第一篇:浅谈效能监察思维方式的创新
浅谈效能监察思维方式的创新
行政效能监察作为《行政监察法》赋予监察机关的重要职责之一,在推动政府加强效能建设、提高工作效率上发挥着重要作用。在全面推进行政审批制度改革、转变政府职能、建设服务型政府和优化经济社会发展环境的新形势下,进一步提升效能监察工作水平显得更加紧迫。为此,应创新思维方式,在一些问题上深化研究思考。
进一步强化理性思维,准确把握效能监察内涵。通常所说的行政效能建设是指以改善行政管理、提高工作水平为目标,通过建立行政管理保障体系,促进行政能力持续提高,实现行政效率、效果、效益最大化,达到“廉洁、勤政、务实、高效”的要求。行政效能监察主要是监督检查行政机关及其人员是否正确履行职责、充分发挥效能,重点是对行政决策、行政执行、行政效率、行政结果全过程的监督监察,基本的法律依据是《行政监察法》和《公务员法》。对照上述基本概念,应从五个方面理解把握行政效能监察的基本内涵:一是范围上的全方位——行政职能履行的全领域、行政管理活动的全过程与全天候、行政管理活动参与者的全员性;二是基点上的各要素——主观意识、基本素质、客 1
观环境、基本规范;三是目标上的高效能——状态最优,效率最高,效果最好,效益最大;四是职权上的强制性——法律授权明确,权限具体,措施有力,程序规范;五是问责上的同步化——依纪依规严肃问责贯穿于监督检查的全过程,对不履行或不正确履行职责的行为和责任人及时进行问责处理。据此,我们应当不断审视具体工作中的关键问题和薄弱环节,持续改进监督检查工作部署,确保效能监察质量和效率。
进一步强化战略思维,始终保持最佳工作状态。行政效能监察的目的是加强勤政建设,促使监察对象增强责任心,本质属性是管理监督。管理无止境,管理监督也无止境。行政审批制度改革、体制机制创新肯定会有穷期,但行政效能建设基本上没有穷期。因此行政效能建设及其监察工作一定会是长期性战略性任务,必须树立长期努力的战略思想。效能监察必须积极适应形势需要,充分体现围绕中心、服务大局的基本定位。从现实状况来说,效能监察涉及的问题绝大多数属于打“苍蝇”的问题,是着力治标的根本所在,也是为治本赢得时间的关键所在。相对于“老虎”来说,“苍蝇”普遍存在于经济社会发展和日常生活的各个角落、方方面面,市场主体和人民群众实际感受更直接、更普遍,打“苍蝇”更容易让群众直接感受到立竿见影的成效。进一步强化效能监察工作,对推动政府效能建设、克服形式主义和官僚主义 2
更具现实意义。因此效能监察工作要始终秉承“务实、规范、高效、创新”的基本追求,始终保持积极有为、履职尽责、事争一流的精神状态,始终做到不松懈观望、不浮躁自满、不因循守旧、不飘忽摇摆、不蜻蜓点水、不虎头蛇尾,努力为优化发展环境作出新贡献。
进一步强化系统思维,着力构建效能监察工作体系。鉴于行政效能建设的基础是行政能力建设,涉及人员素质、体制机制、工作保障等多方面因素;行政效能监察又是对行政决策、行政执行、行政效率、行政结果全过程的监督监察,涉及对行政状态、效率、效果、效益的客观评判;加之行政管理还具有鲜明的政治性、服务的广泛性、重要的执行性和一定的强制性等特征,又进一步增加了科学公正评判的难度。因此,行政效能监察是一个比较复杂的系统工程,更好地组织推进这项工作需要切实强化系统思维,需要根据行政管理工作的具体特点,把握好集合性、整体性特征,增强全面统筹和关键部署的把握能力;把握好层级性和行政首长负责制的具体特征,科学确定工作定位、监督重点和机制建设;把握好相关性和环境制约性特征,为科学判定具体行政行为的必然结果奠定基础;把握好开放性和动态性特征,在工作理念上自觉做到因地制宜、实事求是、与时俱进。具体实践中,还需要着力在优化履职定位、突出监督重点、健全监察标准、完 3
善责任体系、扩展工作绩效等各个方面进一步强化系统思维,进而在构建体系、补齐短板、打造亮点方面不断推出新举措,促使效能监察体系建设不断迈上新台阶。
第二篇:效能监察工作程序与方式
效能监察工作程序与方式
(一)效能监察工作程序包括选题立项、实施准备、组织实施、拟定监察报告、做出监察处理、跟踪落实、总结评审和归档立卷。
(二)效能监察工作选题立项应针对公司生产经营实际,选择员工反映的热点、管理工作中难点、公司领导布置的工作重点进行专题立项,所立项目须报公司监督委员会批准备案。
(三)效能监察工作实施准备应按以下程序进行:
1、收集整理与监察项目有关的法律制度,了解监察项目立项的背景、依据、原始数据记录等,理清监察项目的主要业务流程和关键岗位权限;
2、对收集的资料进行分析,找准主要监察点,制定项目实施方案,明确监察目的、要求、方法和步骤;
3、成立效能监察项目检查组,检查组成员原则上以专、兼职效能监察人员为主,有关部门派人参与。根据监察项目需要,可组织相关专业技术人员参加;
4、对效能监察项目检查组成员进行相关专业知识、法律法规及相关制度的培训;
5、向被检查的经营管理者所在单位、部门发送效能监察通知书,相关单位、部门应提供效能监察必需的工作条件。
(四)效能监察工作组织实施应按照以下程序进行:
1、向被检查的经营管理者所在单位、部门通报实施效能监察的目的、要求以及相关事宜;
2、依据效能监察项目实施方案规定的方法和步骤对有关经营管理者进行检查;
3、检查效能监察项目有关经营管理者履行职责、执行国家法律法规、公司规章制度、完成管理目标任务情况;收集与监察项目有关的文件资料和事实陈述;检查经营管理者履职行为的正确性,发现行为偏差和管理缺陷;
4、向被检查的经营管理者所在单位、部门通报检查情况,听取其意见,并予以确认;
5、会同公司相关部门对发现的行为偏差和管理缺陷进行分析,并从体制、机制和制度等各个方面查找原因,研究提出监察建议或决定的意见。
(五)效能监察项目实施后,效能监察项目检查组应实事求是、客观公正地拟定效能监察报告,并报公司监督委员会审批。
效能监察报告内容包括监察依据、检查过程、发现的行为偏差和管理缺陷、管控制度分析和监察建议或决定等。
(六)公司监察部门对在监察中发现的需要追究党纪处分的问题,报公司纪委处置;需要追究法律责任的移交司法机关处理;违反公司规章制度需要进行监察处理的,经公司监督委员会批准后,向公司提出监察处理建议或做出监察处理决定。
(七)公司监察部门须对监察建议或决定的执行情况进行跟踪检查,督促整改意见的落实,并将效能监察整改情况通报相关单位、部门。
(八)公司企管监察处应对全年效能监察工作进行总结,对已完成的效能监察项目资料应及时全面立卷归档。
(九)效能监察采用下列监察方式:
1、企管监察处在每月的绩效考核中对公司各单位、各部门生产经营指标及工作任务完成情况进行监督;
2、企管监察处在日常的生产经营监督管理工作中,要针对公司生产经营管理工作中的薄弱环节大力开展专项监察审计,提出专项监察审计意见和建议;
3、企管监察处每半年或一年组织公司相关职能部门,以走访检查、查看原始记录、召开员工座谈会等形式,对各单位、各部门经营管理者履职情况、廉洁自律情况进行综合性检查,并提出综合性监察意见和建议。
第三篇:数学思维方式与创新
集合的划分
(一)已完成 1 数学的整数集合用什么字母表示? A、N B、M C、Z D、W 我的答案:C 2 时间长河中的所有日记组成的集合与数学整数集合中的数字是什么对应关系? A、交叉对应 B、一一对应 C、二一对应 D、一二对应 我的答案:B 3 分析数学中的微积分是谁创立的? A、柏拉图 B、康托 C、笛卡尔
D、牛顿-莱布尼茨 我的答案:D 4 黎曼几何属于费欧几里德几何,并且认为过直线外一点有多少条直线与已知直线平行? A、没有直线 B、一条 C、至少2条 D、无数条 我的答案:A 5 最先将微积分发表出来的人是 A、牛顿 B、费马 C、笛卡尔 D、莱布尼茨 我的答案:D 6 最先得出微积分结论的人是 A、牛顿 B、费马 C、笛卡尔 D、莱布尼茨 我的答案:A 7 第一个被提出的非欧几何学是 A、欧氏几何 B、罗氏几何 C、黎曼几何 D、解析几何 我的答案:B 8 代数中五次方程及五次以上方程的解是可以用求根公式求得的。我的答案:³ 9 数学思维方式的五个重要环节:观察-抽象-探索-猜测-论证。我的答案:√ 10 在今天,牛顿和莱布尼茨被誉为发明微积分的两个独立作者。我的答案:√
集合的划分
(二)已完成 1 星期日用数学集合的方法表示是什么? A、{6R|R∈Z} B、{7R|R∈N} C、{5R|R∈Z} D、{7R|R∈Z} 我的答案:D 2 将日期集合里星期一到星期日的七个集合求并集能到什么集合? A、自然数集 B、小数集 C、整数集 D、无理数集 我的答案:C 3 在星期集合的例子中,a,b属于同一个子集的充要条件是什么? A、a与b被6除以后余数相同 B、a与b被7除以后余数相同 C、a与b被7乘以后积相同 D、a与b被整数乘以后积相同 我的答案:B 4 集合的性质不包括 A、确定性 B、互异性 C、无序性 D、封闭性 我的答案:D 5 A={1,2},B={3,4},A∩B= A、Φ B、A C、B D、{1,2,3,4} 我的答案:A 6 A={1,2},B={3,4},C={1,2,3,4}则A,B,C的关系 A、C=A∪B B、C=A∩B C、A=B=C D、A=B∪C 我的答案:A 7 星期二和星期三集合的交集是空集。我的答案:√ 8 空集属于任何集合。我的答案:³ 9 “很小的数”可以构成一个集合。我的答案:³
集合的划分
(三)已完成 1 S是一个非空集合,A,B都是它的子集,它们之间的关系有几种? A、2.0 B、3.0 C、4.0³ D、5.0 我的答案: 2 如果~是集合S上的一个等价关系则应该具有下列哪些性质? A、反身性 B、对称性 C、传递性 D、以上都有 我的答案:D 3 如果S、M分别是两个集合,SХM{(a,b)|a∈S,b∈M}称为S与M的什么? A、笛卡尔积 B、牛顿积 C、康拓积
D、莱布尼茨积 我的答案:A 4 A={1,2},B={2,3},A∪B= A、Φ B、{1,2,3} C、A D、B 我的答案:B 5 A={1,2},B={2,3},A∩B= A、Φ B、{2} C、A D、B 我的答案:B 6 发明直角坐标系的人是 A、牛顿 B、柯西 C、笛卡尔 D、伽罗瓦 我的答案:C 7 集合中的元素具有确定性,要么属于这个集合,要么不属于这个集合。我的答案:√ 8 任何集合都是它本身的子集。我的答案:√ 9 空集是任何集合的子集。我的答案:√
集合的划分
(四)已完成 1 设S上建立了一个等价关系~,则什么组成的集合是S的一个划分? A、所有的元素 B、所有的子集 C、所有的等价类 D、所有的元素积 我的答案:C 2 设~是集合S上的一个等价关系,任意a∈S,S的子集{x∈S|x~a},称为a确定的什么? A、等价类 B、等价转换 C、等价积 D、等价集 我的答案:A 3 如果x∈a的等价类,则x~a,从而能够得到什么关系? A、x=a B、x∈a C、x的笛卡尔积=a的笛卡尔积 D、x的等价类=a的等价类 我的答案:D 4 0与{0}的关系是 A、二元关系 B、等价关系 C、包含关系 D、属于关系 我的答案:D 5 元素与集合间的关系是 A、二元关系 B、等价关系 C、包含关系 D、属于关系 我的答案:D 6 如果X的等价类和Y的等价类不相等则有X~Y成立。我的答案:³ 7 A∩Φ=A 我的答案:³ 8 A∪Φ=Φ 我的答案:³
等价关系
(一)已完成 1 星期一到星期日可以被统称为什么? A、模0剩余类 B、模7剩余类 C、模1剩余类 D、模3剩余类 我的答案:B 2 星期三和星期六所代表的集合的交集是什么? A、空集 B、整数集 C、日期集 D、自然数集 我的答案:A 3 x∈a的等价类的充分必要条件是什么? A、x>a B、x与a不相交 C、x~a D、x=a 我的答案:C 4 设R和S是集合A上的等价关系,则R∪S的对称性 A、一定满足 B、一定不满足 C、不一定满足 D、不可能满足 我的答案: 5 集合A上的一个划分,确定A上的一个关系为 A、非等价关系 B、等价关系 C、对称的关系 D、传递的关系 我的答案:B 6 等价关系具有的性质不包括 A、反身性 B、对称性 C、传递性 D、反对称性 我的答案:D 7 如果两个等价类不相等那么它们的交集就是空集。我的答案:√ 8 整数的同余关系及其性质是初等数论的基础。我的答案:√ 9 所有的二元关系都是等价关系。我的答案:³
等价关系
(二)已完成 1 a与b被m除后余数相同的等价关系式是什么? A、a+b是m的整数倍 B、a*b是m的整数倍 C、a-b是m的整数倍 D、a是b的m倍 我的答案:C 2 设~是集合S的一个等价关系,则所有的等价类的集合是S的一个什么? A、笛卡尔积 B、元素 C、子集 D、划分
我的答案:D 3 如果a与b模m同余,c与d模m同余,那么可以得到什么结论? A、a+c与b+d模m同余 B、a*c与b*d模m同余 C、a/c与b/d模m同余 D、a+c与b-d模m同余 我的答案: 4 设A为3元集合,B为4元集合,则A到B的二元关系有几个 A、12.0 B、13.0 C、14.0 D、15.0 我的答案:A 5 对任何a属于A,A上的等价关系R的等价类[a]R为 A、空集 B、非空集 C、{x|x∈A} D、不确定 我的答案: 6 在4个元素的集合上可定义的等价关系有几个 A、12.0 B、13.0 C、14.0 D、15.0 我的答案: 7 整数集合Z有且只有一个划分,即模7的剩余类。我的答案:³ 8 三角形的相似关系是等价关系。我的答案:√ 9 设R和S是集合A上的等价关系,则R∪S一定是等价关系。我的答案:³
模m同余关系
(一)已完成 1 在Zm中规定如果a与c等价类相等,b与d等价类相等,则可以推出什么相等? A、a+c与d+d等价类相等 B、a+d与c-b等价类相等 C、a+b与c+d等价类相等 D、a*b与c*d等价类相等 我的答案:C 2 如果今天是星期五,过了370天是星期几? A、一 B、二 C、三 D、四
我的答案:D 3 在Z7中,4的等价类和6的等价类的和几的等价类相等? A、10的等价类 B、3的等价类 C、5的等价类 D、2的等价类 我的答案:B 4 同余理论的创立者是 A、柯西 B、牛顿 C、高斯 D、笛卡尔 我的答案:C 5 如果今天是星期五,过了370天,是星期几 A、星期二 B、星期三 C、星期四 D、星期五 我的答案:C 6 整数的四则运算不保“模m同余”的是 A、加法 B、减法 C、乘法 D、除法
我的答案:D 7 整数的除法运算是保“模m同余”。我的答案:³ 8 同余理论是初等数学的核心。我的答案:√
模m同余关系
(二)已完成 1 Zm的结构实质是什么? A、一个集合 B、m个元素 C、模m剩余环 D、整数环 我的答案:C 2 集合S上的一个什么运算是S*S到S的一个映射? A、对数运算 B、二次幂运算 C、一元代数运算 D、二元代数运算 我的答案:D 3 对任意a∈R,b∈R,有a+b=b+a=0,则b称为a的什么? A、正元 B、负元 C、零元 D、整元 我的答案:B 4 偶数集合的表示方法是什么? A、{2k|k∈Z} B、{3k|k∈Z} C、{4k|k∈Z} D、{5k|k∈Z} 我的答案:A 5 矩阵的乘法不满足哪一规律? A、结合律 B、分配律 C、交换律 D、都不满足 我的答案:C 6 Z的模m剩余类具有的性质不包括 A、结合律 B、分配律 C、封闭律 D、有零元 我的答案:C 7 模5的最小非负完全剩余系是 A、{0,6,7,13,24} B、{0,1,2,3,4} C、{6.7.13.24} D、{1,2,3,4} 我的答案:B 8 同余关系具有的性质不包括 A、反身性 B、对称性 C、传递性 D、封闭性 我的答案:D 9 在Zm中a和b的等价类的乘积不等于a,b乘积的等价类。我的答案:³ 10 如果一个非空集合R满足了四条加法运算,而且满足两条乘法运算可以称它为一个环。我的答案:√ 11 如果环有一个元素e,跟任何元素左乘右都等于自己,那称这个e是R的单位元。()我的答案:√ 12 中国剩余定理又称孙子定理。我的答案:√
模m剩余类环Zm
(一)已完成 1 Z的模m剩余类环的单位元是 A、0.0 B、1.0 C、2.0 D、3.0 我的答案:B 2 集合的划分,就是要把集合分成一些()。A、子集 B、空集 C、补集 D、并交集 我的答案: 3 设R是一个环,a∈R,则0²a= A、0 B、a C、1.0 D、2.0 我的答案:A 4 如果一个非空集合R有满足其中任意一个元素和一个元素加和都是R中元素本身,则这个元素称为什么? A、零环 B、零数 C、零集 D、零元
我的答案:D 5 若环R满足交换律则称为什么? A、交换环 B、单位环 C、结合环 D、分配环 我的答案:A 6 环R中的运算应该满足几条加法法则和几条乘法法则? A、3、3 B、2、2 C、4、2 D、2、4 我的答案:C 7 矩阵乘法不满交换律也不满足结合律。我的答案:³ 8 环R中零元乘以任意元素都等于零元。我的答案:√ 9 整数的加法是奇数集的运算。我的答案:³ 10 设R是非空集合,R和R的笛卡尔积到R的一个映射就是运算。我的答案:√
模m剩余类环Zm
(二)已完成 1 在Zm环中一定是零因子的是什么? A、m-1等价类 B、0等价类 C、1等价类 D、m+1等价类 我的答案:B 2 环R中,对于a、c∈R,且c不为0,如果ac=0,则称a是什么? A、零元 B、零集 C、左零因子 D、归零因子 我的答案:C 3 环R中满足a、b∈R,如果ab=ba=e(单位元)则称a是什么? A、交换元 B、等价元 C、可变元 D、可逆元 我的答案:D 4 设R是一个环,a,b∈R,则(-a)²(-b)= A、a B、b C、ab D、-ab 我的答案:C 5 设R是一个环,a,b∈R,则(-a)²b= A、a B、b C、ab D、-ab 我的答案:D 6 设R是一个环,a,b∈R,则a²(-b)= A、a B、b C、ab D、-ab 我的答案:D 7 环R中满足a、b∈R,如果ab=ba=e(单位元),那么其中的b是唯一的。我的答案:√ 8 Z的模m剩余类环是有单位元的交换环。我的答案:√ 9 一个环有单位元,其子环一定有单位元。我的答案:³
环的概念已完成 1 在Zm剩余类环中没有哪一种元? A、单位元 B、可逆元
C、不可逆元,非零因子 D、零因子 我的答案:C 2 在整数环中只有哪几个是可逆元? A、1、-1 B、除了0之外 C、0.0 D、正数都是 我的答案:A 3 在模5环中可逆元有几个? A、1.0 B、2.0 C、3.0 D、4.0 我的答案: 4 Z的模4剩余类环不可逆元的有()个。A、4 B、3 C、2 D、1 我的答案: 5 Z的模2剩余类环的可逆元是 A、0.0 B、1.0 C、2.0 D、4.0 我的答案:B 6 设R是有单位元e的环,a∈R,有(-e)²a= A、e B、-e C、a D、-a 我的答案:D 7 在有单位元e(不为零)的环R中零因子一定是不可逆元。我的答案:√ 8 一个环没有单位元,其子环不可能有单位元。我的答案:³ 9 环的零因子是一个零元。我的答案:³
域的概念已完成 1 当m是什么数的时候,Zm就一定是域? A、复数 B、整数 C、合数 D、素数
我的答案:D 2 素数m的正因数都有什么? A、只有1 B、只有m C、1和m D、1到m之间的所有数 我的答案:C 3 最小的数域是什么? A、有理数域 B、实数域 C、整数域 D、复数域 我的答案:A 4 设F是一个有单位元(不为0)的交换环,如果F的每个非零元都是可逆元,那么称F是一个什么? A、积 B、域 C、函数 D、元
我的答案:B 5 属于域的是()。A、(Z,+,²)B、(Z[i],+,²)C、(Q,+,²)D、(I,+,²)我的答案: 6 Z的模p剩余类环是一个有限域,则p是 A、整数 B、实数 C、复数 D、素数
我的答案:D 7 不属于域的是()。A、(Q,+,²)B、(R,+,²)C、(C,+,²)D、(Z,+,²)我的答案: 8 有理数集,实数集,整数集,复数集都是域。我的答案:³ 9 域必定是整环。我的答案:√ 10 整环一定是域。我的答案:³
整数环的结构
(一)已完成 1 对于a,b∈Z,如果有c∈Z,使得a=cb,称b整除a,记作什么? A、b^a B、b/a C、b|a D、b&a 我的答案:C 2 整数环的带余除法中满足a=qb+r时r应该满足什么条件? A、0<=r<|b| B、1 C、0<=r D、r<0 我的答案:A 3 在整数环中没有哪种运算? A、加法 B、除法 C、减法 D、乘法 我的答案: 4 最先对Z[i]进行研究的人是 A、牛顿 B、柯西 C、高斯 D、伽罗瓦 我的答案:C 5 不属于无零因子环的是 A、整数环 B、偶数环 C、高斯整环 D、Z6 我的答案: 6 不属于整环的是 A、Z B、Z[i] C、Z2 D、Z6 我的答案: 7 整数环是具有单位元的交换环。我的答案:√ 8 整环是无零因子环。我的答案:√ 9 右零因子一定是左零因子。我的答案:³
整数环的结构
(二)已完成 1 在整数环中若c|a,c|b,则c称为a和b的什么? A、素数 B、合数 C、整除数 D、公因数 我的答案:D 2 整除没有哪种性质? A、对称性 B、传递性 C、反身性 D、都不具有 我的答案: 3 a与0 的一个最大公因数是什么? A、0.0 B、1.0 C、a D、2a 我的答案:C 4 不能被5整除的数是 A、115.0 B、220.0 C、323.0 D、425.0 我的答案:C 5 能被3整除的数是 A、92.0 B、102.0 C、112.0 D、122.0 我的答案:B 6 整环具有的性质不包括 A、有单位元 B、无零因子 C、有零因子 D、交换环 我的答案:C 7 在整数环的整数中,0是不能作为被除数,不能够被整除的。我的答案:³ 8 整除关系是等价关系。我的答案:³ 9 若n是奇数,则8|(n^2-1)。我的答案:√
整数环的结构
(三)已完成 1 0与0的最大公因数是什么? A、0.0 B、1.0 C、任意整数 D、不存在 我的答案: 2 探索里最重要的第一步是什么? A、实验 B、直觉判断 C、理论推理 D、确定方法 我的答案: 3 对于a,b∈Z,如果有a=qb+r,d满足什么条件时候是a与b的一个最大公因数? A、d是a与r的一个最大公因数 B、d是q与r的一个最大公因数 C、d是b与q的一个最大公因数 D、d是b与r的一个最大公因数 我的答案:D 4 gac(234,567)= A、3.0 B、6.0 C、9.0 D、12.0 我的答案:C 5 若a=bq+r,则gac(a,b)= A、gac(a,r)B、gac(a,q)C、gac(b,r)D、gac(b,q)我的答案: 6 gac(126,27)= A、3.0 B、6.0 C、9.0 D、12.0 我的答案:C 7 对于整数环,任意两个非0整数a,b一定具有最大公因数。我的答案:√ 8 a是a与0的一个最大公因数。我的答案:√ 9 0是0与0的一个最大公因数。我的答案:√
整数环的结构
(四)已完成 1 如果d是被除数和除数的一个最大公因数也是哪两个数的一个最大公因数? A、被除数和余数 B、余数和1 C、除数和余数 D、除数和0 我的答案:C 2 对于整数环,任意两个非0整数a,b一定具有最大公因数可以用什么方法求? A、分解法 B、辗转相除法 C、十字相乘法 D、列项相消法 我的答案:B 3 对于a与b的最大公因数d存在u,v满足什么等式? A、d=ua+vb B、d=uavb C、d=ua/vb D、d=uav-b 我的答案: 4 gcd(13,8)= A、1.0 B、2.0 C、8.0 D、13.0 我的答案:A 5 gcd(56,24)= A、1.0 B、2.0 C、4.0 D、8.0 我的答案:D 6 gac(13,39)= A、1.0 B、3.0 C、13.0 D、39.0 我的答案:C 7 用带余除法对被除数进行替换时候可以无限进行下去。我的答案:³ 8 欧几里得算法又称辗转相除法。我的答案:√ 9 计算两个数的最大公因子最有效的方法是带余除法。我的答案:³
整数环的结构
(五)已完成 1 若a,b∈Z,且不全为0,那么他们的最大公因数有几个? A、5.0 B、4.0 C、3.0 D、2.0 我的答案:D 2 若a,b∈Z,它们的最大公因数在中国表示为什么? A、[a,b] B、{a,b} C、(a,b)D、gcd(a,b)³ 我的答案: 3 如果a,b互素,则存在u,v与a,b构成什么等式? A、1=uavb B、1=ua+vb C、1=ua/vb³ D、1=uav-b 我的答案: 4 在Z中,若a|bc,且(a,b)=1则可以得到什么结论? A、a|c B、(a,c)=1³ C、ac=1 D、a|c=1 我的答案: 5 若(a,b)=1,则a与b的关系是 A、相等 B、大于 C、小于 D、互素
我的答案:D 6 由b|ac及gac(a,b)=1有 A、a|b B、a|c C、b|c D、b|a³ 我的答案: 7 若a与b互素,有 A、(a,b)=0 B、(a,b)=1 C、(a,b)=a D、(a,b)=b 我的答案:B 8 在整数环中若(a,b)=1,则称a,b互素。我的答案:√ 9 在Z中,若a|c,b|c,且(a,b)=1则可以a|bc.我的答案:³ 10 0与0的最大公因数只有一个是0。我的答案:√ 11 任意两个非0的数不一定存在最大公因数。我的答案:³
整数环的结构
(六)已完成 1 在Z中若(a,c)=1,(b,c)=1,则可以得出哪两个数是素数? A、(abc,a)=1 B、(ac,bc)=1 C、(abc,b)=1 D、(ab,c)=1 我的答案:D 2 在所有大于0的整数中共因素最少的数是什么? A、所有奇数 B、所有偶数 C、1.0 D、所有素数³ 我的答案: 3 对于任意a,b∈Z,若p为素数,那么p|ab可以推出什么? A、p|a B、p|b C、p|ab D、以上都可以 我的答案:D 4 对于任意a∈Z,若p为素数,那么(p,a)等于多少? A、1.0³ B、1或p C、p D、1,a,pa 我的答案: 5 p是素数,若p|ab,(p,a)=1可以推出 A、p|a B、p|b C、(p,b)=1³ D、(p,ab)=1 我的答案: 6 正因数最少的数是 A、整数 B、实数 C、复数 D、素数
我的答案:D 7 若(a,c)=1,(b,c)=1则(ab,c)= A、1.0 B、a C、b D、c 我的答案:A 8 所有大于1的素数所具有的公因数的个数都是相等的。我的答案:√ 9 任意数a与素数p的只有一种关系即p|a。我的答案:³ 10 a与b互素的充要条件是存在u,v∈Z使得au+bv=1。我的答案:√
整数环的结构
(七)已完成 1 素数的特性总共有几条? A、6.0 B、5.0³ C、4.0 D、3.0 我的答案: 2 任一个大于1的整数都可以唯一地分解成什么的乘积? A、有限个素数的乘积 B、无限个素数的乘积 C、有限个合数的乘积 D、无限个合数的乘积 我的答案:A 3 素数的特性之间的相互关系是什么样的? A、单独关系 B、不可逆
C、不能单独运用 D、等价关系 我的答案:D 4 p与任意数a有(p,a)=1或p|a的关系,则p是 A、整数 B、实数 C、复数 D、素数
我的答案:D 5 p不能分解成比p小的正整数的乘积,则p是 A、整数 B、实数 C、复数 D、素数
我的答案:D 6 1是 A、素数 B、合数 C、有理数 D、无理数 我的答案:C 7 素数P能够分解成比P小的正整数的乘积。我的答案:³ 8 合数都能分解成有限个素数的乘积。我的答案:√ 9 p是素数则p的正因子只有P。我的答案:³
Zm的可逆元
(一)已完成 1 在Zm中,等价类a与m满足什么条件时可逆? A、互合 B、相反数 C、互素 D、不互素 我的答案:C 2 Z8中的零因子都有哪些? A、1、3、5、7³ B、2、4、6、0 C、1、2、3、4 D、5、6、7、8 我的答案: 3 模m剩余环中可逆元的判定法则是什么? A、m是否为素数 B、a是否为素数 C、a与m是否互合 D、a与m是否互素 我的答案:D 4 Z5的零因子是 A、0.0 B、1.0³ C、2.0 D、3.0 我的答案: 5 不属于Z8的可逆元的是 A、1.0 B、2.0 C、3.0 D、5.0 我的答案:B 6 Z6的可逆元是 A、0.0 B、1.0 C、2.0³ D、3.0 我的答案: 7 在Zm中等价类a与m不互素时等价环a是零因子。我的答案:√ 8 p是素数,则Zp一定是域。我的答案:√ 9 Zm的每个元素是可逆元或者是零因子。我的答案:√
Zm的可逆元
(二)已完成 1 Z10的可逆元是 A、2.0 B、5.0 C、7.0 D、10.0 我的答案:C 2 Z9的可逆元是 A、3.0 B、6.0 C、7.0 D、9.0 我的答案:C 3 在Z91中等价类元素83的可逆元是哪个等价类? A、91.0 B、38.0 C、34.0 D、19.0³ 我的答案: 4 当p为素数时候,Zp一定是什么? A、域 B、等价环 C、非交换环 D、不可逆环³ 我的答案: 5 不属于Z7的可逆元是 A、1.0 B、3.0³ C、5.0 D、7.0 我的答案: 6 p是素数,在Zp中单位元的多少倍等于零元 A、1.0 B、p+1³ C、p-1 D、p 我的答案: 7 Z91中等价类34是零因子。我的答案:³ 8 Z81中,9是可逆元。我的答案:³ 9 Z91中,34是可逆元。我的答案:√
模P剩余类域已完成 1 在域F中,e是单位元,对任意n,n为正整数都有ne不为0,则F的特征是什么? A、0.0 B、f C、p D、任意整数 我的答案:A 2 在R中,n为正整数,当n为多少时n1可以为零元? A、1.0 B、100.0 C、n>1000 D、无论n为多少都不为零元 我的答案:D 3 在域F中,e是单位元,存在n,n为正整数使得ne=0成立的正整数n是什么? A、合数 B、素数 C、奇数 D、偶数 我的答案:B 4 任一数域的特征为 A、0.0 B、1.0 C、e D、无穷 我的答案:A 5 设域F的单位元e,存在素数p使得pe=0,而0<l<p,le不为0时,则F的特征为 A、0.0 B、p C、e D、无穷 我的答案:B 6 设域F的单位元e,对任意的n∈N都有ne不等于0时,则F的特征为 A、0.0 B、1.0 C、e D、无穷 我的答案:A 7 任一数域的特征都为0,Zp的特征都为素数p。我的答案:√ 8 设域F的单位元e,对任意的n∈N有ne不等于0。我的答案:√ 9 设域F的单位元e,存在素数p使得pe=0。我的答案:√
域的特征
(一)已完成 1 Cpk=p(p-1)„(p-k-1)/k!,其中1<=k< p,则(K!,p)等于多少? A、0.0 B、1.0 C、kp³ D、p 我的答案: 2 域F的特征为p,对于任一a∈F,pa等于多少? A、1.0 B、p C、0.0 D、a 我的答案:C 3 在域F中,设其特征为2,对于任意a,b∈F,则(a+b)2 等于多少 A、2(a+b)B、a2 C、b2 D、a2+b2 我的答案:D 4 设域F的特征为素数p,对任意a∈F,有pa= A、p B、a C、0.0 D、无穷 我的答案:C 5 设域F的特征为2,对任意的a,b∈F,有(a+b)^2= A、a+b B、a C、b D、a^2+b^2 我的答案:D 6 特征为2的域是 A、Z B、Z2 C、Z3 D、Z5 我的答案:B 7 在域F中,设其特征为p,对于任意a,b∈F,则(a+b)P 等于ap+bp 我的答案:√ 8 设域F的特征为素数p,对任意的a,b∈F,有(a+b)^p=a^p+b^p。我的答案:√ 9 设域F的特征为3,对任意的a,b∈F,有(a+b)^2=a^2+b^2。我的答案:³
域的特征
(二)已完成 1 设p是素数,对于任一a∈Z,ap模多少和a同余? A、a B、所有合数 C、P D、所有素数³ 我的答案: 2 用数学归纳法:域F的特征为素数P,则可以得到(a1+„as)p等于什么? A、asp B、ap C、ps D、a1P+„asP 我的答案:D 3 6813模13和哪个数同余? A、68.0 B、13.0³ C、136.0 D、55.0 我的答案: 4 68^13≡?(mod13)A、66.0 B、67.0 C、68.0 D、69.0 我的答案:C 5 设p是素数,则(p-1)!≡?(modp)A、-1.0 B、0.0 C、1.0 D、p 我的答案:A 6 费马小定理中规定的a是任意整数,包括正整数和负整数。我的答案:³ 7 设p是素数,则对于任意的整数a,有a^p≡a(modp)。我的答案:√ 8 9877是素数。我的答案:³
中国剩余定理
(一)已完成 1 首先证明了一次同余数方程组的解法的是我国哪个朝代的数学家? A、汉朝 B、三国³ C、唐朝 D、南宋 我的答案: 2 一般的中国军队的一个连队有多少人? A、30多个 B、50多个 C、100多个 D、300多个 我的答案:C 3 关于军队人数统计,丘老师列出的方程叫做什么? A、一次同余方程组 B、三元一次方程组 C、一元三次方程组 D、三次同余方程组 我的答案:A 4 中国古代求解一次同余式组的方法是 A、韦达定理 B、儒歇定理 C、孙子定理 D、中值定理 我的答案:C 5 孙子问题最先出现在哪部著作中 A、《海岛算经》 B、《五经算术》 C、《孙子算经》 D、《九章算术》 我的答案:C 6 剩余定理是哪个国家发明的 A、古希腊 B、古罗马 C、古埃及 D、中国
我的答案:D 7 一次同余方程组在Z中是没有解的。我的答案:³ 8 “韩信点兵”就是初等数论中的解同余式。我的答案:√ 9 同余式组中,当各模两两互素时一定有解。我的答案:√
中国剩余定理
(二)已完成 1 一次同余方程组最早的描述是在哪本著作里? A、九章算术 B、孙子算经 C、解析几何 D、微分方程 我的答案:B 2 最早给出一次同余方程组抽象算法的是谁? A、祖冲之 B、孙武 C、牛顿 D、秦九识 我的答案:D 3 一次同余方程组(模分别是m1,m2,m3)的全部解是什么? A、km1m2m3 B、Cm1m2m3 C、C+km1m2m3 D、Ckm1m2m3 我的答案:C 4 n被3,4,7除的余数分别是1,3,5且n小于200,则n= A、170.0 B、177.0 C、180.0 D、187.0 我的答案:D 5 n被3,5,7除的余数分别是1,2,3且n小于200,则n= A、155.0 B、156.0 C、157.0 D、158.0 我的答案:C 6 n被3,5,11除的余数分别是1,3,3且n小于100,则n= A、54.0 B、56.0 C、58.0 D、60.0 我的答案:C 7 欧拉在1743年,高斯在1801年分别也给出了同余方程组的解法。我的答案:√ 8 某数如果加上5就能被6整除,减去5就能被7整除,这个数最小是20。我的答案:³ 9 一个数除以5余3,除以3余2,除以4余1.求该数的最小值53。我的答案:√
欧拉函数
(一)已完成 1 Zp是一个域那么可以得到φ(p)等于多少? A、0.0³ B、1.0 C、p D、p-1 我的答案: 2 φ(m)等于什么? A、集合{1,2„m-1}中与m互为合数的整数的个数 B、集合{1,2„m-1}中奇数的整数的个数
C、集合{1,2„m-1}中与m互素的整数的个数 D、集合{1,2„m-1}中偶数的整数的个数 我的答案:C 3 Zm中所有的可逆元组成的集合记作什么? A、Zm* B、Zm C、ZM D、Z* 我的答案:A 4 Z5的可逆元个数是 A、1.0 B、2.0 C、3.0³ D、4.0 我的答案: 5 Z7的可逆元个数是 A、2.0³ B、4.0 C、6.0 D、7.0 我的答案: 6 Z3的可逆元个数是 A、0.0 B、1.0³ C、2.0 D、3.0 我的答案: 7 求取可逆元个数的函数φ(m)是高斯函数。我的答案:³ 8 在Zm中,a是可逆元的充要条件是a与m互素。我的答案:√ 9 Zm中可逆元个数记为φ(m),把φ(m)称为欧拉函数。我的答案:√
欧拉函数
(二)已完成 1 当m为合数时,令m=24,那么φ(24)等于多少? A、2.0 B、7.0 C、8.0 D、10.0 我的答案:C 2 设p为素数,r为正整数,Ω={1,2,3,„pr}中与pr不互为素数的整数个数有多少个? A、pr-1 B、p C、r D、pr 我的答案:A 3 φ(24)等于哪两个素数欧拉方程的乘积? A、φ(2)*φ(12)B、φ(2)*φ(4)C、φ(4)*φ(6)D、φ(3)*φ(8)我的答案:D 4 φ(9)= A、1.0 B、3.0³ C、6.0 D、9.0 我的答案: 5 φ(4)= A、1.0 B、2.0 C、3.0 D、4.0 我的答案:B 6 φ(8)= A、2.0 B、4.0 C、6.0 D、8.0 我的答案:B 7 φ(12)=φ(3*4)=φ(2*6)=φ(3)*φ(4)=φ(2)*φ(6)我的答案:³ 8 设p是素数,r是正整数,则φ(p^r)=(p-1)p^(r-1)。我的答案:√ 9 设p是素数,则φ(p)=p。我的答案:³
欧拉函数
(三)已完成 1 欧拉方程φ(m2)φ(m1)之积等于哪个环中可逆元的个数? A、Zm1 Zm2 B、Zm1 C、Zm2 D、Zm1*m2 我的答案:A 2 Zm1*Zm2的笛卡尔积被称作是Zm1和Zm2的什么? A、算术积 B、集合 C、直和 D、平方积 我的答案: 3 设m=m1m2,且(m1,m2)=1,则φ(m)等于什么? A、φ(m1)B、φ(m2)φ(m1)C、φ(m1)*φ(m1)D、φ(m2)*φ(m2)我的答案:B 4 φ(24)= A、2.0³ B、4.0 C、8.0 D、12.0 我的答案: 5 φ(10)= A、1.0 B、2.0 C、3.0 D、4.0 我的答案:D 6 φ(12)= A、1.0 B、2.0 C、3.0³ D、4.0 我的答案: 7 设m1,m2为素数,则Zm1*Zm2是一个具有单位元的交换环。我的答案:√ 8 设m=m1m2,且(m1,m2)=1则φ(m)=φ(m1)φ(m2)。我的答案:√ 9 φ(24)=φ(4)φ(6)我的答案:³
欧拉函数
(四)已完成 1 有序元素对相等的映射是一个什么映射? A、不完全映射 B、不对等映射 C、单射 D、散射 我的答案:C 2 若有Zm*到Zm1 Zm2的一个什么,则|Zm*|=|Zm1 Zm2*|成立 A、不对应关系 B、互补 C、互素 D、双射
我的答案:D 3 Φ(7)= A、Φ(1)Φ(6)B、Φ(2)Φ(5)³ C、Φ(2)Φ(9)D、Φ(3)Φ(4)我的答案: 4 Φ(6)= A、Φ(1)Φ(5)B、Φ(3)Φ(3)C、Φ(2)Φ(3)D、Φ(3)Φ(4)我的答案:C 5 Φ(3)Φ(4)= A、Φ(3)B、Φ(4)C、Φ(12)D、Φ(24)我的答案:C 6 如果m=m1m2,且(m1,m2)=1,有m|x-y,则m1|x-y,m2|x-y.我的答案:√ 7 Φ(N)是欧拉函数,若N>2,则Φ(N)必定是偶数。我的答案:√ 8 Φ(4)=Φ(2)Φ(2)我的答案:³
欧拉函数
(五)已完成 1 a是Zm的可逆元的等价条件是什么? A、σ(a)是Zm的元素 B、σ(a)是Zm1的元素 C、σ(a)是Zm2的元素
D、σ(a)是Zm1,Zm2直和的可逆元 我的答案:D 2 单射在满足什么条件时是满射? A、两集合元素个数相等 B、两集交集为空集³ C、两集合交集不为空集 D、两集合元素不相等 我的答案: 3 若映射σ既满足单射,又满足满射,那么它是什么映射? A、不完全映射 B、双射 C、集体映射 D、互补映射 我的答案:B 4 属于单射的是 A、x → x^2 B、x → cosx C、x →x^4 − x D、x →2x + 1 我的答案:D 5 不属于单射的是 A、x → ln x B、x → e^x C、x →x^3 − x D、x →2x + 1 我的答案:C 6 数学上可以分三类函数不包括 A、单射 B、满射 C、双射 D、反射
我的答案:D 7 映射σ是满足乘法运算,即σ(xy)=σ(x)σ(y)。我的答案:√ 8 对任一集合X,X上的恒等函数为单射的。我的答案:√ 9 一个函数不可能既是单射又是满射。我的答案:³
欧拉函数
(六)已完成 1 根据欧拉方程的算法φ(1800)等于多少? A、180.0 B、480.0 C、960.0 D、1800.0 我的答案:B 2 欧拉方程φ(m)=φ(P1r1)„φ(Psrs)等于什么? A、P1r1-1(P1-1)„Psrs-1(Ps-1)B、P1r1-1„Psrs-1³ C、(P1-1)„(Ps-1)D、P1(P1-1)„Ps(Ps-1)我的答案: 3 设M=P1r1„Psrs,其中P1,P2„需要满足的条件是什么? A、两两不等的合数 B、两两不等的奇数 C、两两不等的素数 D、两两不等的偶数 我的答案:C 4 不属于满射的是 A、x → x+1 B、x → x-1 C、x → x^2 D、x →2x + 1³ 我的答案: 5 属于满射的是 A、x → x^2 B、x → e^x C、x → cosx³ D、x →2x + 1 我的答案: 6 属于双射的是 A、x → x^2 B、x → e^x C、x → cosx³ D、x →2x + 1 我的答案: 7 φ(m)=φ(m1)φ(m2)成立必须满足(m1,m2)=1.我的答案:√ 8 x → ln x不是单射。我的答案:³ 9 既是单射又是满射的映射称为双射。我的答案:√
环的同构
(一)已完成 1 设环R到环R'有一个双射σ且满足乘法和加法运算,则称σ为环R的什么? A、异构映射³ B、满射 C、单射
D、同构映射 我的答案:D 2 设p是奇素数,则Zp的非零平方元a,有几个平方根? A、2.0 B、3.0 C、4.0 D、和p大小有关³ 我的答案: 3 环R与环S同构,若R是整环则S A、可能是整环 B、不可能是整环 C、一定是整环 D、不一定是整环 我的答案:C 4 环R与环S同构,若R是域则S A、可能是域 B、不可能是域 C、一定是域
D、不一定是域³ 我的答案: 5 环R与环S同构,若R是除环则S A、可能是除环³ B、不可能是除环 C、一定是除环 D、不一定是除环 我的答案: 6 若存在c∈Zm,有c2=a,那么称c是a的平方元。我的答案:³ 7 同构映射有保加法和除法的运算。我的答案:³ 8 环R与环S同构,则R、S在代数性质上完全一致。我的答案:√
环的同构
(二)已完成 1 二次多项式x2-a在Zp中至多有多少个根? A、无穷多个 B、两个 C、一个 D、不存在 我的答案:B 2 在Z77中,关于4的平方根所列出的同余方程组有几个? A、1个 B、2个 C、3个 D、4个
我的答案:D 3 在Z77中,4的平方根都有哪些? A、1、2、6、77 B、2、-2 C、2、9、68、75 D、2、-
2、3、-3 我的答案:C 4 Z77中4的平方根有几个 A、1.0 B、2.0 C、3.0 D、4.0 我的答案:D 5 Z100中4的平方根有几个 A、1.0 B、2.0 C、3.0 D、4.0 我的答案:D 6 Z7中4的平方根有几个 A、0.0 B、1.0³ C、2.0 D、3.0 我的答案:B 7 在Z77中,6是没有平方根的。我的答案:√ 8 二次多项式在Zp中至少有两个根。我的答案:³ 9 Z7和Z11的直和,与Z77同构。我的答案:√
Z﹡m的结构
(一)已完成 1 非空集合G中定义了乘法运算,如果G是一个群,则它需要满足几个条件? A、6.0 B、5.0 C、4.0³ D、3.0 我的答案: 2 当群G满足什么条件时,称群是一个交换群? A、乘法交换律 B、加法交换律 C、除法交换律 D、减法交换律 我的答案:A 3 Z12*只满足哪种运算? A、加法 B、乘法 C、减法 D、除法 我的答案:B 4 非空集合G中定义了乘法运算,如有有ea=ae=a对任意a∈G成立,则这样的e在G中有几个?
A、无数个 B、2个
C、有且只有1一个 D、无法确定 我的答案:C 5 群具有的性质不包括 A、结合律 B、有单位元 C、有逆元 D、分配律 我的答案:D 6 群有几种运算 A、一 B、二³ C、三 D、四
我的答案: 7 Z12*= A、{1,2,5,7} B、{1,5,9,11} C、{1,5,7,11} D、{3,5,7,11} 我的答案:C 8 在Z12*所有元素的逆元都是它本身。我的答案:√ 9 Z12*是保加法运算。我的答案:³ 10 Z12*只有一种运算。我的答案:√
Z﹡m的结构
(二)已完成 1 Zm*的结构可以描述成什么? A、阶为φ(m)的交换群 B、阶为φ(m)的交换环 C、阶为φ(m)的交换域 D、阶为φ(m)的交换类 我的答案:A 2 若a∈Z9*,且为交换群,那么a的几次方等于单位元? A、1.0 B、3.0 C、6.0 D、任意次方 我的答案:C 3 Zm*是交换群,它的阶是多少? A、1.0 B、φ(m)C、2m D、m2 我的答案:B 4 Z9*的阶为 A、2.0 B、3.0³ C、6.0 D、9.0 我的答案: 5 Z12*的阶为 A、2.0 B、4.0 C、6.0 D、8.0 我的答案:B 6 Z24*的阶为 A、2.0 B、4.0³ C、6.0 D、8.0 我的答案: 7 在群G中,对于一切m,n为正整数,则aman=amn.我的答案:³ 8 Z5关于剩余类的乘法构成一个群。我的答案:³ 9 Zm*是一个交换群。我的答案:√
Z﹡m的结构
(三)已完成 1 设G是n阶交换群,对于任意a∈G,那么an等于多少? A、na B、a2 C、a D、e 我的答案:D 2 Z9*中满足7n=e的最小正整数是几? A、6.0 B、4.0 C、3.0 D、1.0 我的答案:C 3 群G中,对于任意a∈G,存在n,n为正整数使得an=e成立的最小的正整数称为a的什么? A、阶 B、幂 C、域 D、根
我的答案:A 4 Z6中4的阶是 A、1.0 B、2.0 C、3.0 D、4.0 我的答案:C 5 Z5*中2的阶是 A、1.0 B、2.0³ C、3.0 D、4.0 我的答案: 6 Z5*中3的阶是 A、1.0 B、2.0 C、3.0 D、4.0 我的答案:D 7 如果G是n阶的非交换群,那么对于任意a∈G,那么an=任意值。我的答案:³ 8 设G是n阶群,任意的a∈G,有a^n=e。我的答案:√ 9 在整数加群Z中,每个元素都是无限阶。我的答案:³
欧拉定理循环群
(一)已完成 1 若整数a与m互素,则aφ(m)模m等于几? A、a B、2.0 C、1.0 D、2a 我的答案:C 2 Zm*是循环群,则m应该满足什么条件? A、m=2,4,pr,2pr B、m必须为素数 C、m必须为偶数 D、m必须为奇素数 我的答案:A 3 Z9*的生成元是什么? A、1、7 B、2、5 C、5、7 D、2、8 我的答案:B 4 群G中,如果有一个元素a使得G中每个元素都可以表示成a的什么形式时称G是循环群? A、对数和 B、指数积 C、对数幂³ D、整数指数幂 我的答案: 5 Z3*的生成元是 A、0.0 B、2.0 C、3.0 D、6.0 我的答案:B 6 Z2*的生成元是 A、1.0 B、2.0³ C、3.0 D、4.0 我的答案: 7 Z4*的生成元是 A、0.0 B、2.0 C、3.0 D、6.0 我的答案:C 8 Z1*,Z2*,Z3*,Z5*,Z8*,Z9*,Z12*都是循环群。我的答案:³ 9 Z9*是一个循环群。我的答案:√ 10 Z9*的生成元是3和7。我的答案:³
欧拉定理循环群
(二)已完成 1 Z对于什么的加法运算是一个群? A、整数 B、小数 C、有理数 D、无理数 我的答案:A 2 Zm*是具有可逆元,可以称为Zm的什么类型的群? A、结合群 B、交换群 C、分配群 D、单位群 我的答案:D 3 Z12的生成元不包括 A、1.0 B、5.0 C、7.0 D、9.0 我的答案:D 4 Z16的生成元是 A、2.0 B、8.0 C、11.0 D、14.0 我的答案:C 5 Z15的生成元是 A、5.0 B、10.0 C、12.0 D、13.0 我的答案:D 6 环R对于那种运算可以构成一个群? A、乘法 B、除法 C、加法 D、减法 我的答案:C 7 对于所有P,p为奇数,那么Zp就是一个域。我的答案:³ 8 整数加群Z是有限循环群。我的答案:³ 9 Zm*称为Zm的单位群。我的答案:√
素数的分布
(一)已完成 1 素有总共有多少个? A、4.0 B、21.0 C、1000.0 D、无数多个 我的答案:D 2 大于10小于100的整数中有多少个素数? A、21.0 B、27.0 C、31.0 D、50.0 我的答案:A 3 对于a,a为大于10小于100的整数,a的素因素都有哪些? A、2、3、7、9 B、2、3、5、7 C、1、2、3、5 D、5、7、9 我的答案:B 4 小于10的素数有几个 A、1.0 B、2.0 C、3.0 D、4.0 我的答案:D 5 不超过100的素数有几个 A、24.0 B、25.0 C、26.0 D、27.0 我的答案:B 6 大于10而小于100的素数有几个 A、20.0 B、21.0 C、22.0 D、23.0 我的答案:B 7 丘老师使用的求素数的方法叫做拆分法。我的答案:³ 8 97是素数。我的答案:√ 9 87是素数。我的答案:³
第四篇:效能监察
浅谈国有企业效能监察工作
姓 名:许琲
单 位:焦作煤业(集团)辉县张屯煤矿有限公司 邮 编:454000 摘 要:国有企业效能监察工作是对企业生产和经营管理的质量、效益、效率、及效果等方面实施的一种监督监察活动,也是国企纪检监察组织融入企业经营管理中心和改革发展大局,实现国有资产保值增值的有效途径。关键词:效能监察 提高效益 监督管理 中图分类号: 文献标识码: 正文:
国有企业效能监察工作是对企业生产和经营管理的质量、效益、效率、及效果等方面实施的一种监督监察活动,也是国企纪检监察组织融入企业经营管理中心和改革发展大局,实现国有资产保值增值的有效途径。目前,我国国有企业改革发展已进入到一个新的历史时期,企业经济成分、组织形成、利益关系、分配方式等日趋多样化,这就要求在开展企业效能监察工作过程中,要不断提高认识,准确把握国企效能监察存在的问题,积极探索国有企业实施效能监察的有效途径。
一、正确认识国企效能监察作用
国有企业效能监察是监察部门对企业管理职能部门的管理效能,具有企业管理的再管理,监督的再监督功能,功能主要是保护和服务,两者具有统一性,概括起来主要有以下六点作用:一是服务性。它是围绕企业行政管理中心工作,为完成某项工作任务而进行的监察工作,具有服务性;二是制约性。它在企业各职能部门实现某一工作目标的全过程进行检查监督,规范其行为,纠正其偏差,保证正确的经营手段,使其沿着最经济的经营轨道运作;三是参与性。效能监察工作人员在某项工作运作的同时积极参与其各种活动,在参与中实施监督检查,保证其有效性;四是预防性。通过效能监察,可以及时发现对工作可能带来不利的因素,以便预防和阻止某一程序的运作,减少企业的经济损失;五是规范性。通过效能监察,可以发现问题,研究问题,解决问题。可以使企业内各项工作目标、计划、决定等各方面更加科学化、规范化。六是保护性。通过效能监察,可以使一部分领导干部摆正位置,提高自律意识,廉洁从业,进而保护好我们的党员干部。
二、国有企业效能监察存在的问题
国有企业以效能监察为手段,强化对经营管理全过程的监控,规范各种经营管理行为,取得了明显的经济效益和社会效益。但实际工作中还存在一些不足,影响着效能监察职能作用的发挥。
(一)、思想认识存在偏差。存在重视廉政监督、忽视效能监督的现象,或有将效能监察等同于纪检监察的认识,这 是对效能监察工作的意义和重要性理解不深,对开展效能监察的作用了解不透。
(二)、把握不了效能监察的方法和途径。有些部门把对暴露问题的追究和处理看成效能监察,也有的把纪检监察混同于效能监察,这都是片面和错误的,它忽视了效能监察“事前监察、事中监察、事后监察”的功效。
(三)、效能监察工作领导体制和工作运行机制尚不完善。国有企业效能监察工作专业性强,工作内容涉及生产、经营、管理的方方面面,强有力的领导体制和科学的工作运行机制是有效实施效能监察的前提。有的国有企业虽然也成立了专门的工作领导小组,但领导小组尤其是行政主要领导重视不够,不能结合本企业生产、经营、管理的重点和关键环节,有针对性地开展工作,导致效能监察流于形式,这些都制约着效能监察综合作用的发挥。
出现以上问题的原因,主要是对效能监察工作的作用理解不深,忽视了效能监察对促进企业发展的重要意义。效能监察工作不是单纯的防止违规违纪行为,效能监察工作也是生产力。通过完善的效能监察可以节约投资,降低运营成本,减少投资风险,提高投资效益,带来直接的经济效益,可以提高安全生产和服务质量,可以凝聚职工人心,增强企业的核心竞争力,促进企业发展内在的生产力。
三、强化国有企业效能监察新思路
为适应国有企业改革发展的新要求,与时俱进开展国有企业效能监察,实现廉洁与效能的统一,必须根据现代企业 的管理特点,不断研究新情况,解决新问题,积极探索效能监察工作新思路。
(一)、抓好宣传教育,提高对效能监察工作的认识 马克思主义的认识论认为,人们对客观事物的认识不可能一次完成,是逐步深化的。从国有企业效能监察的对象来讲,对开展效能监察工作的认识也有一个过程。因此,要搞好国有企业的效能监察工作,必须要加强对效能监察工作的宣传,并联系实际采取多种形式对企业领导干部和职工群众进行效能监察专题教育,使他们对效能监察工作有一个比较全面的理解。使企业各级领导干部及广大职工群众都能够充分认识到,开展效能监察是增强各级领导干部廉洁高效的自觉性,是加强企业内部监督管理必不可少的手段,是新形势下企业纪检监察部门全面履行职能的重要途径。在企业上下尤其是企业领导干部逐步形成人人都来关心和支持效能监察工作的良好氛围,进而推动效能监察工作的深入扎实开展,不断提升企业效益,促进企业从源头上预防和治理腐败工作的落实。
(二)、将效能监察融入企业的经营管理,维护企业利益 国有企业有业务范围广、资金量大、经济实体多等特点,如果在生产流通领域、财经管理等环节一旦出现问题,很容易引发腐败,造成国有资产流失,国家的利益受损。特别是在深化改革,业务不断扩展的进程中,工程建设、招投标、物资采购、资金投入等环节较容易出现问题。效能监察要以此为工作重点,按照项目审批制度、企业内部审计制度、预 算费用制度等制度,认真开展效能监察,监督落实有关规章制度,防止出现偏差,避免出现不规范行为。由于在改革过程中监管不严而出现问题、造成腐败或国有资产流失的例子很多。效能监察就是要防止此类事件的发生,严格监督和保护干部,避免国有资产流失,有效的维护国家集体和个人的利益。
(三)、坚持创新制度建设与监督检查相结合,强化监督制衡
制度具有根本性、全局性、规范性和长期性的特点。强化国有企业效能监察必须创新制度建设。一方面,企业须借助于系统管理的作用,建立科学、完善的管理制度。用制度来保证执行力的提升,用制度统一员工与组织的执行行为,用制度建立一个执行力的奖罚机制,使制度保持它的权威性与严肃性。另一方面,效能监察要在原有制度的基础上,结合深化国有企业改革的新形势以及企业效能监察的性质、特点、规律、任务,与时俱进,大胆创新制度,完善操作规程,规范监察行为。围绕企业制度创新,进一步规范和深化效能监察。着力从完善风险防范机制、减少腐败机会、提高有效预防腐败能力的角度,深刻分析经营管理中的漏洞及原因,促进制度建设和整改措施的落实,加强企业内部机制建设,发挥效能监察在标本兼治、综合治理和风险防范方面的监督作用,从源头上预防和治理腐败。
(四)、加强监督检查与完善管理制度相结合
国有企业改进管理,提高效能,是开展效能监察的目的所在。由于企业监察部门可以进行别的部门不能进行的调查,效能监察有它特有的观察问题的角度,所以它在促进企业改进管理,提高效能方面具有其它职能部门与工作人员所不具有的功能。这就要求在效能监察的最后一个环节上,企业纪检监察机关以及执行监察任务的人员,必须在研究改进企业经营管理,提出合理化建议上下功夫。要综合全部调查结果、考核资料以及掌握到的各方面情况,有针对性地对监察对象提出改进工作,完善管理的措施和建议。纪检监察组织要对执行情况进行跟踪监督,落实和巩固效能监察成果。被监察企业(部门)要按照《效能监察决定(建议)通知书》的要求,将执行情况通报给纪检监察组织,切实做到堵塞漏洞,建章立制,强化管理,改进工作。
总之,在企业改革、改制、利益关系多样化等新情况下,效能监察要做到方法、措施与时俱进。只有这样,效能监察的作用才能得到充分发挥,才能使其与企业追求的最大经济效益相统一。
作者简介:1981年5月16日 男 河南焦作 焦作煤业(集团)辉县张屯煤矿有限公司政工科副科长 经济师 本科 ***
第五篇:效能监察
什么是效能监察?
效能监察以“提高管理效率、增加效益”为目的,对经营管理者和所辖部门(单位)履行职责和职能的情况,包括管理现状、管理要求、管理行为的过程及结果、管理者勤政、能政进行监督考察和优化提高。旨在克服管理中的薄弱环节、纠正行为偏差,发现管理缺陷,实现管理目标,并获得适宜管理模式或先进管理经验的一种企业自我监察和提升管理效能的行政监察。