图象是上升的”,相应地,即“随着x的增大,y也增大”,初步提出单调增的说法。通过讨论、交流,让学生尝试,就一般情况进行刻画,提出“在某区间上,如果对于任则函数在该区间上具有“图象是上升的”、“随着x的增大,y也增大”的特征。进一步给出函数单调性的定义。然后通过辨析、练习等帮助学生理解这一概念。

用函数单调性的定义证明函数的单调性。应该注意证明的四个基本步骤:取值——作差变形——定号——判断。把证明过程步骤化,可以形成思维的定势.在学生刚刚接触一个新的知识时,思维定势对理解知识本身是有益的,同时对学生养成一定的思维习惯,形成一定的解题思路也是有帮助的。使用函数单调性定义证明是本节课的一个难点,学生刚刚接触这种证明方法,给出一定的步骤是必要的,有利于学生理解概念,也可以对学生掌握证明方法、形成证明思路有所帮助。另外,这也是以后要学习的不等式证明方法中的比较化的基本思路,现在提出要求,对今后的教学作一定的铺垫。

下载函数单调性教学技巧与分析(图文).word格式文档
下载函数单调性教学技巧与分析(图文)..doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    函数的单调性教学案例分析

    函数的单调性教学案例分析 一、内容介绍 1. 教材内容分析 “函数的单调性”是《普通高中课程标准实验教科书·数学必修一》第一章第三节的内容,本节课的实质是对函数运动趋势......

    函数单调性教学设计

    函数单调性教学设计 关于函数的单调性习题课教学设计,本人在听了专家的讲解后感到受益匪浅,结合平时的教学,有些教学方面的心得如下,希望专家和同行批评指正。 本节课是高中数学......

    《函数单调性》教学案例

    《函数单调性》教学案例 1.【案例背景】 “函数的单调性”是新课标人教版《数学·1》第一章第三节的教学内容。“课标”规定两个课时,所选案例为第一课时。 函数的单调性是......

    函数的单调性

    函数的单调性说课稿(市级一等奖) 函数单调性说课稿 《函数的单调性》说课稿(市级一等奖) 旬阳县神河中学 詹进根 我说课的课题是《普通高中课程标准实验教科书 必修1》第二......

    “函数的单调性”教学案例分析初稿

    “函数的单调性”教学案例分析初稿 江西省新余市第四中学 刘金华 第Ⅰ部分:教学准备 一、教学分析: ( 1 )中学生对于函数单调性的学习共分为三个阶段,第一阶段是在初中学习了......

    函数的单调性教学设计

    函数的单调性教学设计 戴氏教育高中数学组杜剑 【教材分析】 《函数单调性》是高中数学新教材必修一第二章第三节的内容。在此之前,学生已学习了函数的概念、定义域、值域及......

    函数的单调性(教学设计)

    【教学目标】 1.知识与技能:从形与数两方面理解函数单调性的概念,掌握利用函数图象和定义判断、证明函数单调性的方法步骤。 2.过程与方法:通过观察函数图象的变化趋势上......

    函数的单调性教学设计

    《函数的单调性》教学设计 设计理念 新课程背景下的数学教学既要注重逻辑推理,又要关注直觉思维的启迪,不仅要让学生学会,更要让学生会学,要让学生学习的过程成为其心灵愉悦的主......