第一篇:基于MATLAB的通信系统的仿真报告参考例文
摘要
Simulink是Mathworks公司推出的基于Matlab平台的著名仿真环境Simulin作为一种专业和功能强大且操作简单的仿真工具,目前已被越来越多的工程技术人员所青睐,它搭建积木式的建模仿真方式既简单又直观,而且已经在各个领域得到了广泛的应用。
本文主要是以simulink为基础平台,对2ASK、2FSK、2PSK信号的仿真。文章第一章内容是对simulink的简单介绍和通信技术的目前发展和未来展望;第二章是对2ASK、2FSK和2PSK信号调制及解调原理的详细说明;第三章是本文的主体也是这个课题所要表现的主要内容,第三章是2ASK、2FSK和2PSK信号的仿真部分,调制和解调都是simulink建模的的方法,在解调部分各信号都是采用相干解调的方法,而且在解调的过程中都对整个系统的误码率在display模块中有所显示
本文的主要目的是对simulink的熟悉和对数字通信理论的更加深化和理解。
关键词:2ASK、2FSK、2PSK,simulink,调制,相干解调
目 录
第一章 绪论...........................................................31 1.1 MATLAB/Smulink的简介...............................................31 1.2 通信发展简史.......................................错误!未定义书签。1 1.3 通信技术的现状和发展趋势...........................错误!未定义书签。4 第二章 2ASK、2FSK、2PSK和2DPSK的基本原理和实现......错误!未定义书签。7 2.1 2ASK的基本原理和调制解调实现.....................错误!未定义书签。8 2.2 2FSK的基本原理和调制解调实现....................错误!未定义书签。11 2.3 2PSK的基本原理和调制解调实现
...................错误!未定义书签。14 2.2DPSK的基本原理和调制解调实现
...................错误!未定义书签。18 第三章 Smulink的模型建立和仿真....................错误!未定义书签。24 3.1 2ASK的仿真......................................错误!未定义书签。24 3.2 2FSK的仿真......................................错误!未定义书签。32 3.3 2PSK的仿真......................................错误!未定义书签。41 总结....................................................................46 致谢....................................................................47 参考文献................................................................47
第一章
绪论
1.1 MATLAB/Simulink的简介
美国Mathworks公司于1967年推出了矩阵实验室“Matrix Laboratory”(缩写为Matlab)这就是Matlab最早的雏形。开发的最早的目的是帮助学校的老师和学生更好的授课和学习。从Matlab诞生开始,由于其高度的集成性及应用的方便性,在高校中受到了极大的欢迎。由于它使用方便,能非常快的实现科研人员的设想,极大的节约了科研人员的时间,受到了大多数科研人员的支持,经过一代代人的努力,目前已发展到了7.X版本。Matlab是一种解释性执行语言,具有强大的计算、仿真、绘图等功能。由于它使用简单,扩充方便,尤其是世界上有成千上万的不同领域的科研工作者不停的在自己的科研过程中扩充Matlab的功能,使其成为了巨大的知识宝库。可以毫不夸张的说,哪怕是你真正理解了一个工具箱,那么就是理解了一门非常重要的科学知识。科研工作者通常可以通过Matlab来学习某个领域的科学知识,这就是Matlab真正在全世界推广开来的原因。目前的Matlab版本已经可以方便的设计漂亮的界面,它可以像VB等语言一样设计漂亮的用户接口,同时因为有最丰富的函数库(工具箱),所以计算的功能实现也很简单,进一步受到了科研工作者的欢迎。另外,,Matlab和其他高级语言也具有良好的接口,可以方便的实现与其他语言的混合编程,进一步拓宽了Matlab的应用潜力。可以说,Matlab已经也很有必要成为大学生的必修课之一,掌握这门工具对学习各门学科有非常重要的推进作用。
Simulink是MATLAB中的一种可视化仿真工具,也是目前在动态系统的建模和仿真等方面应用最广泛的工具之一。确切的说,Simulink是一个用来对动态系统进行建模、仿真和分析的软件包,它支持线性和非线性系统,连续、离散时间模型,或者是两者的混合。系统还可以使多种采样频率的系统,而且系统可以是多进程的。Simulink工作环境进过几年的发展,已经成为学术和工业界用来建模和仿真的主流工具包。在Simulink环境中,它为用户提供了方框图进行建模的图形接口,采用这种结构画模型图就如同用手在纸上画模型一样自如、方便,故用户只需进行简单的点击和拖动就能完成建模,并可直接进行系统的仿真,快速的得到仿真结果。它的主要特点在于:
1、建模方便、快捷;
2、易于进行模型分析;
3、优越的仿真性能。它与传统的仿真软件包微分方程和差分方程建模相比,具有更直观、方便、灵活的优点。Simulink模块库(或函数库)包含有Sinks(输出方式)、Sources(输入源)、Linear(线性环节)、Nonlinear(非线性环节)、Connection(连接与接口)和Extra(其他环节)等具有不同功能或函数运算的Simulink库模块(或库函数),而且每个子模型库中包含有相应的功能模块,用户还可以根据需要定制和创建自己的模块。用Simulink创建的模型可以具有递阶结构,因此用户可以采用从上到下或从下到上的结构创建模型。
用户可以从最高级开始观看模型,然后用鼠标双击其中的子系统模块,来查看其下一级的内容,以此类推,从而可以看到整个模型的细节,帮助用户理解模型的结构和各模块之间的相互关系。在定义完一个模型后,用户可以通过Simulink的菜单或MATLAB的命令窗口键入命令来对它进行仿真。菜单方式对于交互工作非常方便,而命令行方式对于运行仿真的批处理非常有用。采用Scope模块和其他的显示模块,可以在仿真进行的同时就可立即观看到仿真结果,若改变模块的参数并再次运行即可观察到相应的结果,这适用于因果关系的问题研究。仿真的结果还可以存放到MATLAB的工作空间里做事后处理。模型分析工具包括线性化和整理工具,MATLAB的所有工具及Simulink本身的应用工具箱都包含这些工具。由于MATLAB和SIMULINK的集成在一起的,因此用户可以在这两种环境下对自己的模型进行仿真、分析和修改模型。但是Simulink不能脱离MATLAB而独立工作。,1.2 通信技术的历史和发展
1.2.1 通信的概念
通信就是克服距离上的障碍,从一地向另一地传递和交换消息。消息是信息源所产生的,是信息的物理表现,例如,语音、文字、数据、图形和图像等都是消息(Message)。消息有模拟消息(如语音、图像等)以及数字消息(如数据、文字等)之分。所有消息必须在转换成电信号(通常简称为信号)后才能在通信系统中传输。所以,信号(Signal)是传输消息的手段,信号是消息的物质载体。
相应的信号可分为模拟信号和数字信号,模拟信号的自变量可以是连续的或离散的,但幅度是连续的(分别如图1-2-1所示),如电话机、电视摄像机输出的信号就是模拟信号。数字信号的自变量可以是连续的或离散的,但幅度是离散的(分别如图1-2-2所示),如电船传机、计算机等各种数字终端设备输出的信号就是数字信号。
通信的目的是传递消息,但对受信者有用的是消息中包含的有效内容,也即信息(Information)。消息是具体的、表面的,而信息是抽象的、本质的,且消息中包含的信息的多少可以用信息量来度量。
通信技术,特别是数字通信技术近年来发展非常迅速,它的应用越来越广泛。通信从本质上来讲就是实现信息传递功能的一门科学技术,它要将大量有用的信息无失真,高效率地进行传输,同时还要在传输过程中将无用信息和有害信息抑制掉。当今的通信不仅要
有效地传递信息,而且还有储存、处理、采集及显示等功能,通信已成为信息科学技术的一个重要组成部分。
通信系统就是传递信息所需要的一切技术设备和传输媒质的总和,包括信息源、发送设备、信道、接收设备和信宿(受信者),它的一般模型如图1-2-3所示。
信息源发送设备信道接收设备受信者
↑
噪声源
图1-2-3通信系统一般模型
通信系统可分为数字通信系统和模拟通信系统。数字通信系统是利用数字信号来传递消息的通信系统,其模型如图1-2-4所示,信信源源信道数字制器数信信字受 道源信息编编调 解译译信码器码器道调器码器码器者 ↑
噪声源
图1-2-4 数字通信系统模型
模拟通信系统是利用模拟信号来传递消息的通信系统,其模型如图1-2-5所示。
信息源调制器信道解调器受信者
噪声源
图1-2-5 模拟通信系统模型
数字通信系统较模拟通信系统而言,具有抗干扰能力强、便于加密、易于实现集成化、便于与计算机连接等优点。因而,数字通信更能适应对通信技术的越来越高的要求。近二十年来,数字通信发展十分迅速,在整个通信领域中所占比重日益增长,在大多数通信系统中已代替模拟通信,成为当代通信系统的主流。
1.2.2 通信的发展史简介
远古时代,远距离的传递消息是以书信的形式来完成的,这种通信方式明显具有传递时间长的缺点。为了在尽量短的时间内传递尽量多的消息,人们不断地尝试所能找到的各种最新技术手段。1837年发明的莫尔斯电磁式电报机标志着电通信的开始,之后,利用电进行通信的研究取得了长足的进步。1866年利用海底电缆实现了跨大西洋的越洋电报通信。1876年贝尔发明了电话,利用电信号实现了语音信号的有线传递,使信息的传递变的既迅速又准确,这标志着模拟通信的开始,由于它比电报更便于交流使用,所以直到20世纪前半叶这种采用模拟技术的电话通信技术比电报的到了更为迅速和广泛的发展。1937年瑞威斯发明的脉冲编码调制标志数字通信的开始。20世纪60年代以后集成电路、电子计算机的出现,使得数字通信迅速发展。在70年代末在全球发展起来的模拟移动电话在90年代中期被数字移动电话所代替,现有的模拟电视也正在被数字电视所代替。数字通信的高速率和大容量等各方面的优越性也使人们看到了它的发展前途。1.3 通信技术的发展现状和趋势
进入20世纪以来,随着晶体管、集成电路的出现与普及、无线通信迅速发展。特别是在20世纪后半叶,随着人造地球卫星的发射,大规模集成电路、电子计算机和光导纤维等现代技术成果的问世,通信技术在以下几个不同方向都取得了巨大的成功。(1)微波中继通信使长距离、大容量的通信成为了现实。
(2)移动通信和卫星通信的出现,使人们随时随地可通信的愿望可以实现。(3)光导纤维的出现更是将通信容量提高到了以前无法想象的地步。
(4)电子计算机的出现将通信技术推上了更高的层次,借助现代电信网和计算机的融合,人们将世界变成了地球村。
(5)微电子技术的发展,使通信终端的体积越来越小,成本越来越低,范围越来越广。例如,2003年我国的移动电话用户首次超过了固定电话用户。根据国家信息产业部的统计数据,到2005年底移动电话用户近4亿。
随着现代电子技术的发展,通信技术正向着数字化、网络化、智能化和宽带化的方向发展。随着科学技术的进步,人们对通信的要求越来越高,各种技术会不断地应用于通信领域,各种新的通信业务将不断地被开发出来。到那时人们的生活将越来越离不开通信。
第二章
数字频带传输系统
在数字基带传输系统中,为了使数字基带信号能够在信道中传输,要求信道应具有低通形式的传输特性。然而,在实际信道中,大多数信道具有带通传输特性,数字基带信号不能直接在这种带通传输特性的信道中传输。必须用数字基带信号对载波进行调制,产生各种已调数字信号。
图 2-1 数字调制系统的基本结构
数字调制与模拟调制原理是相同的,一般可以采用模拟调制的方法实现数字调制。但是,数字基带信号具有与模拟基带信号不同的特点,其取值是有限的离散状态。这样,可以用载波的某些离散状态来表示数字基带信号的离散状态。基本的三种数字调制方式是:振幅键控(ASK)、移频键控(FSK)和移相键控(PSK 或DPSK)。
本章重点论述二进制数字调制系统的原理及其抗噪声性能,简要介绍多进制 数字调制原理。2.1二进制振幅键控(2ASK)
振幅键控是正弦载波的幅度随数字基带信号而变化的数字调制.当数字基带信号为二进制时,则为二进制振幅键控.设发送的二进制符号序列由0,1序列组成,发送0符号的概率为P,发送1符号的概率为1-P,且相互独立.该二进制符号序列可表示为
(2-1-1)
其中:
(2-1-2)
Ts是二进制基带信号时间间隔,g(t)是持续时间为Ts的矩形脉冲:
(2-1-3)
则二进制振幅键控信号可表示为
(2-1-4)
二进制振幅键控信号时间波型如图 22 可以看出,2ASK信号的时间波形e2ASK(t)随二进制基带信号s(t)通断变化,所以又称为通断键控信号(OOK信号).二进制振幅键控信号的产生方法如图22 可以看出,2ASK信号与模拟调制中的AM信号类似.所以,对2ASK信号也能够采用非相干解调(包络检波法)和相干解调(同步检测法),其相应原理方框图如图25 所示._ 图 2 – 2 二进制振幅键控信号时间波型
图2-3 二进制振幅键控信号调制器原理框图
图 2 –4 二进制振幅键控信号解调器原理框图
图 26 所示,图中波形g可分解为波形e和波形f,即二进制移频键控信号可以看成是两个不同载波的二进制振幅键控信号的叠加.若二进制基带信号的1符号对应于载波频率f1,0符号对应于载波频率f2,则二进制移频键控信号的时域表达式为
e2FSK(t)ang(tnTs)cos(1tn)ang(tnTb)cos(2tn)
(2-1-5)
nn
(2-1-6)
(2-1-7)
图 2-6 二进制移频键控信号的时间波形
由图 28 所示.其解调原理是将二进制移频键控信号分解为上下两路二进制振幅键控信号,分别进行解调,通过对上下
两路的抽样值进行比较最终判决出输出信号.非相干解调过程的时间波形如图 210 所示.其基本原理是,二进制移频键控信号的过零点数随载波频率不同而异,通过检测过零点数从而得到频率的变化.在图 29)其中, an与2ASK和2FSK时的不同,在2PSK调制中,an应选择双极性,即
(2-1-10)
(2–1-11)
若g(t)是脉宽为Ts, 高度为1的矩形脉冲时,则有 e2PSK(t)=cosωct, 发送概率为P
-cosωct,发送概率为1-P 由式(2-111 所示.图 2 – 11 二进制移相键控信号的时间波形
二进制移相键控信号的调制原理图如图 214 所示.当恢复的相干载波产生180°倒相时,解调出的数字基带信号将与发送的数字基带信号正好是相反,解调器输出数字基带信号全部出错.
图 2-122PSK信号的调制原理图
图 2-132PSK信号的解调原理图
图 2-142PSK信号相干解调各点时间波形
这种现象通常称为“倒π”现象.由于在2PSK信号的载波恢复过程中存在着180°的相位模糊,所以2PSK信号的相干解调存在随机的“倒π”现象,从而使得2PSK方式在实际中很少采用.
第三章 调制与解调仿真
3-1 2ASK的调制与解调仿真 1。调制仿真
(1)建立模型方框图
2ASK信号调制的模型方框图由DSP模块中的sinwave信号源、方波信号源、相乘器等模块组成,Simulink 模型图如下所示:
图3-1 2ASK信号调制的模型方框图
其中正玄信是载波信号,方波代表S(t)序列的信号塬,正玄信号和方波相乘后就得到键控2ASK信号。2)参数设置
建立好模型之后就要设置系统参数,以达到系统的最佳仿真。从正玄信号源开始依次的仿真参数设置如下:
图3-2 正玄信号参数设置
其中sin函数是幅度为2频率为1Hz采样周期为0.002的双精度DSP信号
图3-3 方波信号源的参数设置
方波信号是基于采样的,其幅度设置为2,周期为3,占1比为2/3 3)系统仿真及各点波形图
经过上面参数的设置后,就可以进行系统的仿真下面是示波器显示的各点的波形图:
图3-4 各点的时间波形图
由上图可以看出信息源和载波信号相乘之后就产生了受幅度控制的2ASK信号。1. 解调仿真
2ASK的解调分为相干解调和非相干解调法,下面采用相干解调法对2ASK信号进行解调(1)建立simulink模型方框图
相干解调也叫同步解调,就是用已调信号恢复出载波——既同步载波。再用载波和已调信号相乘,经过低通滤波器和抽样判决器恢复出S(t)信号,simulink模型图如下:
图3-5 2ASK相干解调的 simulink模型方框图
(2)参数设置
建立好模型之后,开始设置各点的参数,由于低通滤波器是滤去高频的载波,才能恢复出原始信号,所以为了使已调信号的频谱有明显的搬移,就要使载波和信息源的频率有明显的差别,所以载波的频率设置为100Hz.为了更好的恢复出信源信号,所以在此直接使用原载波信号作为同步载波信号。下面是低通滤波器的参数设置:
图3-6 低通滤波器的参数设置图
(3)系统仿真及各点时间波形图
图3-7 2ASK信号解调的各点时间波形图
由上图可以看出由于载波频率的提高使的示波器在波形显示上出现了一定的困难,不过要想显示调制部分的理想波形只要调整示波器的显示范围即可。(4)误码率分析
由于在解调过程中没有信道和噪声,所以误码率相对较小,一般是由于码间串扰或是参数设置的问题,由3-5图可以看出此系统的误码率为0.3636。3-2 2FSK的调制与解调仿真 1.调制仿真
2FSK信号是由频率分别为f1和f2的两个载波对信号源进行频率上的控制而形成的,其中f1和f2是两个频率有明显差别的且都远大于信号源频率的载波信号,2FSK信号产生的simulink仿真模型图如下所示:
图3-8 2FSK信号的simulink模型方框图
其中sin wave和sin wave1是两个频率分别为f1和f2的载波,Pulse Generator模块是信号源,NOT实现方波的反相,最后经过相乘器和相加器生成2FSK信号,各参数设置如下: 载波f1的参设
图3-9 载波sin wave的参数设置
其中幅度为2,f1=1Hz,采样时间为0.002s在此选择载波为单精度信号
f2的参数设置
图3-10 载波sin wave1的参数设置 载波是幅度为2,f2=2,采样时间.为0.002的单精度信号。
本来信号源s(t)序列是用随机的0 1信号产生,在此为了方便仿真就选择了基于采样的Pulse Generator信号模块其参数设置如下:
图3-11 Pulse Generator信号模块参数设置 其中方波是幅度为1,周期为3,占1比为1/3的基于采样的信号。经过以上参数的设置后就可以进行系统的仿真,其各点的时间波形如下:
图3-12 2FSK信号调制各点的时间波形
由上图可以看出经过f1和f2两个载波的调制,2FSK信号有明显的频率上的差别。2.解调仿真
解调方框图如下所示:
图3-13 2FSK信号解调方框图
其中From File是一个封装模块,就是2FSK信号的调制模块,两个带通滤波器分别将2FSK信号上下分频f1和f2 ,后面就和2ASK信号的解调过程相同,各参数设置如下:
图3-14 2FSK信号f1带通滤波器参数设置
图3-15 2FSK信号f2带通滤波器参数设置
经过系统仿真后的各点时间波形如下:
图3-15 2FSK信号解调各点时间波形
经过系统的仿真可以观察出系统的误码率为0.7273,如下图所示:
图3-16 2FSK相干解调误码率
3-3 2PSK的调制与解调仿真 1.调制仿真
在二进制数字调制中,当正弦载波的相位随二进制数字基带信号离散变化时,则产生二进制移相键控(2PSK)信号.在此用已调信号载波的 0°和 180°分别表示二进制数字基带信号的 1 和 0.用两个反相的载波信号进行调制,其方框图如下:
图3-17 2PSK信号调制的simulink的模型图
其中Sin wave和Sin wave1是反相的载波,正玄脉冲作为信号源,各个参数设置如下:
图3-18 Sin wave信号参数设置
图3-19 Sin wave1信号的参数设置
由上面两个图可以看出两个载波是幅度为3频率为4Hz采样时间为0.002s的反相信号。
图3-20 脉冲信号的参数设置
脉冲信号是幅度为2周期为1占空比为50%的基于时间的信号。
图3-21 2PSK调制的各点时间波形
2. 解调仿真
(1)建立simulink模型方框图如下:
图3-22 2PSK解调框图
(2)各点的时间波形如下所示:
图3-23 2PSK解调各点的时间波形
(3)结果分析
由3-22图可以看出其误码率为0.6667,由于没有噪声的影响所以误码率一般在0.5,由于系统的 不 准确性和码间影响所以误码率稍微偏大。
总结
本文通过对数字信号的simulink建模仿真,使我数字键控的概念又有了更深的了解,而且也熟悉了simulink软件的操作,在此非常感谢李义红教员和井亚鹊教员对我的指导和支持。使我在设计和论文过程中非常顺利的完成。由于个人能力有限,在设计和论文中可能存在种种的不足之处,希望各位教员和评委予以指出,谢谢!
致谢
参考文献
[1] 王兴亮 编著,《数字通信原理与技术》,西安电子科技大学出版社,第二版 [2] 徐明远 邵玉斌 编著,《MATLAB仿真在通信与电子工程中的应用》,西安电子科技大学出版社,2005 [3] 孙屹 吴磊编著, 《Simulink通信仿真开发手册》,国防工业出版社,2003
第二篇:电子信息MATLAB系统仿真与设计
电子信息系统仿真与设计
课程设计报告
设计课题: 油价变化系统的模型 姓 名:
学 院: 机电与信息工程学院
专 业: 电子信息科学与技术
班 级: 09级 2班
学 号: 日 期 2010-2011第三学期
指导教师: 李光明 张军蕊
山东大学威海分校信息工程学院 建模:
1背景
设某一星期的油价为p,其中n表示年份,它与上一星期的油价、油价升值速率以及新增资源所能满足的个体数目之间的动力学方程由如下的差分方程所描述:
从此差分方程中可以看出,此油价变化系统为一非线性离散系统。如果设油价初始值、油价升值速率、新增资源所能满足的个体数目,要求建立此油价动态变化系统的系统模型,并分析油价在未来100个星期内之间的变化趋势。2 建立油价变化系统的模型
(1)Discrete模块库Unit Delay模块:其主要功能是将输入信号延迟一个采样时间,它是离散系统的差分方程描述以及离散系统仿真的基础。在仿真时只要设置延迟模块的初始值便可计算系统输出。
(2)Discrete模块库Zero-Order Hold模块:其主要功能是对信号进行零阶保持。使用Simulink对离散系统进行仿真时,单位延迟是Discrete模块库中的Unit Delay模块来完成的。对于油价变化系统模型而言,需要将作为Unit Delay模块的输入以得到,然后按照系统的差分方程来建立人口变化系统的模型。
1.05ProductGainScope1zUnit DelayGain1-K-1Constant 系统参数设置
系统模型建立之后,首先需要按照系统的要求设置各个模块的参数,如下所述:(1)增益模块Gain表示油价升值速率,故取值为1.05。
(2)模块Gain1表示新增资源所能满足的个体数目,故取值为1000000。(3)油价初始值设为10$/L(4)Unit Delay模块参数设置。
(5)仿真时间设置:按照系统仿真的要求,设置系统仿真时间范围为0~100。(6)离散求解器与仿真步长设置:对离散系统进行仿真需要使用离散求解器。
实验总结及心得体会 MATLAB是一件很强大的工具,在模拟仿真方面有着不可比拟的优势。不仅可以通过语言脚本可以帮助我们解决很多问题,而且simulink也是十分强大的。通过十分直观的方式直接按放各模块,很明显地显示出各种逻辑关系,方便快捷,思路清晰。在实际应用中。Simulink起到了重要作用。通过对simulink的学习,我发现我们所学的课本知识是很重要的,只要通过理解变通,就很容易解决实际问题。但是,有个前提就是你要有着扎实的理论知识。所以,我们千万不能忽略了课本知识的重要性,不要浮躁,理解透彻。Simulink对我来说是很陌生的一个东西,通过几天的摸索,我渐渐摸到了他的奇妙之处,其实不如我们想象那么难,只要没仔细分析好,它会是我们工作学习的一个强力助手。当然,由于时间短暂,我还需要更多时间的学习,才能彻底掌握这个仿真软件。
附录
1.利用simulink仿真来实现摄氏温度到华氏温度的转换 Tf9Tc32 5
yxy2.设系统微分方程为,试建立系统模型并仿真
y(1)2
3.利用simulink仿真x(t)
11(costcos3tcos5t),取A=1, 2 29258A
-K-ClockGain3cosTrigonometricFunctioncosTrigonometricFunction21/9GainSum ofElements-K-Gain1-K-Gain2Scope-K-Clock1Gain4-K-Clock2Gain5cosTrigonometricFunction1
4.建立如图1所示的仿真模型并进行仿真,改变增益,观察x-y图形变化,并用浮动的scope模块观测各点波形。
1sSine WaveIntegratorXY Graph1SliderGainFloatingScope 图1.题目4
改变增益:
继续增大增益:
5. 有初始状态为0的二阶微分方程x0.5x0.4x2u(t)其中u(t)是单位阶跃函数,试建立系统模型并仿真。
6. 通过构造SIMULINK模型求ycos(t)dt的结果,其中初值分别为y1(0)=0, y2(0)=1
当y1(0)=0时:
当 y1(0)=1时:
7.分析二阶动态电路的零输入响应
图2为典型的二阶动态电路,其零输入响应有过阻尼、临界阻尼和欠阻尼三种情况,已知L=0.5H, C=0.02F, R=1, 2, 3, …, 13, 初始值uc(0)1V,iL(0)0求uc(t)和iL(t)的零输入响应并画出波形。(1用simulink的方法,2用脚本文件的方法)
LRC 图2 题目5 二阶动态电路
(1)用simulink的方法
1sIntegrator50Gain21sIntegrator1Scope-u-K-Gain3AddUnary Minus2Gain1Scope1
(2)用脚本文件的方法 定义函数文件funcforex123.m
function xdot=funcforex123(t,x,flag,R,L,C)xdot=zeros(2,1);
xdot(1)=-R/L*x(1)-1/L*x(2)+1/L*f(t);xdot(2)=1/C*x(1);function in=f(t)in=0;脚本文件:
L=0.5;C=0.02;
for R=[1 2 3 4 5 6 7 8 9 10 11 12 13]
[t,x]=ode45('funcforex123',[0 7],[0;1],[],R,L,C);figure(1);plot(t,x(:,1));hold on;
xlabel('timesec');
text(0.9,0.07,'leftarrowi-L(t)');grid;figure(2);plot(t,x(:,2));hold on;
xlabel('timesec');
text(0.5,0.3,'leftarrowu-C(t)');grid;end
电压图:
10.80.60.4leftarrowu-C(t)0.20-0.2-0.4-0.6-0.801234timesec567
电流图:
0.150.1leftarrowi-L(t)0.050-0.05-0.1-0.15-0.201323timesec345673
8.一池中有水2000m,含盐 2 kg,以 6m/ 分 的速率向池中注入浓度为 0.5 kg / m 的3m盐水,又以 4 / 分的速率从池中流出混合后的盐水,问欲使池中盐水浓度达到 0.2 kg / m3,需要多长时间?(1用simlink的方法,2用脚本文件的方法)【附加:试画出浓度vs时间的曲线】
2Constant3ClockGain1-K-Gain2Gain34Gain2ProductAdd1sIntegratorScope
9.任意选择一个待仿真的实际问题,建立模型并分析仿真结果,或者MATLAB Simulink demo里面一个模块进行分析
10.利用Simulink画出以下微分方程组的框图:
dx/dt=-x^2+y,dy/dt=-x-x*y;x(0)=0,y(0)=0 运行结果要求传到工作空间中,并画出相位图(横坐标为x,纵坐标为y)。
11.搭建特定的信号源,建立SIMULINK仿真模型、显示仿真结果。
ClockProduct>=Clock1RelationalOperator0ConstantSwitch 江西农业大学 通信原理课程设计报告 题 目 基于Matlab的相移键控仿真设计 专 业 电子信息工程 学生姓名 曾凡文 学 号 20121206 江西农业大学课程设计报告 2015年6月 基于Matlab的2PSK,2DPSK仿真 摘要:现代通信系统要求通信距离远、通信容量大、传输质量好,作为其关键技术之一的调制技术 一直是研究的一个重要方向。本设计主要叙述了数字信号的调制方式,介绍了2PSK数字调制方式的 基本原理,功率谱密度,并运用MATLAB软件对数字调制方式2PSK进行了编程仿真实现,在MATLAB平 台上建立2PSK和2DPSK调制技术的仿真模型。进一步学习了MATLAB编程软件,将MATLAB与通信系统 中数字调制知识联系起来,为以后在通信领域学习和研究打下了基础在计算机上,运用MATLAB软件 来实现对数字信号调制技术的仿真。 关键词:数字调制与解调;MATLAB;2PSK;2DPSK; 江西农业大学课程设计报告 江西农业大学课程设计报告 第1章 绪论 1.1 调制方式 数字通信系统, 按调制方式可以分为基带传输和带通传输。数字基带信号的功率一般处于从零开始到某一频率(如0~6M)低频段,因而在很多实际的通信(如无线信道)中就不能直接进行传输,需要借助载波调制进行频谱搬移,将数字基带信号变换成适合信道传输的数字频带信号进行传输,这种传输方式,称为数字信号的频带传输或调制传输、载波传输。所谓调制,是用基带信号对载波波形的某参量进行控制,使该参量随基带信号的规律变化从而携带消息。对数字信号进行调制可以便于信号的传输;实现信道复用;改变信号占据的带宽;改善系统的性能。 数字基带通信系统中四种基本的调制方式分别称为振幅键控(ASK,Amplitude-Shift keying)、移频键控(FSK,Frequency-Shift keying)、移相键控(PSK,Phase-Shift keying)和差分移相键(DPSK,Different Phase-Shift keying)。本次课程设计对PSK,DPSK这两种调制方式进行了仿真。 1.2 设计要求 1.2.1 设计内容 用MATLAB完成对2PSK、2DPSK的调制与解调仿真电路设计,并对仿真结果进行分析,可编写程序,也可硬件设计框图 1.2.2 设计参数(参数可以自行设置) 1、传输基带数字信号(15位)码元周期T=0.01S 2、载波频率:15KHz 1.2.3 设计仪器 计算机和MATLAB软件 江西农业大学课程设计报告 第2章 2PSK,2DPSK原理 2.1 2PSK原理 2.1.1 2PSK基本原理 二进制移相键控,简记为2PSK或BPSK。2PSK信号码元的“0”和“1”分别用两个不同的初始相位“0”和“”来表示,而其振幅和频率保持不变.因此,2PSK信号的时域表达式为: (t)=Acos其中,表示第n个符号的绝对相位: t+) =因此,上式可以改写为: 这种以载波的不同相位直接表示相应二进制数字信号的调制方式,称为二进制移相键控方式。二进制移相键控信号的典型时间波形如图2-1。 10011tTs图2-1 二进制相移键控信号的时间波形 2.1.2 2PSK调制原理 在二进制数字调制中,当正弦载波的相位随二进制数字基带信号离散变化时,则产生二进制移相键控(2PSK)信号。2PSK信号调制有两种方法,即模拟调制法和键控法。通常用已调信号载波的 0°和 180°分别表示二进制数字基带信号的 1 和 0,模拟调 江西农业大学课程设计报告 制法用两个反相的载波信号进行调制。2PSK以载波的相位变化作为参考基准的,当基带信号为0时相位相对于初始相位为0°,当基带信号为1时相对于初始相位为180°。 键控法,是用载波的相位来携带二进制信息的调制方式。通常用0°和180°来分别代表0和1。其时域表达式为: e2PSKang(tnTs)cosct n其中,2PSK的调制中an必须为双极性码。两种方法原理图分别如图2-2和图2-3所示。 图2-2 模拟调制 原理图 图 2-3 键控法原理 图 2.1.3 2PSK解调原理 由于2PSK的幅度是恒定的,必须进行相干解调。经过带通滤波的信号在相乘器中与本地载波相乘,然后用低通滤波器滤除高频分量,在进行抽样判决。判决器是按极性来判决的。即正抽样值判为1,负抽样值判为0。2PSK信号的相干解调原理图如图2-4所示,各点的波形如图2-5所示。 由于2PSK信号的载波回复过程中存在着180°的相位模糊,即恢复的本地载波与所需 3 江西农业大学课程设计报告 相干载波可能相同,也可能相反,这种相位关系的不确定性将会造成解调出的数字基带信号与发送的基带信号正好相反,即“1”变成“0”吗“0”变成“1”,判决器输出数字信号全部出错。这种现象称为2PSK方式的“倒π”现象或“反相工作”。 e2PSK(t)带通滤波器a相乘器c低通滤波器d抽样判决器定时脉冲e输出 cosct b 图 2-4 2PSK的相干解调原理图 edb10011atTstctt10011t图 2-5 相干解调中各点波形图 2.2 2DPSK原理 2.2.1 2DPSK基本原理 二进制差分相移键控常简称为二相相对调相,记为2DPSK。它不是利用载波相位的绝对数值传送数字信息,而是用前后码元的相对载波相位值传送数字信息。所谓相对 4 江西农业大学课程设计报告 载波相位是只本码元初相与前一码元初相之差。 传输系统中要保证信息的有效传输就必须要有较高的传输速率和很低的误码率。在传输信号中,2PSK信号和2ASK及2FSK信号相比,具有较好的误码率性能,但是,在2PSK信号传输系统中存在相位不确定性,并将造成接收码元“0”和“1”的颠倒,产生误码。为了保证2PSK的优点,又不会产生误码,将2PSK体制改进为二进制差分相移键控(2DPSK),及相对相移键控。 2DPSK方式即是利用前后相邻码元的相对相位值去表示数字信息的一种方式。现假设用Φ表示本码元初相与前一码元初相之差,并规定:Φ=0表示0码,Φ=π表示1码。则数字信息序列与2DPSK信号的码元相位关系可举例表示如2PSK信号是用载波的不同相位直接去表示相应的数字信号而得出的,在接收端只能采用相干解调,它的时域波形图见图2-6。 图2-6 2DPSK信号波形图(a)绝对码(b)相对码10参考100011011(c)2DPSKt 2.2.2 2DPSK调制原理 二进制差分相移键控。2DPSK方式是用前后相邻码元的载波相对相位变化来表示数字信息。假设前后相邻码元的载波相位差为,可定义一种数字信息与之间的关系为: 0(数字信息“0”) (数字信息“1 为前一码元的相位。 实现二进制差分相移键控的最常用的方法是:先对二进制数字基带信号进行差分编码,然后对变换出的差分码进行绝对调相即可。2DPSK调制原理图如图2-7所示。 江西农业大学课程设计报告 绝对码Dn相对码BnCnS2dpsk(t)+延时Ts波形变换×Coswc(t) 图2-7 2DPSK调制原理框图 2.2.3 2DPSK解调原理 2DPSK信号解调有相干解调方式和差分相干解调。用差分相干解调这种方法解调时不需要恢复本地载波,只要将DPSK信号精确地延迟一个码元时间间隔,然后与DPSK信号相乘,相乘的结果就反映了前后码元的相对相位关系,经低通滤波后直接抽样判决即可恢复出原始的数字信息,而不需要在进行差分解码。 相干解调码变换法及相干解调法的解调原理是,先对2DPSK信号进行相干解调,恢复出相对码,再通过码反变换器变换为绝对码,从而恢复出发送的二进制数字信息。 在解调过程中,若相干载波产生180相位模糊,解调出的相对码将产生倒置现象,但是经过码反变换器后,输出的绝对码不会发生任何倒置现象,从而解决了载波相位模糊的问题。本次设计采用相干解调。两种解调方式的原理图如图2-8和图2-9所示。 2DPSK相干解调各点波形图如图 2-10所示。 图 2-8 2DPSK差分相干解调原理图 江西农业大学课程设计报告 图 2-9 2DPSK相干解调原理图 第3章 实验过程 3.1 2PSK仿真部分 3.1.1 2PSK仿真图 用MATLAB搭建好的2PSK仿真图如下: 江西农业大学课程设计报告 图3-1PSK仿真图 3.1.2 2PSK模块的参数设置: 1)相乘模块 图3-2 相乘器参数设置 2)低通滤波器模块 江西农业大学课程设计报告 图3-3 滤波器其参数设置 3)抽样判决模块 图3-4 pulse generator 参数设置 江西农业大学课程设计报告 3.2 2DPSK仿真部分 3.2.1 2DPSK仿真图 用MATLAB搭建好的2DPSK仿真图如下: 图3-5 2DPSK仿真图 2.2.2 2DPSK模块的参数设置: 1)载波模块 图3-6 载波参数设置 江西农业大学课程设计报告 2)乘法器模块 图3-7 乘法器参数设置 3)基带模块 图3-8 基带信号参数设置 江西农业大学课程设计报告 4)Unipolar to Bipolar Converte模块 图3-9 Unipolar to Bipolar Converter参数设置 5)码变换模块 图3-10 Logical Operator参数设置 江西农业大学课程设计报告 图3-11 Unit Delay参数设置 图3-12 Data Type Conversion参数设置 6)滤波器模块 江西农业大学课程设计报告 图3-13 带通滤波器参数设置 图3-14 低通滤波器参数设置 江西农业大学课程设计报告 第4章 仿真结果 4.1 2PSK仿真结果 图4-1 2PSK电路仿真波形 4.2 2DPSK仿真结果 江西农业大学课程设计报告 图4-2 2DPSK电路仿真波形 附录: 通过编写M文件程序: 2PSK调制解调程序及注释 clear all close all i=10;j=5000;fc=4;%载波频率 fm=i/5;%码元速率 B=2*fm;t=linspace(0,5,j);a=round(rand(1,i));%随机序列,基带信号 figure(3);stem(a);st1=t;16 江西农业大学课程设计报告 for n=1:10 if a(n)<1;for m=j/i*(n-1)+1:j/i*n st1(m)=0;end else for m=j/i*(n-1)+1:j/i*n st1(m)=1;end end end figure(1);subplot(411);plot(t,st1);title('基带信号st1');axis([0,5,-1,2]);%由于PSK中的是双极性信号,因此对上面所求单极性信号取反来与之一起构成双极性码 st2=t; for k=1:j; if st1(k)>=1; st2(k)=0; else st2(k)=1; end end;subplot(412);plot(t,st2);title('基带信号反码st2');axis([0,5,-1,2]);st3=st1-st2;subplot(413);plot(t,st3);title('双极性基带信号st3');axis([0,5,-2,2]);s1=sin(2*pi*fc*t);subplot(414);plot(s1);title('载波信号s1');e_psk=st3.*s1;figure(2);subplot(511);plot(t,e_psk);title('e_2psk');noise=rand(1,j);psk=e_psk+noise; %加入噪声 subplot(512);plot(t,psk);title('加噪后波形');psk=psk.*s1; %与载波相乘 subplot(513);plot(t,psk);title('与载波s1相乘后波形');[f,af] = T2F(t,psk); %通过低通滤波器 [t,psk] = lpf(f,af,B);subplot(514);plot(t,psk);title('低通滤波后波形');for m=0:i-1; if psk(1,m*500+250)<0; for j=m*500+1:(m+1)*500; psk(1,j)=0; end else for j=m*500+1:(m+1)*500; psk(1,j)=1; end end end subplot(515);plot(t,psk);axis([0,5,-1,2]);title('抽样判决后波形') 2DPSK调制解调程序及注释 clear all close all i=10;j=5000;fc=4;%载波频率 fm=i/5;%码元速率B=2*fm;t=linspace(0,5,j);a=round(rand(1,i));figure(4);stem(a);st1=t;for n=1:10 if a(n)<1;for m=j/i*(n-1)+1:j/i*n st1(m)=0;end else for m=j/i*(n-1)+1:j/i*n st1(m)=1;end end end 江西农业大学课程设计报告 figure(1);subplot(321);plot(t,st1);title('绝对码');axis([0,5,-1,2]);b=zeros(1,i);%全零矩阵 b(1)=a(1);for n=2:10 if a(n)>=1;if b(n-1)>=1 b(n)=0;else b(n)=1;end else b(n)=b(n-1);end end st1=t;for n=1:10 if b(n)<1;for m=j/i*(n-1)+1:j/i*n st1(m)=0;end else for m=j/i*(n-1)+1:j/i*n st1(m)=1;end end end subplot(323);plot(t,st1);title('相对码st1');axis([0,5,-1,2]);st2=t;for k=1:j;if st1(k)>=1;st2(k)=0;else st2(k)=1;江西农业大学课程设计报告 end end;subplot(324);plot(t,st2);title('相对码反码st2');axis([0,5,-1,2]);s1=sin(2*pi*fc*t);subplot(325);plot(s1);title('载波信号s1');s2=sin(2*pi*fc*t+pi);subplot(326);plot(s2);title('低通滤波后波形');st=zeros(1,i); %全零矩阵for m=0:i-1; if dpsk(1,m*500+250)<0; st(m+1)=0; for j=m*500+1:(m+1)*500; dpsk(1,j)=0; end else for j=m*500+1:(m+1)*500; st(m+1)=1; dpsk(1,j)=1; end end end subplot(413);plot(t,dpsk);axis([0,5,-1,2]);title('抽样判决后波形')dt=zeros(1,i); %全零矩阵 dt(1)=st(1);for n=2:10; if(st(n)-st(n-1))<=0&&(st(n)-st(n-1))>-1; dt(n)=0; else dt(n)=1; end end st=t;for n=1:10 if dt(n)<1; for m=j/i*(n-1)+1:j/i*n st(m)=0; end else for m=j/i*(n-1)+1:j/i*n st(m)=1; end end end 江西农业大学课程设计报告 江西农业大学课程设计报告 subplot(414);plot(t,st);axis([0,5,-1,2]);title('码反变换后波形')21 江西农业大学 通信原理课程设计报告 题 目 基于Matlab的相移键控仿真设计 专 业 电子信息工程 学生姓名 曾凡文 学 号 20121206 江西农业大学课程设计报告 二 0 一五 年 六 月 基于Matlab的2PSK,2DPSK仿真 摘要:现代通信系统要求通信距离远、通信容量大、传输质量好,作为其关键技术之一的调制技术一直是研究的一个重要方向。本设计主要叙述了数字信号的调制方式,介绍了2PSK数字调制方式的基本原理,功率谱密度,并运用MATLAB软件对数字调制方式2PSK进行了编程仿真实现,在MATLAB平台上建立2PSK和2DPSK调制技术的仿真模型。进一步学习了MATLAB编程软件,将MATLAB与通信系统中数字调制知识联系起来,为以后在通信领域学习和研究打下了基础在计算机上,运用MATLAB软件来实现对数字信号调制技术的仿真。 课程设计目的:通过课程设计,巩固已学过的*****知识,加深对其理解和应用,学会应用Matlab Simulink工具对通信系统仿真。 关键词:数字调制与解调;MATLAB;2PSK;2DPSK; 江西农业大学课程设计报告 第1章 基本工作原理 1.1 2PSK原理 1.1.1 2PSK基本原理 二进制移相键控,简记为2PSK或BPSK。2PSK信号码元的“0”和“1”分别用两个不同的初始相位“0”和“”来表示,而其振幅和频率保持不变.因此,2PSK信号的时域表达式为: (t)=Acos其中,表示第n个符号的绝对相位: t+) =因此,上式可以改写为: 这种以载波的不同相位直接表示相应二进制数字信号的调制方式,称为二进制移相键控方式。二进制移相键控信号的典型时间波形如图1-1。 10011tTs江西农业大学课程设计报告 图1-1 二进制相移键控信号的时间波形 1.1.2 2PSK调制原理 在二进制数字调制中,当正弦载波的相位随二进制数字基带信号离散变化时,则产生二进制移相键控(2PSK)信号。2PSK信号调制有两种方法,即模拟调制法和键控法。通常用已调信180°分别表示信号的 1 和 两个反相的载制。2PSK以载 号载波的 0°和 二进制数字基带0,模拟调制法用波信号进行调波的相位变化作为参考基准的,当基带信号为0时相位相对于初始相位为0°,当基带信号为1时相对于初始相位为180°。键控法,是用载二进制信息的调制和180°来分别代表达式为: 波的相位来携带方式。通常用0°表0和1。其时域 e2PSKang(tnTs)cosct n其中,2PSK的调制中an必须为双极性码。两种方法原理图分别如图1-2和图1-3所示。 图1-2 模拟调制原理图 江西农业大学课程设计报告 图 1-3 键控法原理图 带通滤波器ae2PSK(t)相乘器c低通滤波器d抽样判决器定时脉冲e输出 cosct 1.1.3 2PSK解调原理 b由于2PSK的幅度是恒定的,必须进行相干解调。经过带通滤波的信号在相乘器中与本地载波相乘,然后用低通滤波器滤除高频分量,在进行抽样判决。判决器是按极性来判决的。即正抽样值判为1,负抽样值判为0。2PSK信号的相干解调原理图如图1-4所示,各点的波形如图1-5所示。 由于2PSK信号的载波回复过程中存在着180°的相位模糊,即恢复的本地载波与所需相干载波可能相同,也可能相反,这种相位关系的不确定性将会造成解调出的数字基带信号与发送的基带信号正好相反,即“1”变成“0”吗“0”变成“1”,判决器输出数字信号全部出错。这种现象称为2PSK方式的“倒π”现象或“反相工作”。 图 1-4 2PSK的相干解调原理图 江西农业大学课程设计报告 edb10011atTstctt10011t 图 1-5 相干解调中各点波形图 1.2 2DPSK原理 1.2.1 2DPSK基本原理 二进制差分相移键控常简称为二相相对调相,记为2DPSK。它不是利用载波相位的绝对数值传送数字信息,而是用前后码元的相对载波相位值传送数字信息。所谓相对载波相位是只本码元初相与前一码元初相之差。 传输系统中要保证信息的有效传输就必须要有较高的传输速率和很低的误码率。在传输信号中,2PSK信号和2ASK及2FSK信号相比,具有较好的误码率性能,但是,在2PSK信号传输系统中存在相位不确定性,并将造成接收码元“0”和“1”的颠倒,产生误码。为了保证2PSK的优点,又不会产生误码,将2PSK体制改进为二进制差分相移键控(2DPSK),及相对相移键控。 2DPSK方式即是利用前后相邻码元的相对相位值去表示数字信息的一种方式。现假设用Φ表示本码元初相与前一码元初相之差,并规定:Φ=0表示0码,Φ=π表示1码。则数字信息序列与2DPSK信号的码元相位关系可举例表示如2PSK信号是用载波的不同相位直接去表示相应的数字信号而得出的,在接收端只能采用相干解调,它的时域波形图见图1-6。 江西农业大学课程设计报告 图1-6 2DPSK信号波形图 (a)绝对码(b)相对码10参考100011011(c)2DPSKt1.2.2 2DPSK调制原理 二进制差分相移键控。2DPSK方式是用前后相邻码元的载波相对相位变化来表示数字信息。假设前后相邻码元的载波相位差为,可定义一种数字信息与之间的关系为: 0(数字信息“0”) (数字信息“1 为前一码元的相位。 实现二进制差分相移键控的最常用的方法是:先对二进制数字基带信号进行差分编码,然后对变换出的差分码进行绝对调相即可。2DPSK调制原理图如图1-7所示。 绝对码Dn相对码BnCnS2dpsk(t)+延时Ts波形变换×Coswc(t) 图1-7 2DPSK调制原理框图 1.2.3 2DPSK解调原理 2DPSK信号解调有相干解调方式和差分相干解调。用差分相干解调这种方法解调时不需要恢复本地载波,只要将DPSK信号精确地延迟一个码元时间间隔,然后与DPSK信号相乘,相乘的结果就反映了前后码元的相对相位关系,经低通滤波后直接抽样判决即可恢复出原始的数字信息,而不需要在进行差分解码。 第二章 设计系统 江西农业大学课程设计报告 2.1框图 两种解调方式的原理框图如图1-8和图1-9所示。 图 1-8 2DPSK差分相干解调原理框图 图 1-9 2DPSK相干解调原理框图 2.2工作原理 相干解调码变换法及相干解调法的解调原理是,先对2DPSK信号进行相干解调,恢复出相对码,再通过码反变换器变换为绝对码,从而恢复出发送的二进制数字信息。 在解调过程中,若相干载波产生180相位模糊,解调出的相对码将产生倒置现象,但是经过码反变换器后,输出的绝对码不会发生任何倒置现象,从而解决了载波相位模糊的问题。本次设计采用相干解调。 2.3设定参数 如附录1 江西农业大学课程设计报告 第三章 Matlab仿真 3.1显示系统不同部分的信号波形 3.1.1PSK如图3-1和图3-2所示 图3-1 图3-2 江西农业大学课程设计报告 3.1.2 2DPSK如图3- 3、图3-4和图3-5所示 图3-3 图3-4 江西农业大学课程设计报告 图3-5 3.2各种相移系统的比较和分析 例如“倒π”现象 对于相同的数字信号基带序列,由于初始相位不同,2DPSK信号的相位并不直接代表基带信号,而前后码元相对相位的差才唯一决定信号的符号。2PSK信号载波恢复过程中,存在着180°的相位模糊即恢复的本地载波与与所需的想干载波可能同相也可能反相,这种相位关系的不确定性将会造成解调出来的数字基带信号与发送的数字基带信号正好相反,即“1”变成“0”,“0”变成“1”,判决器输出的数字信号全部出错, 这种现象称为2PSK的“倒π”现象或“反相工作”。本地载波与发送端载波反向时,2PSK的解调波形与2DPSK完全相反 3.3不同方式解调下PSK、DPSK的误码率 误码率是指接收的码元数在传输总码元数中所占的比例,即: 误码率错误码元数传输总码元数 PSK相干解调: 误码率(r/2)DPSK相干解调: 误码率 DPSK差分非相干解调: 误码率1/2e^(-r)r为信噪比。 误码率是衡量一个数字通信系统性能的重要指标。在信道高斯白噪声的干扰下,各种二进制数字调制系统的误码率取决于解调器输入信噪比,而误码率表达式的形式则取决于解调方式。对于所有的数字调制系统误码率与信噪比的关系的图表来看,所有的曲线呈减函数的下降曲线,即随着信噪比的增大,误码率降低。横向比较来看,对于同一种调制方式,当信噪比相同时,采用相干解调方式的误码率低于非相干解调方式的误码率;纵向比较来看,对2PSK,2DPSK两种调制方式若采用同一种解调方式 江西农业大学课程设计报告(相干解调或非相干解调),则2PSK的误码率最低,2DSPK的误码率次之。当信噪比一定时,误码率由低到高依次是:2PSK的相干解调,2DPSK的相干解调,2DPSK的差分解的非相干调。 附录1 2PSK调制解调程序及注释: clear all close all i=10;j=5000;fc=4.6;%载波频率 fm=i/5;%码元速率 B=2*fm;t=linspace(0,5,j);a=round(rand(1,i));%随机序列,基带信号 figure(3);stem(a);st1=t;for n=1:10 if a(n)<1;for m=j/i*(n-1)+1:j/i*n st1(m)=0;end else for m=j/i*(n-1)+1:j/i*n st1(m)=1;end end end figure(1);subplot(411);plot(t,st1);title('基带信号st1');axis([0,5,-1,2]);%由于PSK中的是双极性信号,因此对上面所求单极性信号取反来与之一起构成双极性码 st2=t;for k=1:j;if st1(k)>=1;st2(k)=0;else 江西农业大学课程设计报告 st2(k)=1;end end;subplot(412);plot(t,st2);title('基带信号反码st2');axis([0,5,-1,2]);st3=st1-st2;subplot(413);plot(t,st3);title('双极性基带信号st3');axis([0,5,-2,2]);s1=sin(2*pi*fc*t);subplot(414);plot(s1);title('载波信号s1');e_psk=st3.*s1;figure(2);subplot(511);plot(t,e_psk);title('e_2psk');noise=rand(1,j);psk=e_psk+noise;%加入噪声 subplot(512);plot(t,psk);title('加噪后波形');psk=psk.*s1;%与载波相乘 subplot(513);plot(t,psk);title('与载波s1相乘后波形');[f,af] = T2F(t,psk);%通过低通滤波器 [t,psk] = lpf(f,af,B);subplot(514);plot(t,psk);title('低通滤波后波形');for m=0:i-1;if psk(1,m*500+250)<0;for j=m*500+1:(m+1)*500;psk(1,j)=0;end else for j=m*500+1:(m+1)*500;psk(1,j)=1;end 江西农业大学课程设计报告 end end subplot(515);plot(t,psk);axis([0,5,-1,2]);title('抽样判决后波形') 2DPSK调制解调程序及注释: clear all close all i=10;j=5000;fc=4.6;%载波频率 fm=i/5;%码元速率 B=2*fm;t=linspace(0,5,j);a=round(rand(1,i));figure(4);stem(a);st1=t;for n=1:10 if a(n)<1;for m=j/i*(n-1)+1:j/i*n st1(m)=0;end else for m=j/i*(n-1)+1:j/i*n st1(m)=1;end end end figure(1);subplot(321);plot(t,st1);title('绝对码');axis([0,5,-1,2]);b=zeros(1,i);%全零矩阵 b(1)=a(1);for n=2:10 if a(n)>=1; 江西农业大学课程设计报告 if b(n-1)>=1 b(n)=0;else b(n)=1;end else b(n)=b(n-1);end end st1=t;for n=1:10 if b(n)<1;for m=j/i*(n-1)+1:j/i*n st1(m)=0;end else for m=j/i*(n-1)+1:j/i*n st1(m)=1;end end end subplot(323);plot(t,st1);title('相对码st1');axis([0,5,-1,2]);st2=t;for k=1:j;if st1(k)>=1;st2(k)=0;else st2(k)=1;end end;subplot(324);plot(t,st2);title('相对码反码st2');axis([0,5,-1,2]);s1=sin(2*pi*fc*t);subplot(325);plot(s1);title('载波信号s1');s2=sin(2*pi*fc*t+pi);subplot(326);plot(s2); 江西农业大学课程设计报告 title('载波信号s2');d1=st1.*s1;d2=st2.*s2;figure(2);subplot(411);plot(t,d1);title('st1*s1');subplot(412);plot(t,d2);title('st2*s2');e_dpsk=d1+d2;subplot(413);plot(t,e_dpsk);title('调制后波形');noise=rand(1,j);dpsk=e_dpsk+noise;%加入噪声 subplot(414);plot(t,dpsk);title('加噪声后信号');dpsk=dpsk.*s1;%与载波s1相乘 figure(3);subplot(411);plot(t,dpsk);title('与载波相乘后波形');[f,af]=T2F(t,dpsk);%通过低通滤波器 [t,dpsk]=lpf(f,af,B);subplot(412);plot(t,dpsk);title('低通滤波后波形');st=zeros(1,i);%全零矩阵 for m=0:i-1;if dpsk(1,m*500+250)<0;st(m+1)=0;for j=m*500+1:(m+1)*500;dpsk(1,j)=0;end else for j=m*500+1:(m+1)*500;st(m+1)=1;dpsk(1,j)=1;end end end subplot(413); 江西农业大学课程设计报告 plot(t,dpsk);axis([0,5,-1,2]);title('抽样判决后波形')dt=zeros(1,i);%全零矩阵 dt(1)=st(1);for n=2:10;if(st(n)-st(n-1))<=0&&(st(n)-st(n-1))>-1;dt(n)=0;else dt(n)=1;end end st=t;for n=1:10 if dt(n)<1;for m=j/i*(n-1)+1:j/i*n st(m)=0;end else for m=j/i*(n-1)+1:j/i*n st(m)=1;end end end subplot(414);plot(t,st);axis([0,5,-1,2]);title('码反变换后波形'); 课程编号:216317 课程名称:MATLAB及系统仿真 学分:2学分 总 学 时:32学时其中授课学时:20学时上机学时:12学时 先修课程:C语言、线性代数、信号与系统、通信原理 开课部门:计算机与通信学院 课程内容: 本课程要求学生掌握:MATLAB基本语句结构,矩阵的基本运算,控制语句,M文件和M函数的编写与调用,绘图功能,数学函数库的调用,SIMULINK仿真。通过本课程的学习,学生应能够在MATLAB环境下解决常见的数学问题和工程问题,并且能利用MATLAB软件对通信系统里的各种调制和解调过程进行仿真分析。 选课对象:通信工程,计算机科学与技术、电子信息技术第三篇:通信原理课程设计_(基于MATLAB的_2PSK_2DPSK仿真)
第四篇:通信原理课程设计_(基于MATLAB的_2PSK_2DPSK仿真)
第五篇:《MATLAB及系统仿真》2010年课程简介