隧道变形监测方案-新5则范文

时间:2019-05-14 01:39:10下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《隧道变形监测方案-新》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《隧道变形监测方案-新》。

第一篇:隧道变形监测方案-新

隧道变形监测方案

1、目的

为明确隧道内变形观测的作业内容,规范技术细节及作业程序,总结隧道结构变形规律,为隧道结构维修养护提供依据,指导津滨轻轨隧道变形观测工作进行,从而保证行车安全,特制订本预案。

2、适用范围

2.1适用于津滨轻轨隧道变形观测的相关工作;

2.2线桥室从事变形观测的相关工作人员须依据本方案开展各项变形观测工作。

3、职责分工

隧道变形工作由线桥室主任及安技主管进行监督指导,桥梁维修主管负责变形观测工作的全面管理与协调,桥梁检测工程师协同隧道工程师、桥梁维修工程师负责隧道变形观测的相关技术工作,并由桥隧检测工区负责具体实施。

4、参考依据

《建筑变形测量规程》

《地下铁道、轨道交通工程测量规范》 《地下铁道工程施工及验收规范》

5、变形观测工作内容

5.1隧道沉降观测

监测隧道结构的沉降,主要是监测隧道结构的底板沉降,实质上是对道床的监测,主要包括区间隧道的沉降监测以及隧道与地下车站交接处的沉降差异监测。运营测量采用的坐标系统、高程系统、图式等与原施工测量相同。

5.1.1监测基准网

监测基准网是隧道沉降监测的参考系,由水准基点和工作基点构成,网形布设成附合水准路线或沿上、下行线隧道布设成结点水准路线形式,采用国家二等水准测量的观测标准进行。水准基点采用隧道线路两端远离测区的国家II等水准点,在沿线车站内和联络通道处布设工作基点,每个车站布设4个工作基点,联络通道处布设2个工作基点,水准基点与车站内、联络通道处工作基点共同构成监测基准网,如图1所示。基准网的高程值由国家水准点引入,每季度校核一次,分析工作基点的稳定性;然后,再通过车站内两侧的工作基点,采用附合水准路线对每段隧道结构进行沉降观测。

图1 监测基准网示意图

5.1.2沉降监测点

津滨轻轨地下结构由明挖段和盾构组成,明挖段沉降监测点按施工浇筑段每段设4个点,分别布设在左右两侧墙上。具体布置见图2。

图2 明挖段沉降监测点布置示意图

为方便以后长期的位移监测工作,隧道内沉降监测点布设在隧道中线的道床上,隧道直线段每隔30m设一个测点,曲线处根据曲线半径大小设置测点间距,半径为400m曲线处每隔12m设一个测点,半径为800m曲线处每隔18m设一个测点,半径为2000m曲线处每隔30m设一个测点。具体布置见图3。

图3 隧道内沉降监测点布置示意图

5.1.3隧道与地下车站交接处得沉降差异监测

在隧道与地下车站交接缝两侧约1m处的道床上布设一对沉降监测点,如图4所示,用精密水准测量方法监测交接缝两侧点之间的高差变化,当高差变化量大于±3mm时应预警,变化量大于±5mm时则应报警。

图4 车站与隧道交接处沉降差异点布设示意图

5.2隧道横向位移变形监测

5.2.1横向位移监测点的布设

隧道横向位移监测点的布设与沉降监测断面距离相同,即位移监测点和沉降监测点设于同一断面上,并利用部分沉降点作为位移监测的坐标基点。基点的坐标值由地上国家坐标点引入,每季度校核一次。盾构区间每个断面布设四处点位,重要点位粘贴反射片,其余点位做好油漆标记;明挖区间每个断面监测2个点位,重复使用沉降观测点作为位移测点使用。点位布置详见图5。

图5 盾构区间位移监测点布设示意图

5.2.2位移监测的开展

由于位移基标点与沉降基标点共有一个,初期需要对各个基标点进行测量,以获取隧道中线初始数据,初始数据与设计隧道中线坐标进行对比。待此项工作完成后,可将全站仪置于需要测量的断面所在的基标点上,任意其他基标作为后视点建立坐标系,依次对隧道断面进行位移监测,每次的监测数据与初始数据进行对比。

5.2.3监测标准

横向位移的监测标准定位警戒值±5mm,控制值±10mm。5.3隧道变形监测周期

运营第一年每季度观测一次,第二年开始每半年至少观测一次,直至沉降量小于1mm/100d止,中远期可减至1次/年。当隧道出现显著变形时,应缩短观测频率。

5.4特殊加密测量

5.4.1保护区内大型施工监测 保护区内出现大型施工时,应对结构进行加密监测。加密措施包括点位密度及监测频率,测量范围应在施工范围内前后各延伸100m。施工范围内的监测区域加密至直线12m一个断面,曲线5~10m一个断面,同时增加隧道拱顶及相应断面的地上监测点,监测频率视施工进度和内容确定。各点位布置详见图6。

图6拱顶下沉和地表沉降观测点布设示意图

5.4.2变形异常地段的监测

在常规测量过程中,出现变形较为明显的地段,应加密测量。加密措施包括增加拱顶及地上点位,同时将监测频率加密至2次/月。

5.5监测数据的分析 5.5.1累积沉降量曲线图

5.5.2沉降量速率曲线图。

第二篇:运行中的地铁隧道变形动态监测

运行中的地铁隧道变形动态监测

摘 要 文章结合广州市“仓边复建综合楼项目”工程施工监测方案,对受紧邻基坑施工扰动影响的运行中地铁隧道变形的动态监测方法进行了分析,采用TCA2003全站仪的全自动动态监测系统,可以24 h无人值守、连续监测运行中的地铁隧道变形,且每次监测可在地铁运行间隔内迅速完成。监测到的数据可以实时提供给施工方,以指导当前及下一步的施工,在工程应用中取得了良好的效果。

关键词 地铁隧道 连续运行 基坑开挖 变形动态监测 概述

在我国已有地铁的城市中,地铁沿线(非常靠近地铁隧道)的深基坑越来越多,如何在基坑开挖中保护正在运行中的地铁隧道,是一个十分现实的问题。采用信息化施工及监测方法,可以有效地指导基坑施工过程,施工中采用的时空效应法、逆作法、注浆法和基坑加固方法等均可达到保护邻近隧道、控制变形的目的。而常规的地铁变形监测如连通管法、巴塞特法等,在运行的地铁隧道中进行监测相当困难,主要是因为地铁运行间隔很短,运行期间绝对不允许测量人员进入,为此,须有一种简便的、无人值守、自动的动态监测方法,可在很短的时间间隔内,迅速完成隧道的变形监测,并为邻近基坑的施工提交监测数据。

广州市 “仓边复建综合楼项目”与广州地铁1号线平行,西侧基坑距区间隧道(公园前站~农讲所站)北线最近处约4 m,东侧基坑距北线隧道最近处约8 m,基坑开挖深度约为10.5 m,采用地下连续墙围护,兼做承重结构。基坑开挖将对地铁1号线构成威胁,为保证地铁的安全运行,必须在基坑开挖过程中对运行中的隧道变形进行不间断监测。自动化动态监测系统 2.1 监测要求

由于地铁隧道在一天中的三分之二以上的时间是处于全封闭的运营状态,绝对不允许监测人员进入隧道内工作,所以要求必须在隧道内设置自动化监测系统代替人工操作,实现对隧道水平、垂直位移的连续、精确监测。考虑到地铁运行的间隔很短,所采用的监测系统应能在3~5 min内完成隧道(受影响的区间段)的变形监测,以掌握基坑开挖施工引起地铁1号线隧道变形规律及特性。2.2 监测范围

地铁1号线下行线“农讲所站~公园前站”区间隧道沿基坑的60 m及两端各向外延伸45 m(约150 m)的范围。监测内容为隧道的水平和垂直位移。2.3 自动化动态监测系统的构成

一个完整的自动化动态监测系统是指在无需操作人员干预的条件下,实现自动观测、记录、处理、存储、报表编制、预警预报等功能,它由一系列的软件和硬件构成,整个系统配置包括:TCA自动化全站仪、棱镜、通讯电缆及供电电缆、计算机与专用软件。

2.3.1 TCA自动化全站仪

TCA自动化全站仪能够自动整平、自动调焦、自动正倒镜观测、自动进行误差改正、自动记录观测数据,其独有的ATR(Automatic Target Recognition,自动目标识别)模式,使全站仪能进行自动目标识别,操作人员一旦粗略瞄准棱镜后,全站仪就可搜寻到目标,并自动瞄准,不再需要精确瞄准和调焦,大大提高工作效率。

TCA2003是Leica TCA自动化全站仪中的一种(见图1),该仪器测角精度为0.5〞,测距精度为1 mm±1 ppm。可通过专用的控制软件来控制观测目标、设定观测周期。

2.3.2 Leica标准精密测距棱镜

棱镜作为观测标志,利用膨胀螺丝固定在隧道内侧(见图2),其数目可按实际需要设定,该标志能被TCA2003全站仪自动跟踪锁定,以实施精密测角和测距。

2.3.3 计算机

计算机利用电缆和全站仪连接,并装有专用软件以实现整个监测过程的全自动化,既能控制全站仪按特定测量程序采集监测点数据,并将测量成果实时进行处理,以便及时发现错误,杜绝返工,也可以对各个观测周期的监测数据进行存储并生成监测报告。2.3.4 其它设备

其它设备包括温度计﹑气压计﹑湿度计、连接电缆、外接电源等;温度计﹑气压计﹑湿度计用于测定空气的温度、压力和湿度,将测定结果输入到计算机中,对观测结果进行修正,以提高观测精度。2.3.5 实时控制软件

GeoMos Monitor是专门用于监测的、与TCA2003全站仪配套的变形测量软件,其在Windows环境下运行,并将数据存储在SQL Server数据库中,它既可按操作者设定的测量过程和选定的基准点、观测点进行相应的测量处理,也可快速建立三维坐标、位移量以及其它相关数据库,实现数据的快速存储、检索、编辑,可实时显示量测数据,并进行实时处理或后处理,能实时显示图形或事后显示。2.3.6 后处理软件

采用自己编制的软件,利用和GeoMos的软件接口,对测量数据进行后处理,按施工方要求的格式将监测点的位移变化转化为标准图表的形式直观地表达出来,绘制出监测报表和位移曲线,自动实现数据分析、报警以及报表生成的功能,可以根据用户的要求提供报表的形式。3 施工监测 3.1 测点布设

测点分为测站点、基准点以及观测点3类,测点布设在区间隧道K9+920~K10+070约150 m的范围之内。基准点用来检验测站是否产生位移,位于基坑影响区域外的东、西2点;观测点沿隧道每隔约10 m布设1个,如图3所示。

观测点和基准点都采用棱镜作为观测标志(可实现在水平方向上和垂直方向上的旋转),固定在支座上,支座采用膨胀螺丝固定在隧道管片上,安装高度低于2 m(以确保安装时不需要停电作业,并不对行车造成影响)。仪器设置在施工影响区域的中央(隧道的南侧),固定在观测台上(避免对中误差),并在旁边放置稳压电源。

为了更好地掌握地铁运行状况和控制隧道受基坑施工的影响,在不同位置设置典型观测断面(断面具体数目结合基坑开挖深度及影响范围设定)。坐标系设置为自定义坐标系。3.2 观测方法

通过控制软件,在每个观测周期开始前,利用东、西2个基准点,4测回推算出测站点的坐标,然后,四测回对所有的点进行自动观测,得到观测点的坐标。基坑开挖深度较浅时,可以减少观测频率。随着基坑开挖深度的不断增加,24 h实时观测,并加大重点部位的观测频率。3.3 测量数据

表1为不同测点的监测报表,图4是D12点的累计位移—时间的曲线图。

3.4 测量误差分析 3.4.1 误差来源

测量的误差来源于仪器的系统误差、测站和目标的对中误差、外界环境的影响、测量仪器的影响。

⑴ 仪器的系统误差主要是由仪器本身构造引起的,为保证精度,需在测量前对仪器进行检校,仪器即使在检校后还有残余的系统误差。但由于监测需要得到的是2次测量之间的位移值,因此系统误差可以基本消除。

⑵ 由于测站点、观测点均采用强制对中措施,而且标志埋设后在整个观测过程中不再重新安置,因此,测站、目标的对中误差可忽略不计。

⑶ 由于本次监测需要实时监测,而地铁隧道的湿度较大,对测距的精度会有影响,但地铁隧道内的温度﹑气压﹑湿度均比较稳定,因此,可不考虑这些外界环境因素对观测结果的影响,可在观测过程中利用数学模型进行修正。而列车运行带来的震动却对观测结果的影响较大,故应尽量避免在这一时段进行观测。

⑷ 本次测量采用TCA2003全站仪观测,其测角精度0.5″,测距精度1 mm±1 ppm,因此,其是影响测量的主要误差源。3.4.2 误差分析

此次监测主要的误差来源是仪器的测角误差和测距误差,仪器的测角精度为0.5″,100 m的监测范围内由测角所引起的最大误差为±0.12 mm;仪器的测距精度为1 mm±1 ppm,其中1 mm为固定误差,±1 ppm为比例误差(1 mm/km),即100 m的距离由测距所引起的误差为±0.1 mm,距离测量采用四测回观测仪器引起的误差为±0.5 mm;根据各点给定的初始坐标估算,点位的平面精度约±0.5 mm,Z方向的精度与竖直角的大小有关,精度略低,但仍可以保证±1 mm的精度,能够满足施工及甲方对地铁保护的要求。结论

广州市“仓边复建综合楼项目”基坑开挖对地铁1号线构成威胁,施工中采用的监测系统对运行中的隧道变形进行不间断监测,监测结果为基坑开挖施工提供了准确、及时的指导数据,保证地铁的安全运行。这是一种简便、灵活、无人值守、实时、动态的监测系统。工程应用表明,该监测系统能满足工程的要求,且监测速度快、精度高、受人为影响少、自动化程度高,可在地铁运行间隔内迅速完成隧道的变形监测。

参考文献

1.刘立臣.广州地铁二号线新-磨区间土建工程施工监测.西部探矿工程.2004 年第8 期

2.白素珍.浅谈广州地铁二号线鹭中区间隧道施工监测.西部探矿工程.2004 年第3 期

3.梁禹.广州地铁一号线隧道结构变形监测及成果分析.施工技术.2002年6月第31卷第6 期.4.曹宇宁.广州地铁二号线琶洲站基坑工程的监测及信息化施工.广东水利水电.2001年12月第6期.5.北京城建勘测设计研究院.地下铁道、轻轨交通工程测量规范.北京: 中国计划出版社.1999

第三篇:地铁隧道变形监测信息管理系统的开发

地铁隧道变形监测信息管理系统的开发

摘要:地铁隧道结构变形监测的特殊性、周期性和长期性,使其信息量非常庞大。信息管理是地铁隧道结构变形监测中一项重要的工作,现有的管理方式效率很低。为了高效、准确地管理监测信息,及时分析预报地铁隧道结构的稳定状况,本文结合南京地铁运营期隧道结构变形监测实例,开发了一套具有变形监测资料存储、预处理、管理分析、可视化分析、预测预报及限值预警等功能的信息管理系统,保证了准确及时快速的数据处理和信息反馈,具有良好的运用和推广前景。

关键词 地铁隧道 变形监测 信息管理系统 引 言

随着经济的发展,越来越多的城市开始兴建地铁工程。地铁隧道建造在地质复杂、道路狭窄、地下管线密集、交通繁忙的闹市中心,其安全问题不容忽视。无论在施工期还是在运营期都要对其结构进行变形监测,以确保主体结构和周边环境安全。

地铁隧道是一狭长的线状地下建构筑物,监测点数量比较大,其周期性和长期性,使数据量非常庞大。面对这些繁杂而又庞大的数据能否管理利用好,关系到监测隧道结构变形和预测预报结构变形工作能否实现和实现的质量。为此,如何有效地管理原始信息,并进行相应的处理显得尤为重要。目前多数监测信息的管理和应用存在不直观、不及时、自动化程度较低等缺点,根据地铁隧道结构自身特点研制一套高效率的、使用方便的监测信息管理系统是必要的,它与变形监测一样具有重要的实用意义和科学意义。系统设计思想

以地铁隧道结构变形监测信息为管理对象,根据地铁隧道结构变形监测的实际情况,综合运用监测数据处理分析技术、数据库技术和信息管理技术,实现对地铁隧道结构变形信息的存储、预处理、管理分析、可视化分析监测信息、预测预报及限值预警,为结构分析提供数据资源,以及时反馈地铁隧道结构安全状况,使安全监测管理人员更为方便和高效的管理监测信息,为确保地铁隧道结构的安全运行提供有效的决策支持。地铁隧道结构变形监测数据管理系统主要应满足如下要求: 1.1 提高地铁隧道结构变形监测数据处理分析与

管理的科学化和自动化水平,满足辅助决策需求 1.2 构建地铁隧道结构变形监测信息管理基础平台

1.3 为后期自动化监测的开展及安全监测专家系统的建立提供基础。3 系统功能

地铁隧道结构变形监测信息管理系统包括文档管理、数据预处理、数据库管理、监测数据分析、信息预警预报和系统管理六大模块,内容不仅涵盖了相关技术规范的所有要求,而且具有地铁隧道自身的特点,全面、标准、专业,有良好的应用前景。

3.1 文档管理模块 3.1.1 变形监测资料 地铁隧道结构变形监测根据地铁隧道结构设计、国家相关规范和类似工程的变形监测以及当前地铁所处阶段来确定,主要内容包括[3]:垂直位移监测(区间隧道沉降监测和隧道与地下车站沉降差异监测);水平位移监测(区间隧道水平位移监测和隧道相对地下车站水平位移监测);隧道断面收敛变形监测等。

对于不同的地铁隧道结构变形监测项目内容,所用监测方法和仪器也不相同。通常,对于隧道垂直位移和水平位移监测,可通过大地测量或者自动化测量的方法利用精密水准仪、精密全站仪或智能全站仪进行;而对于隧道断面收敛变形监测,则要通过物理量测的方法利用收敛仪(计)进行。

变形监测资料包括历次变形监测的原始数据,监测报告及鉴定报告等。3.1.2 工程概况资料

工程概况资料主要有工程概况、工程特性参数、重要技术资料和安全监测系统档案等。

(1)工程概况:包括地铁地理位置,车站布置,沿线主要建筑物概况,工程地质与水文地质条件,结构特性、施工情况等。(2)重要技术资料:主要结构设计文件、图纸,运行设计报告,竣工验收报告,隧道加固改建或观测更新改造专题报告,重要工程图形和图像。(3)变形监测系统档案:主要包括监测仪器运行、维护和历次检查、鉴定记录及报告。

(4)其他资料:主要包括水文、气象和地震资料等。3.1.3 巡检资料

包括对隧道结构的各个部位和断面的渗漏、变形和裂缝等的日常巡查记录表,隧道安全情况和隧道重大事故报告等。3.2 数据预处理模块

通过不同的方式导入原始监测资料,并对其进行粗差检验,若有粗差则提示警告,以便查找原因返工重测,然后再进行初步处理分析。对基准点和工作基点的稳定性进行检验,不同的稳定性检验结果决定平差方法的选取。最后对所得监测结果进行整理,存储至相关数据库。3.2.1 数据导入

目前嵌入式操作系统发展特别迅速,根据监测手段和方式不同,用户可以通过系统的接口程序实现系统和观测电子手簿直接相连,自动导入或手工导入。3.2.2 粗差检验

依据相关规范规程应用相应检验粗差的方法对其进行检验,若有粗差则给出提示警告和可能原因,以便查找原因返工重测;若没有粗差则提示检验通过,可进行下一步处理计算。3.2.3 稳定性检验

通过对监测资料的计算分析,应用统计方法(F检验和t检验)对基准点和工作基点的稳定性状况进行分析,为平差计算采用何种平差方法提供依据。3.2.4平差计算

根据基准点及工作基点稳定性检验结果,对变形监测网相应的选用经典平差、拟稳平差或自由网平差;如果监测资料(如隧道收敛变形监测资料等)无需平差计算的则直接进行相关成果计算。

3.2.5 资料整理入库

根据前述各部分处理计算所得结果,对所得监测成果以及检验结果进行整理和存储入库。此外,可根据需要对相关监测属性信息进行相关编辑、修改,然后再整理入库。3.3 数据库管理模块

对数据库相关数据进行查询、添加录入、修改和删除,同时可根据需要进行数据报表生成输出。3.3.1 数据查询

根据不同监测项目特点,采用不同的查询方式对测点的属性信息和监测成果进行条件查询和遍历查询,并可根据需要将查询结果以不同的方式输出。3.3.2 数据录入添加

根据实际需要对测点属性数据和监测单位所提供的直接成果数据进行录入添加,同时可对属性数据信息进行编辑、修改添加。3.3.3 数据修改

考虑到操作的规范性,系统只允许对监测点属性进行修改。通过查询所要修改的监测点,对其属性信息进行修改,同时可以动态显示数据库中的监测点属性信息,方便用户及时看到修改结果。3.3.4 数据删除

与数据修改功能相似,通过对数据信息查询后再进行删除,删除前须经确认,然后才能操作,确保准确无误。

3.3.5 报表生成

可根据用户需要,查询相关监测信息,然后以相关的报表形式输出监测信息。3.4 监测数据分析模块

通过应用不同的数据分析方法和方式对各种监测数据进行处理分析,分析过程和方式采用表格和曲线图形方式进行。

3.4.1 监测点稳定性分析

应用相关稳定性分析方法及指标,结合监测现场实际,对不同类型监测点稳定性进行分析评判。3.4.2 可视化分析

针对监测信息反馈分析的需要,提供可视化的变形监测图形报表,辅助测点稳定性分析评判,以便使用者更直观具体地了解隧道结构整体变形趋势。

以南京地铁西延线垂直位移监测为例,除提供每期沉降量曲线图、沉降速率曲线图、挠度曲线图、相对挠度曲线图外,还可提供任意两期累积沉降量、累积沉降速率、挠度及相对挠度的对比曲线图。3.5 信息预警预报模块

仅仅将监测的信息录入系统中是不够的,还要根据稳定性分析以及前n期的监测成果模拟监测点的变形曲线,并结合相关资料预报今后的变化趋势。由于影响变形体的因素错综复杂,考虑到系统的通用性,模块提供了回归分析、灰色系统、kalman滤波等传统的模型供选择。

根据系统给出的限值进行预警,提供相关区间段的工程图纸及地质、水文气象资料,便于隧道结构变形情况的进一步分析。3.6 系统管理模块

为保证系统的安全,系统运行和数据操作过程中都不能出现任何差错,必须对系统进行有效的管理,这主要是指对系统用户的管理及日常使用日志的管理。3.6.1 系统用户管理

为保证监测信息的完整性、正确性和安全性,必须对系统的用户进行有效的管理。用户登录系统的过程必须在系统日志中进行登记,包括用户名、登录时间、对系统的操作过程以及在系统中滞留的时间等。系统管理员定期将系统的用户使用情况向主管领导汇报。在征得主管领导的同意后,系统管理员可以根据实际情况添加用户或提升、降低某些用户的用户使用级别,必要时可以禁止某些用户的使用权力。系统用户管理包括系统用户登录管理和用户权限管理两个部分。3.6.2 系统日志及安全管理

本系统为系统管理员提供系统日志的检查和备份功能,使系统管理员通过对系统日志的查看了解系统的使用情况以及存在的不足和问题,及时地处理系统存在的隐患,保证系统的高效运行。3.6.3 数据库备份与恢复

为了保证管理系统或计算机系统经灾难性毁坏后,能正常恢复运行,必须进行数据库的备份与恢复。系统采用自动备份与人工备份结合的方式,确保系统的安全稳定运行。4 结 语

地铁隧道结构变形监测信息管理系统采用C/S结构设计,各功能模块间具有相对地独立性,便于进行功能扩充,为后期自动化监测的开展及安全监测专家系统的建立提供支持和铺垫[4,5]。该系统已在南京地铁中应用,不仅准确及时快速的数据处理和信息反馈,提高了地铁运营的管理水平,而且为地铁的安全运营提供了保证,具有显著的社会经济效益和良好的应用前景。

参考文献

[1]王浩,葛修润,邓建辉,丰定祥.隧道施工期监测信息管理系统的研制[J].岩石力学与工程学报,2001,10:1684—1686 [2]李元海.地铁施工监测数据处理系统的分析设计及应用[J].隧道建设,1996,4:22—26 [3]黄腾,李桂华,孙景领,岳荣花.地铁隧道结构变形监测数据管理系统的设计与实现[J].测绘工程,2006,6:1—3

[4]赵显富.变形监测成果数据库管理系统的研制[J].测绘通报,2001,4:28—32 [5]张其云,郑宜枫.运营中地铁隧道变形的动态监测方法[J].城市道桥与防洪,2005,7:87—89

第四篇:总结 变形监测

总结

通过过去的六周对《变形监测技术及应用》的学习,让我对变形监测有了初步的了解以及更深一层的认识。首先知道了变形、变形体和变形监测等的概念。并且对变形监测所涵盖的范围,对变形监测的对象、内容、目的与意义有了清楚地了解及认识。其次学习到了变形监测两大类的监测方法、变形监测点和变形监测网数据处理的方法与变形监测网的稳定性分析。虽然在变形监测网数据处理的方法与变形监测网的稳定性分析学习的不是很透彻,但是也是有了很深刻印象。同时还了解了一下变形监测技术发展史。

变形监测中主要分为:工程建筑物变形的监测、基坑工程施工监测、边坡工程变形监测、桥梁变形观测。而变形监测的种类也分成了水平位移监测、垂直位移监测、倾斜观测、挠度观测、裂缝观测、摆动和转动观测,以及其具体监(观)测设计和方法等种类。并且通过几次室外的实习,深刻的学习到了什么是垂直位移监测,知道了如何将理论应用到实际中。更加认识到了变形监测的重要性。此外通过对边坡工程变形监测的学习,我学习到了边坡工程监测的目的、监测特点、内容、技术手段、方案审计以及最后的工作施工和监测资料汇总分析。并且通过老师的讲解,也知道到了一些书本上没有提到的注意事项,以及老师在以往的工作时的经验总结。同时也学习到了,一些比较陌生的测绘术语,像基坑工程监测,知道了他的概念,监测意义、方法等。真的是受益匪浅啊!

即使对这门课程只有六周的学习,但感觉学到的东西真的很多。认识到了变形监测在测量中有着不可动摇的地位。虽然在这学习中会遇到不少的问题,但通过看书以及上网查询资料,还是将他们打败了。无论将来是否会从事有关方面的工作,但这次短暂的学习必将会成为我一笔非常宝贵的财富。

第五篇:隧道沉降变形处理方案(终稿)

隧道出口沉降变形处理方案

一、设计情况

1、D65+100~ D65+450段原设计为Vc型复合衬砌,支护及衬砌参数: 超前支护采用Ø89管棚,初期支护采用拱墙工22钢架,间距0.5m,拱部采用φ22组合中空注浆锚杆,边墙采用φ22砂浆锚杆,锚杆长3.0m,环纵向间距为1.2×1.2m,锁脚锚管长4.5m,每榀每侧2根,φ6钢筋网片间距20×20cm,C30喷射混凝土厚28cm,衬砌厚度为55cm,仰拱厚65cm。

2、设计地质情况:设计围岩为白垩纪下统磨石砬子组砂砾岩,拱顶为砂砾岩和弱风化砂砾土分界线,节理裂隙发育,岩体破碎,有裂隙水。

二、施工及沉降变形情况

目前掌子面施工至 D65+348,按三台阶法开挖,中台阶开挖至 D65+360,左侧下台阶施工至

D65+376,右侧下台阶施工至 D65+372,仰拱及填充施工至 D65+382,二衬施工至 D65+406。

10月6日早7:00测得 D65+348~ D65+382段34米发生变形,10月8日测得拱顶最大累积沉降量69.1cm,初支出现不同程度变形及侵入二衬限界。地表观测相对高差发现地表下层,沉降范围 D65+348~ D65+376,最大下沉量达1.1m。

三、施工计划安排 1、2012年10月15日至2012年11月20日对洞内沉降变形段进行加固和洞顶地表的封闭覆盖。2、2013年4月1日至2013年8月31日对洞内沉降变形段进行换拱并施做二衬。

3、出口掌子面不再掘进,采取隧道进口掘进贯通。

四、处理方案

(一)方案目标:

1、控制沉降,安全过冬,确保冻融期安全;

2、保证隧道贯通时掌子面和现已开挖变形支护段的安全。

(二)控制沉降变形措施

1、施做衬砌

对目前已施作仰拱及初支还没变形地段,加快二衬施工推进至 D65+382处,避免初支变形范围进一步扩大。

2、D65+382~ D65+348沉降段加固

(1)加固原则:先洞内后地表,洞内由外向里进行,先用套拱加固后径向注浆。

(2)待 D65+382~ D65+406段二衬完成,D65+376~ D65+348段监测稳定后,先在 D65+379~ D65+377段施做套拱,套拱采用I22a工字钢架,间距0.5m,共支立5榀,套拱工字钢采用14槽钢进行纵向连接,环向间距2m。套拱与原初支间喷射C30砼封闭,保护层厚度不小于3cm。套拱下部采用I22a工字钢架横向支撑,喷射C25砼设临时仰拱。套拱底面标高在现有原状土基础上施做,底面稍作开挖,套拱基础必须牢固,松软土体注浆加固,提高承载力。套拱定位后及时施做锁脚锚管,左侧拱脚的锁脚锚管每榀设置三排即6根,长度4~5m,角度5~10度,管内注浆对软弱基础进行固结,以提高承载力,同时插入直径32mm的螺纹钢增加锚管的刚度和抗剪度。每榀套拱施做前先由测量队对 D65+379~ D65+377段已变形断面测量,套拱工字钢比照变形初支内断面稍小加工,安装时尽可能密贴已变形初支,工字钢外侧与原初支间空隙采用混凝土喷射密实。

(3)在变形地段每间隔2m施作一处套拱。按以上方法施做 D65+375~

D65+373、D65+371~

D65+369、D65+367~ D65+365、D65+363~

D65+361、D65+359~

D65+357、D65+355~ D65+353、D65+351~ D65+348段套拱及临时仰拱。

(5)套拱加固施工完毕后开始进行径向注浆,注浆里程为 D65+348~ D65+380,注浆环向范围为:上台阶和左右侧中台阶以及左侧部分下台阶范围;注浆孔梅花型布置,孔深5m,直径50mm导管长度4.5m,间距1m(视注浆效果可适当调整)梅花型布置,浆液水灰比1:1,注浆压力0.5-1.0Mpa。注浆量视注浆压力而定,当压力不再上升或上升缓慢时换孔,下一个孔的注浆量参照上一个孔的注浆量适当调整。

3、洞内加固完成后开始对地表进行处理。处理方法为:一是对地表裂缝进行水泥砂浆灌注回填封闭;二是对地表凹陷区用原状土进行回填成拱形,表层铺填粘性土后用防水油布覆盖,将地表水引入周边挖好的截水沟。

(三)D65+382~ D65+348沉降段处理

1、处理原则:从外向里进行,采用套拱先加固后逐榀拆除初支换拱处理,仰拱和二衬及时跟进。

2、处理方法和顺序

第1步:对 D65+382~ D65+379段原初期支护逐榀拆除换拱,只对初支侵线部分逐榀拆换,采用人工配合“啄木鸟”进行拆除。拆除原变形拱架将托换的钢架安装至设计位置并喷护完成之后方可拆换下一榀钢架。钢架落底至下台阶墙脚,初支预留沉降量加大为35cm。换拱采用工22钢架,间距0.5m,锁脚锚管每环每侧为三排即6根,长度5m,向下倾斜约10度,并注水泥浆。

第2步:对 D65+377~ D65+375段原初期支护逐榀拆除换拱。方法同第1步。

第3步:拆除 D65+379~ D65+377段套拱和临时支撑,再对该段原已变形初支钢架逐榀拆除换拱,换拱采用工22钢架,间距0.5m,锁脚锚管每环每侧为三排即6根,长度5m,向下倾斜约10度,并注水泥浆。

第4 步: D65+382~ D65+375段换拱完成后,每3m一段开挖仰拱,仰拱开挖采用无爆破机械开挖,并及时施工仰拱初支及仰拱、填充混凝土,封闭成环。

第5 步:施工 D65+382~ D65+375段二衬混凝土。第6步:对 D65+373~ D65+371段已变形初支钢架逐榀拆除换拱,换拱采用工22钢架,间距0.5m,锁脚锚管每环每侧为三排即6根,长度5m,向下倾斜约10度,并注水泥浆,保证中台阶拱脚土体固结。

第7步:拆除 D65+375~ D65+373段套拱和临时支撑,再对该段原已变形初支钢架逐榀拆除换拱,换拱采用工22钢架,间距0.5m,锁脚锚管每环每侧为三排即6根,长度5m,向下倾斜约10度,并注水泥浆保证中台阶拱脚土体固结。第8步:对 D65+369~ D65+367段已变形初支钢架逐榀拆除换拱,换拱采用工22钢架,间距0.5m,锁脚锚管每环每侧为三排即6根,长度5m,向下倾斜约10度,并注水泥浆,保证中台阶拱脚土体固结。

第9步:开挖 D65+375~ D65+371段下台阶,单侧落底,每循环1榀钢架。

第10步:开挖 D65+375~ D65+372段仰拱、填充混凝土,封闭成环。

第11步:拆除 D65+371~ D65+369段套拱和临时支撑,再对该段原已变形初支钢架逐榀拆除换拱,换拱采用工22钢架,间距0.5m,锁脚锚管每环每侧为三排即6根,长度5m,向下倾斜约10度,并注水泥浆保证中台阶拱脚土体固结。

第12步:对 D65+365~ D65+363段已变形初支钢架逐榀拆除换拱,换拱采用工22钢架,间距0.5m,锁脚锚管每环每侧为三排即6根,长度5m,向下倾斜约10度,并注水泥浆,保证中台阶拱脚土体固结。

第13步:开挖 D65+371~ D65+367段下台阶,单侧落底,每循环1榀钢架。

第14步:分段开挖 D65+372~ D65+369段仰拱、填充混凝土,封闭成环。

第15步:施工 D65+375~ D65+369段二衬混凝土。第16步:对 D65+361~ D65+359段已变形初支钢架逐榀拆除换拱,换拱采用工22钢架,间距0.5m,锁脚锚管每环每侧为三排即6根,长度5m,向下倾斜,向下倾斜约10度,保证上台阶拱脚土体固结。

第17步:拆除 D65+367~ D65+365段套拱和临时支撑,再对该段原已变形初支钢架逐榀拆除换拱,换拱采用工22钢架,间距0.5m,锁脚锚管每环每侧为三排即6根,长度5m,向下倾斜约10度,并注水泥浆保证中台阶拱脚土体固结。

第18步:开挖 D65+367~ D65+363段下台阶,单侧落底,每循环1榀钢架。

第19步:开挖 D65+369~ D65+365段仰拱、填充混凝土,封闭成环。

第20步:拆除 D65+363~ D65+361段套拱和临时支撑,再对该段原已变形初支钢架逐榀拆除换拱,换拱采用工22钢架,间距0.5m,锁脚锚管每环每侧为三排即6根,长度5m,向下倾斜约10度,并注水泥浆保证中台阶拱脚土体固结。

第21步:对 D65+357~ D65+355段已变形初支钢架逐榀拆除换拱,换拱采用工22钢架,间距0.5m,锁脚锚管每环每侧为三排即6根,长度5m,向下倾斜约10度,并注水泥浆,保证中上阶拱脚土体固结。

第22步:拆除 D65+359~ D65+357段套拱和临时支撑,再对该段原已变形初支钢架逐榀拆除换拱,换拱采用工22钢架,间距0.5m,锁脚锚管每环每侧为三排即6根,长度5m,向下倾斜约10度,并注水泥浆保证上台阶拱脚土体固结。

第23步:开挖 D65+361~ D65+359段中台阶,单侧落底,每循环1榀钢架。

第24步:对 D65+353~ D65+351段已变形初支钢架逐榀拆除换拱,换拱采用工22钢架,间距0.5m,锁脚锚管每环每侧为三排即6根,长度5m,向下倾斜约10度,并注水泥浆,保证上台阶拱脚土体固结。

第25步:开挖 D65+359~ D65+357段中台阶,单侧落底,每循环1榀钢架。

第26步:开挖 D65+363~ D65+359段下台阶,单侧落底,每循环1榀钢架。

第27步:开挖 D65+365~ D65+361段仰拱、填充混凝土,封闭成环。

第28步:施工 D65+369~ D65+363段二衬混凝土。第29步:对 D65+355~ D65+353段套拱和临时支撑,再对该段原已变形初支钢架逐榀拆除换拱,换拱采用工22钢架,间距0.5m,锁脚锚管每环每侧为三排即6根,长度5m,向下倾斜约10度,并注水泥浆保证上台阶拱脚土体固结。

第30步:开挖 D65+357~ D65+353段中台阶,单侧落底,每循环1榀钢架。

第31步:对 D65+351~ D65+348段套拱和临时支撑,再对该段原已变形初支钢架逐榀拆除换拱,换拱采用工22钢架,间距0.5m,锁脚锚管每环每侧为三排即6根,长度5m,向下倾斜约10度,并注水泥浆保证上台阶拱脚土体固结。

第32步:开挖 D65+353~ D65+348段中台阶,单侧落底,每循环1榀钢架。

第33步:开挖 D65+359~ D65+355段下台阶,单侧落底,每循环1榀钢架。

第34步:开挖 D65+361~ D65+357段仰拱、填充混凝土,封闭成环。

第35步:施工 D65+363~ D65+357段二衬混凝土。第36步:开挖 D65+355~ D65+348段下台阶,单侧落底,每循环1榀钢架。

第37步:分段开挖 D65+357~ D65+348段仰拱、填充混凝土,封闭成环。

第38步:施工 D65+357~ D65+348段二衬混凝土。

3、为保证安全以上施工采用单工序施工,严格在监控量测指导下进行,发现有异常变化立即撤出施工人员,经分析后再采取下步措施。

五、质量保证措施

1、严格按处理方案及有关规范施工,确保施工质量。

2、套拱严格按照初支钢架工艺加工,现场控制套拱加工、安装连接质量。

2、确保注浆质量,做好注浆记录。

3、成立以项目经理为组长,安全总监、总工、洞长、以及技术员为成员质量管理小组,对施工过程全过程控制,对施工质量负责,并作好记录。

六、安全保证措施

1、在凹陷洞顶四周设警戒绳,立 “危险!严禁靠近”的警示牌,并派专人进行日常巡查,禁止无关人员靠近,以免发生意外事故。

2、沉降变形范围洞身开挖严格按照“管超前、预注浆、多循环、短开挖、快支护、勤量测、早封闭”的原则进行。

3、加强监控量测,监测支护体系的变形,判断结构的稳定性和安全性,及时反馈施工。

4、施工人员严格按照安全操作规程施工,严禁违章作业。

5、施工时安排专职安全员对洞内、洞外施工全过程监控,观察有否变形,发现有异常情况及时采取处理并汇报,以便调整施工方案。

6、做好应急措施,掌子面备好救生箱及救生管道;成立隧道抢险安全领导小组,随时应对紧急情况,做到抢险动作快、组织有力。

下载隧道变形监测方案-新5则范文word格式文档
下载隧道变形监测方案-新5则范文.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    变形监测技术报告

    时代广场项目变形观测 技 术 报 告 辽宁科技大学测绘教研室 2010年11月 报告编写人:*** 基坑支护监测方案 1 工程概况及周围环境 1.1工程概况 基坑尺寸约100x100m。 该工程......

    《变形监测》考题大纲

    变形观测大纲要求 1、什么是变形观测?变形监测是对变形体上的监测点进行测量,亦称变形观测或形变测量。 2、变形监测的对象包括哪些?全球性、区域性、工程和局部变形监测 3、全......

    变形监测实习总结

    变班级:测量1102班 形 监 测 实习总 结 第四组 组长:杨震 组员:刘江,纪为栋,任福磊,方子哥,陈斌,程瑜,陈斌,李久民 变形监测测量实习总结 变形监测就是利用专用的仪器和方法对变形......

    临近既有线桥墩防护及变形监测方案

    施工期间对高铁桥墩的防护措施 河道改造过程中,对河道桥梁范围及两侧50M内开挖清淤,两侧坡面采用M7.5号浆砌片石铺砌防护。郑西贯通线所有信号、通信、电缆等设施均在桥上,金......

    小高层变形监测[5篇范文]

    开题报告的基本写法 开题报告的基本内容及其顺序:论文的目的与意义;国内外研究概况;论文拟研究解决的主要问题;论文拟撰写的主要内容(提纲);论文计划进度;其它。 其中的核心内容是“......

    变形监测复习(优秀范文5篇)

    变形监测:利用测量与专用仪器和方法对变形体的变形现象进行监视观测的工作。 变形体 可能产生变形的各种自然或人工的建筑或构筑体 变形监测的目的:1实用:以便及时发现问题并采......

    铁路隧道瓦斯监测及检测方案(合集五篇)

    中国电建凯里环城高速公路北段PPP项目EPC总承包部 隧道瓦斯监测及检测专项方案 审核: 复核: 编制: 中国电建凯里环城高速公路北段PPP项目 EPC总承包四分部 2017年10月14日......

    隧道围岩大变形机理及处治技术研究[最终定稿]

    隧道围岩大变形机理及处治技术研究 【摘要】本文结合工程实例,对公路隧道围岩产生大变形的原因进行分析,并提出合理的处治措施。【关键词】隧道围岩 大变形 原因 处治一、隧道......