第一篇:MATLAB与控制系统仿真实验报告
《MATLAB与控制系统仿真》
实验报告
2013-2014学年 第 1 学期
专业: 班级: 学号: 姓名:
实验三 MATLAB图形系统一、实验目的:
1.掌握绘制二维图形的常用函数。2.掌握绘制三维图形的常用函数。3.熟悉利用图形对象进行绘图操作的方法。4.掌握绘制图形的辅助操作。
二、实验原理:
1,二维数据曲线图
(1)绘制单根二维曲线 plot(x,y);(2)绘制多根二维曲线 plot(x,y)当x是向量,y是有一维与x同维的矩阵时,则绘制多根不同颜色的曲线。当x,y是同维矩阵时,则以x,y对应列元素为横、纵坐标分别绘制曲线,曲线条数等于矩阵的列数。(3)含有多个输入参数的plot函数 plot(x1,y1,x2,y2,…,xn,yn)(4)具有两个纵坐标标度的图形 plotyy(x1,y1,x2,y2)2,图形标注与坐标控制 1)title(图形名称); 2)xlabel(x轴说明)3)ylabel(y轴说明)4)text(x,y图形说明)5)legend(图例1,图例2,…)
6)axis([xmin xmax ymin ymax zmin zmax])3, 图形窗口的分割 subplot(m,n,p)4,三维曲线
plot3(x1,y1,z1,选项1,x2,y2,选项2,…,xn,yn,zn,选项n)5,三维曲面
mesh(x,y,z,c)与surf(x,y,z,c)。一般情况下,x,y,z是维数相同的矩阵。X,y是网格坐标矩阵,z是网格点上的高度矩阵,c用于指定在不同高度下的颜色范围。6,图像处理
1)imread和imwrite函数 这两个函数分别用于将图象文件读入matlab工作空间,以及将图象数据和色图数据一起写入一定格式的图象文件。
2)image和imagesc函数 这两个函数用于图象显示。为了保证图象的显示效果,一般还应使用colormap函数设置图象色图。
三、实验仪器和设备:
计算机一台(带有MATLAB6.5以上的软件环境)。
四、预习要求:
1.复习二维与三维图形的绘图函数。2.复习图形辅助操作。
五、实验内容及步骤:
1,设y[0.53sinx]cosx,在x=0~2π区间取101点,绘制函数曲线。21x
2,已知y1=x2,y2=cos(2x),y3=y1*y2,完成下列操作:
(1)在同一坐标系下用不同的颜色和线型绘制三条曲线;
(2)分别用条形图、阶梯图、杆图和填充图绘制三条曲线。
3,已知
x,x02e y1In(x1x2),x02在-5<=x<=5区间绘制函数曲线。
4,绘制函数的曲面图和等高线
zcosxcosyex2y24
其中x的21个值均匀分布在[-5,5]范围,y的31个值均匀分布在[0,10],要求使用subplot(2,1,1)和subplot(2,1,2)将产生的曲面图和登高图画在同一个窗口上。
5.画出函数
zx2y2sin(xy)的曲面及等高线图。
x2y21绘制平面曲线,并分析参数a对其形状的影响。6.根据2a25a2
四、心得体会:
通过这次实验我能熟练掌握二维和三维图以及其他特殊图形的制作,弄清楚了基本的图形操作规则,大大加深了我对matlab的兴趣。
实验二 MATLAB程序设计
一、实验目的
1.掌握利用if语句实现选择结构的方法。
2.掌握利用switch语句实现多分支选择结构的方法。3.掌握利用for语句实现循环结构的方法。4.掌握利用while语句实现循环结构的方法。
二、实验设备及条件
计算机一台(带有MATLAB6.5以上的软件环境)。
三、实验内容
1.编写求解方程ax2bxc0的根的函数(这个方程不一定为一元二次方程,因a、b、c的不同取值而定),这里应根据a、b、c的不同取值分别处理,有输入参数提示,当a0,b0,c~0时应提示“为恒不等式!”。并输入几组典型值加以检验。
clear,clc a=input('请输入一个数a=');b=input('请输入一个数b=');c=input('请输入一个数c=');m=b^2-4*a*c;if a==0
if b==0
'为恒不等式'
end end
m=b^2-4*a*c;if m>0
x1=(-b+sqrt(m))/(2*a)
x2=(-b-sqrt(m))/(2*a)elseif m==0
x=(-b)/(2*a)else
'不存在正实根' end
2.输入一个百分制成绩,要求输出成绩等级A+、A、B、C、D、E。其中100分为A+,90分~99分为A,80分~89分为B,70分~79分为C,60分~69分为D,60分以下为E。
要求:(1)用switch语句实现。
(2)输入百分制成绩后要判断该成绩的合理性,对不合理的成绩应输出出错信息。
clear,clc for k=1:10
a(k)={89+k};b(k)={79+k};
c(k)={69+k};d(k)={59+k};end A=cell(3,6);A(1,:)={'a','b','c','d','e','f'};A(2,:)={85,76,95,100,40,65};for k=1:6
switch A{2,k}
case 100
r='A+';
case a
r='A';
case b
r='B';
case c
r='C';
case d
r='D';
otherwise
r='E';
end
A(3,k)={r};end A A =
'a'
'b'
'c'
[85]
[76]
[95]
'B'
'C'
'A'
'd'
'e'
[100]
[40]
'A+'
'E'
'f' [65] 'D'
3.利用for循环语句编写计算n!的函数程序,取n分别为-89、0、3、5、10验证其正确性(输入n为负数时输出出错信息)。
clear,clc n=input('请输入一个正数n=');if n<0
'输入错误' elseif n==0
'n!=0' elseif n==1
'n!=1' else
y=1;
for i=1:1:n
y=y*i;
i=i+1;
end
y end 请输入一个正数n=-89
ans =输入错误 请输入一个正数n=0
ans =n!=0 请输入一个正数n=1
ans =n!=1 请输入一个正数n=3
y =6 请输入一个正数n=10
y =3628800
四、实验心得体会:
通过本次实验课,我能熟练运用for循环语句,switch条件语句以及if条件语句的新用法,和在C中的区别。尽管如此,但是在实验中依然容易把for循环跟C语言中的for语句弄混,最后经过不懈努力下,终于弄明白了两者之间的差别,使我能更好的运用这些指令语句。
第二篇:基于 Matlab 的离散控制系统仿真
2014 / 2015 学年第 1 学期
计算机控制技术 实
班 级 学 生 指 导 验 报 告
学 号 1108030301 姓 名 蔡 梦 教 师 张 坤 鳌
实验二 基于 Matlab 的离散控制系统仿真
一、实验目的和要求:
1、学习使用 Matlab 的命令对控制系统进行仿真的方法
2、学习使用 Matlab 中的 Simulink 工具箱进行系统仿真的方法
二、实验环境
X86系列兼容型计算机,Matlab软件
三、实验原理
1、控制系统命令行仿真
1)建立如图所示一阶系统控制模型并进行系统仿真:
一阶系统闭环传递函数为G(S)=
s1333s=s3,转换为离散系统脉冲传递函数并仿真。
2)建立如图所示二阶系统控制模型并进行系统仿真:
52s(s20.45)25251s(s20.45)=s220.45s52,二阶系统闭环传递函数为G(S)=转换为离散系统脉冲传递函数并仿真,改变参数,观察不同的系统的仿真结果。
2、控制系统的 Simulink 仿真
按图建立系统的 Simulink 模型,对不同的输入信号进行仿真,改变参数,观察不同的仿真结果。
将上述系统离散化并仿真,观察仿真结果
四、实验步骤
1、根据实验原理对控制系统进行软件仿真
2、观察记录输出的结果,与理论计算值相比较
3、自行选择参数,练习仿真方法,观察不同的仿真结果
5252s(s20.45)s(s20.45)525211s(s20.45)s(s20.45)进行软二阶系统闭环传递函数为G(S)=件仿真如下图:
分别进行离散仿真:
五、实验心得
针对这次实验设计,我通过各种渠道,上课认真学习,请教老师、上网搜索,图书馆查阅,询问同学等学习到了很多知识,一步步了解最少拍控制系统设计,锻炼了自我学习能力。
尽管学习上遇到了很多困难,结果也差强人意。但我们在不断处理困难的过程中磨练了处理事物的能力和耐心,也让同学间学会了互相学习,共享资源
第三篇:控制系统的Matlab仿真与设计课后答案
MATLAB课后习题答案 2.1 x=[15 22 33 94 85 77 60] x(6)x([1 3 5])x(4:end)x(find(x>70))2.3 A=zeros(2,5);
A(:)=-4:5
L=abs(A)>3 islogical(L)
X=A(L)2.4 A=[4,15,-45,10,6;56,0,17,-45,0] find(A>=10&A<=20)2.5 p1=conv([1,0,2],conv([1,4],[1,1]));p2=[1 0 1 1];[q,r]=deconv(p1,p2);cq='商多项式为
';cr='余多项式为
';disp([cq,poly2str(q,'s')]),disp([cr,poly2str(r,'s')])2.6 A=[11 12 13;14 15 16;17 18 19];PA=poly(A)
PPA=poly2str(PA,'s')3.1 n=(-10:10)';y=abs(n);plot(n,y,'r.','MarkerSize',20)axis equal grid on xlabel('n')3.2 x=0:pi/100:2*pi;y=2*exp(-0.5*x).*sin(2*pi*x);plot(x,y),grid on;3.3 t=0:pi/50:2*pi;x=8*cos(t);y=4*sqrt(2)*sin(t);z=-4*sqrt(2)*sin(t);plot3(x,y,z,'p');
title('Line in 3-D Space');text(0,0,0,'origin');
xlabel('X'),ylable('Y'),zlable('Z');grid;3.4
theta=0:0.01:2*pi;
rho=sin(2*theta).*cos(2*theta);polar(theta,rho,'k');3.5
[x,y,z]=sphere(20);z1=z;
z1(:,1:4)=NaN;c1=ones(size(z1));surf(3*x,3*y,3*z1,c1);hold on z2=z;
c2=2*ones(size(z2));
c2(:,1:4)=3*ones(size(c2(:,1:4)));surf(1.5*x,1.5*y,1.5*z2,c2);colormap([0,1,0;0.5,0,0;1,0,0]);grid on hold off 第四章
function f=factor(n)if n<=1 f=1;else
f=factor(n-1)*n;end
function[s,p]=fcircle(r)s=pi*r*r;p=2*pi*r;
function k=jcsum1(n)k=0;i=0;while i<=n k=k+2^i;i=i+1;end
function k=jcsum(n)k=0;
for i=0:n k=k+2^i;end
4.1for m=100:999
m1=fix(m/100);m2=rem(fix(m/10),10);m3=rem(m,10);
if
m==m1*m1*m1+m2*m2*m2+m3*m3*m3 disp(m)
end end
4.2[s,p]=fcircle(10)4.3y=0;n=100;for i=1:n
y=y+1/i/i;end y
4.4s=0;for i=1:5
s=s+factor(i);end s
4.5sum=0;i=1;while sum<2000 sum=sum+i;i=i+1;end;n=i-2
4.6jcsum(63)jcsum1(63)4.1 for m=100:999
m1=fix(m/100);
m2=rem(fix(m/10),10);
m3=rem(m,10);
if m==m1*m1*m1+m2*m2*m2+m3*m3*m3
disp(m)
end end 4.3 y=0;n=100;
for i=1:n
y=y+1/i/i;end y 4.4 s=0;for i=1:5
s=s+factor(i);end s 4.5
sum=0;i=1;
while sum<2000
sum=sum+i;
i=i+1;end;n=i-2 4.6
i=0;k=0;while i<=63
k=k+2^i;
i=i+1;end k i
i=0;k=0;for i=0:63
k=k+2^i;end i k
第五章
function f=fxyz(u)x=u(1);y=u(2);z=u(3);f=x+y.^2./x/4+z.^2./y+2./z;
5.1A=[2,1,-5,1;1,-5,0,7;0,2,1,-1;1,6,-1,-4];
b=[13,-9,6,0]';x=Ab
5.2[U,fmin]=fminsearch('fxyz',[0.5,0.5,0.5])
5.3X=linspace(0,2*pi,50);Y=sin(X);
P=polyfit(X,Y,3)AX=linspace(0,2*pi,50);Y=sin(X);Y1=polyval(P,X)
plot(X,Y,':O',X,Y1,'-*')
5.4x=0:2.5:10;h=[0:30:60]';
T=[95,14,0,0,0;88,48,32,12,6;67,64,54,48,41];xi=[0:0.5:10];hi=[0:10:60]';
temps=interp2(x,h,T,xi,hi,'cubic');
mesh(xi,hi,temps);
5.1 A=[2,1,-5,1;1,-5,0,7;0,2,1,-1;1,6,-1,-4];b=[13,-9,6,0]';x=Ab 5.3 X=linspace(0,2*pi,50);Y=sin(X);P=polyfit(X,Y,3)AX=linspace(0,2*pi,50);Y=sin(X);Y1=polyval(P,X)plot(X,Y,':O',X,Y1,'-*')6.1syms x
y=finverse(1/tan(x))6.2syms x y
f=1/(1+x^2);g=sin(y);fg=compose(f,g)6.3syms x
g=(exp(x)+x*sin(x))^(1/2);dg=diff(g)
6.4F=int(int('x*exp(-x*y)','x'),'y')
6.5syms x
F=ztrans(x*exp(-x*10))6.6a=[0 1;-2-3];syms s
inv(s*eye(2)-a);
6.7 f=solve('a*x^2+b*x+c')6.8 f=solve('x+y+z=1','x-y+z=2','2*x-y-z=1')
6.9y=dsolve('D2y+2*Dy+2*y=0','y(0)=1','Dy(0)=0')ezplot(y),grid on
6.10a=maple('simplify(sin(x)^2+cos(x)^2);')
6.11f=maple('laplace(exp(-3*t)*sin(t),t,s);')6.12 syms t x
F=sin(x*t+2*t);L=laplace(F)第七章
function
[sys,x0,str,ts]=ww(t,x,u,flag)%¶¨ÒåÁ¬ÐøϵͳµÄSº¯Êý A=[0,1;-0.4,-0.2];B=[0;0.2];C=[1,0];D=0;
switch flag, case 0,[sys,x0,str,ts]=mdlInitializeSizes(A,B,C,D);case 1,sys=mdlDerivatives(t,x,u,A,B,C,D);case 2,sys=mdlUpdate(t,x,u);case 3,sys=mdlOutputs(t,x,u,A,B,C,D);case 4,sys=mdlGetTimeOfNextVarHit(t,x,u);case 9,sys=mdlTerminate(t,x,u);otherwise
error(['Unhandled flag = ',num2str(flag)]);end
%=============================== function
[sys,x0,str,ts]=mdlInitializeSizes(A,B,C,D)sizes = simsizes;sizes.NumContStates = 2;sizes.NumDiscStates = 0;sizes.NumOutputs = 1;sizes.NumInputs = 1;sizes.DirFeedthrough = 1;sizes.NumSampleTimes = 1;sys = simsizes(sizes);x0 = [0;0];str = [];ts = [0 0];
%=============================== function
sys=mdlDerivatives(t,x,u,A,B,C,D)
sys = A*x+B*u;
%===============================
function sys=mdlUpdate(t,x,u)sys = [];
%=============================== function
sys=mdlOutputs(t,x,u,A,B,C,D)sys = C*x+D*u;
%=============================== function
sys=mdlGetTimeOfNextVarHit(t,x,u)
sampleTime = 1;sys = t + sampleTime;
%===============================
function sys=mdlTerminate(t,x,u)sys = [];
7.1
7.2
7.3
7.4
7.5
7.6
7.7
第八章
8.1num=[5];den=[1,2,2];sys=tf(num,den)8.1.2s = tf('s');
H = [5/(s^2+2*s+2)];H.inputdelay =2
8.1.3h=tf([0.5,0],[1,-0.5,0.5],0.1)
8.2num=2*[1,0.5];den=[1,0.2,1.01];
sys=tf(num,den)
[z,p,k]=tf2zp(num,den);zpk(z,p,k)
[A,B,C,D]=tf2ss(num,den);ss(A,B,C,D)
8.3 num=[1,5];den=[1,6,5,1];ts=0.1;
sysc=tf(num,den);sysd=c2d(sysc,ts,'tustin')8.4.0
8.4.1 %¶Ôϵͳ·½¿òͼÿ¸ö»·½Ú½øÐбàºÅ,ÓÐ8¸öͨµÀ,ÁÐдÿ¸öͨµÀ´«µÝº¯Êý r1=1;r2=2;c1=3;c2=4;G1=r1;G2=tf(1,[c1,0]);
G3=1;%ÊÇ·ÖÀëµãºÍ»ãºÏµãµÄÁ¬Ïß,²»Äܺϲ¢,´«º¯Îª1 G4=-1;G5=1/r2;
G6=tf(1,[c2,0]);G7=-1;G8=-1;%½¨Á¢ÎÞÁ¬½ÓµÄ״̬¿Õ¼äÄ£ÐÍ G=append(G1,G2,G3,G4,G5,G6,G7,G8)
%д³öϵͳµÄÁ¬½Ó¾ØÕó
Q=[1 4 0 %ͨµÀ1µÄÊäÈëÊÇͨµÀ4 2 1 7 %ͨµÀ2µÄÊäÈëÊÇͨµÀ1,7 3 2 0
2 0 5 3 8 6 5 0 7 5 0
6 0];%¸ººÅÔÚ´«º¯ÖÐÌåÏÖ %ÁгöϵͳµÄ×ܵÄÊäÈëºÍÊä³ö¶ËµÄ±àºÅ
inputs=1;outputs=6;
%Éú³É×éºÏºóϵͳµÄ״̬¿Õ¼äÄ£ÐÍ sys=connect(G,Q,inputs,outputs)
8.4.2r1=1;r2=2;c1=3;c2=4;[A,B,C,D]=linmod('x84');[num,den]=ss2tf(A,B,C,D);sys=tf(num,den)
8.5A=[1,1,0;0,1,0;0,0,2];B=[0,0;1,0;0,-2];n=size(A)
Tc=ctrb(A,B);if n==rank(Tc)
disp('ϵͳÍêÈ«ÄÜ¿Ø');else
disp('ϵͳ²»ÍêÈ«ÄÜ¿Ø');end 第九章
function [rtab,info]=routh(den)info=[];
vec1=den(1:2:length(den));
nrT=length(vec1);
vec2=den(2:2:length(den)-1);rtab=[vec1;vec2,zeros(1,nrT-length(vec2))];for k=1:length(den)-2, alpha(k)=vec1(1)/vec2(1);
for i=1:length(vec2),a3(i)=rtab(k,i+1)-alpha(k)*rtab(k+1,i+1);
end
if sum(abs(a3))==0 a3=polyder(vec2);
info=[info,'All elements in row ',...int2str(k+2)' are zeros;'];
elseif abs(a3(1)) info=[info,'Replaced first element;']; end rtab=[rtab;a3, zeros(1,nrT-length(a3))];vec1=vec2;vec2=a3;end 9.1num=[2,5,1];den=[1,2,3];bode(num,den);grid on;figure; nyquist(num,den); 9.2num=5*[1,5,6];den=[1,6,10,8];step(num,den);grid on;figure; impulse(num,den);grid on;9.3kosi=0.7;wn=6; num=wn^2;den=[1,2*kosi*wn,wn^2];step(num,den);grid on;figure; impulse(num,den);grid on;9.4den=[1,2,8,12,20,16,16];[rtab,info]=routh(den)a=rtab(:,1) if all(a>0) disp('ϵͳÊÇÎȶ¨µÄ'); else disp('ϵͳÊDz»Îȶ¨µÄ'); end 9.5num=7*[1,5];den=conv([1,0,0],conv([1,10],[1,1])); [gm,pm,wg,wc]=margin(num,den) 9.1 >> sys=tf([2,5,1],[1,2,3])Transfer function: 2 s^2 + 5 s + 1---------------s^2 + 2 s + 3 >> rlocus(sys)>> nyquist(sys)>> bode(sys)9.2 >> G=tf(conv([5],[1,5,6]),[1,6,10,8]);>> step(G)>> impulse(G) sys=tf([5,25,30],[1,6,10,8]);>> step(sys)>> impulse(sys)9.4>> GH=tf(conv([7],[1,5]),conv([1,0,0],conv([1,10],[1,1]))); >> [Gm,Pm,Wcg,Wcp]=margin(GH)Gm = 0 Pm = -47.2870 Wcg = 0 Wcp = 1.4354 >> GH=tf(conv([7],[1,5]),conv([1,0,0],conv([1,10],[1,1]))); >> [Gm,Pm,Wcg,Wcp]=margin(GH)GH_close=feedback(GH,1)step(GH_close),grid on Gm = 0 Pm = -47.2870 Wcg = 0 Wcp = 1.4354 第十章 function s=bpts2s(bp,ts,delta)kosi=sqrt(1-1./(1+((1./pi).*log(1./bp)).^2)); wn=-log(delta.*sqrt(1-kosi.^2))/(kosi.*ts); s=-kosi.*wn+j.*wn.*sqrt(1-kosi.^2); function [ngc,dgc]=fa_lead(ng0,dg0,Pm,wc,w) ngv=polyval(ng0,j*wc);dgv=polyval(dg0,j*wc);g=ngv/dgv; thetag=angle(g);mg=abs(g);thetar=Pm*pi/180; tz=(1+mg*cos(thetar-thetag))/(-wc*mg*sin(thetar-thetag));tp=(cos(thetar-thetag)+mg)/(wc*sin(thetar-thetag));ngc=[tz,1];dgc=[tp,1]; function [ngc,dgc]=fg_lag_pm(ng0,dg0,w,Pm) [mu,pu]=bode(ng0,dg0,w);wgc=spline(pu,w,Pm+5-180);%²åÖµÇóÈ¡Âú×ãÏà½ÇÔ£¶ÈµÄ½ÇƵÂÊ×÷ΪÆÚÍûµÄ¼ôÇÐƵÂÊ ngv=polyval(ng0,j*wgc);dgv=polyval(dg0,j*wgc);g=ngv/dgv; alph=abs(1/g);T=10/alph*wgc, ngc=[alph*T,1];dgc=[T,1]; function [ngc,dgc]=fg_lag_wc(ng0,dg0,w,wc) ngv=polyval(ng0,j*wc);dgv=polyval(dg0,j*wc);g=ngv/dgv; alph=abs(1/g);T=10/(alph*wc);ngc=[alph*T,1];dgc=[T,1]; function [ngc,dgc]=fg_lead_pd(ng0,dg0,wc)ngv=polyval(ng0,j*wc);dgv=polyval(dg0,j*wc);g=ngv/dgv;mg0=abs(g); t=sqrt(((1/mg0)^2-1)/(wc^2));%·ùÖµÏà¼ÓΪÁã ngc=[t,1];dgc=[1];%Gc(s)=1+Ts function [ngc,dgc]=fg_lead_pm(ng0,dg0,Pm,w) [mu,pu]=bode(ng0,dg0,w);%¼ÆËãÔ-ϵͳµÄ¶ÔÊýƵÂÊÏìÓ¦Êý¾Ý [gm,pm,wcg,wcp]=margin(mu,pu,w);%ÇóÈ¡Ô-ϵͳµÄÏà½ÇÔ£¶ÈºÍ¼ôÇÐƵÂÊ alf=ceil(Pm-pm+5);%¼ÆËã¿ØÖÆÆ÷ÌṩµÄ×î´ó³¬Ç°½Ç¶È£¬ phi=(alf)*pi/180;%½«×î´ó³¬Ç°½Çת»»Îª»¡¶Èµ¥Î» a=(1+sin(phi))/(1-sin(phi));%¼ÆËãaÖµ dbmu=20*log10(mu);%ϵͳµÄ¶ÔÊý·ùÖµ mm=-10*log10(a);%wm´¦µÄ¿ØÖÆÆ÷¶ÔÊý·ùÖµ wgc=spline(dbmu,w,mm);%²îÖµÇóÈ¡wm£¬ÈÏΪwm£½wc T=1/(wgc*sqrt(a));%¼ÆËãT ngc=[a*T,1];dgc=[T,1]; function [ngc,dgc]=fg_lead_pm_wc(ng0,dg0,Pm,wc,w) [mu,pu]=bode(ng0,dg0,w);ngv=polyval(ng0,j*wc);dgv=polyval(dg0,j*wc); g=ngv/dgv;%ÇóÔ-ϵͳÔÚÆÚÍûµÄ¼ôÇÐƵÂÊ´¦µÄƵÂÊÏìÓ¦Êý¾ÝG0(jwc) theta=180*angle(g)/pi;%Ô-ϵͳÔÚÆÚÍûµÄ¼ôÇÐƵÂÊ´¦µÄÏà½ÇÔ£¶È£¬µ¥Î»Îª¶È alf=ceil(Pm-(theta+180)+5);% ×î´ó³¬Ç°½Ç phi=(alf)*pi/180; a=(1+sin(phi))/(1-sin(phi));dbmu=20*log10(mu);mm=-10*log10(a);wgc=spline(dbmu,w,mm);T=1/(wgc*sqrt(a)); KK=128;s1=-2+i*2*sqrt(3);a=2 ng0=[10];dg0=conv([1,0],conv([1,2],[1,8]));g0=tf(ng0,dg0); [ngc,dgc,k]=rg_lag(ng0,dg0,KK,s1,a); gc=tf(ngc,dgc)function s=kw2s(kosi,wn)s=-kosi.*wn+j*wn.*sqrt(1-kosi.^2); 10.1ng0=[1];dg0=10000*[1 0-1.1772]; g0=tf(ng0,dg0);%Âú×㿪»·ÔöÒæµÄΪУÕýϵͳµÄ´«µÝº¯Êý s=kw2s(0.7,0.5)%ÆÚÍûµÄ±Õ»·Ö÷µ¼¼«µã ngc=rg_lead(ng0,dg0,s);gc=tf(ngc,1)g0c=tf(g0*gc);rlocus(g0,g0c); b1=feedback(g0,1);%δУÕýϵͳµÄ±Õ»·´«µÝº¯Êý b2=feedback(g0c,1);%УÕýºóϵͳµÄ±Õ»·´«µÝº¯Êý figure,step(b1,'r--',b2,'b');grid on %»æÖÆУÕýÇ°ºóϵͳµÄµ¥Î»½×Ô¾ KK=20;s1=-2+i*sqrt(6);a=1 ng0=[10];dg0=conv([1,0],[1,4]);g0=tf(ng0,dg0); [ngc,dgc,k]=rg_lag(ng0,dg0,KK,s1,a);gc=tf(ngc,dgc)g0c=tf(KK*g0*gc); b1=feedback(k*g0,1);b2=feedback(g0c,1);step(b1,'r--',b2,'b');grid on g0c=tf(KK*g0*gc);rlocus(g0,g0c); b1=feedback(k*g0,1); b2=feedback(g0c,1);figure,step(b1,'r--',b2,'b');grid on ng0=[1];dg0=conv([1,0,0],[1,5]);g0=tf(ng0,dg0);w=logspace(-3,3);KK=1;Pm=50; [ngc,dgc]=lead4(ng0,dg0,KK,Pm,w); gc=tf(ngc,dgc);g0c=tf(KK*g0*gc);bode(KK*g0,w);hold on,bode(g0c,w);grid on,hold off [gm,pm,wcg,wcp]=margin(g0c)Kg=20*log10(gm)g1=feedback(g0c,1);bode(g1),grid on, [mag,phase,w]=bode(g1);a=find(mag<=0.707*mag(1));wb=w(a(1))max(mag) b=find(mag==max(mag))wr=w(b) KK=40;Pm=50;ng0= KK *[1]; dg0=conv([1,0],conv([1,1],[1,4])); g0=tf(ng0,dg0); w=logspace(-2,4); [ngc,dgc]=fg_lead_pm(ng0,dg0,Pm, w)gc=tf(ngc,dgc),g0c=tf(g0*gc); b1=feedback(g0,1);b2=feedback(g0c,1); step(b1,'r--', b2,'b');grid on figure, bode(g0,'r--',g0c,'b',w), grid on,[gm,pm,wcg,wcp]=margin(g0c), Km=20*log10(gm) KK=200;bp=0.3;ts=0.7;delta=0.05; ng0=[1];dg0=conv([1,0],conv([0.1,1],conv([0.02 1],conv([0.01,1],[0.005 1]))));g0=tf(ng0,dg0); w=logspace(-4,3);t=[0:0.1:3];[mag,phase]=bode(KK*g0,w);[gm0,pm0,wg0,wc0]=margin(mag,phase,w),gm0=20*log10(gm0)%gm0 =-15.6769 %2¡¢È·¶¨ÆÚÍûµÄ¿ª»·´«µÝº¯Êý mr=0.6+2.5*bp; wc=ceil((2+1.5*(mr-1)+2.5*(mr-1)^2)*pi/ts), h=(mr+1)/(mr-1)w1=2*wc/(h+1), w2=h*w1 w1=wc/10;w2=25;ng1=[1/w1,1];dg1=conv([1/w2,1],conv([1,0],[1,0])); g1=tf(ng1,dg1); g=polyval(ng1,j*wc)/polyval(dg1,j*wc);K=abs(1/g);%¼ôÇÐƵÂÊ´¦·ùֵΪ1£¬ÇóKÖµ g1=tf(K*g1) %3¡¢È·¶¨·´À¡»·½Ú´«µÝº¯Êý h=tf(dg1,ng1);Kh=1/K;h=tf(Kh*h)%ÆÚÍûƵÂÊÌØÐԵĵ¹ÌØÐÔ %4¡¢ÑéËãÐÔÄÜÖ¸±ê g2=feedback(KK*g0,h);%УÕýºó£¬ÏµÍ³µÄ¿ª»·´«µÝº¯Êý b1=feedback(KK*g0,1);b2=feedback(g2,1); bode(KK*g0,'r--',g2,'b',h,'g',w);grid on figure,step(b1, 'r--',b2, 'b',t);grid on,[pos,tr,ts,tp]=stepchar(b2,delta) function [ngc,dgc]=lag2(ng0,dg0,w,KK,Pm)[mu,pu]=bode(KK*ng0,dg0,w);wgc=spline(pu,w,Pm+5-180), ngv=polyval(KK*ng0,j*wgc);dgv=polyval(dg0,j*wgc);g=ngv/dgv; alph=abs(1/g), T=10/alph*wgc, ngc=[alph*T,1];dgc=[T,1]; function [ngc,dgc]=lead4(ng0,dg0,KK,Pm,w)[mu,pu]=bode(KK*ng0,dg0,w);[gm,pm,wcg,wcp]=margin(mu,pu,w);alf=ceil(Pm-pm+5);phi=(alf)*pi/180; a=(1+sin(phi))/(1-sin(phi)), dbmu=20*log10(mu);mm=-10*log10(a); wgc=spline(dbmu,w,mm), T=1/(wgc*sqrt(a)),ngc=[a*T,1];dgc=[T,1]; function [ngc,dgc]=ra_lead(ng0,dg0,s1)ngv=polyval(ng0,s1);dgv=polyval(dg0,s1);g=ngv/dgv;thetag=angle(g);mg=abs(g);thetas=angle(s1);ms=abs(s1); tz=(sin(thetas)-mg*sin(thetag-thetas))/(mg*ms*sin(thetag));tp=-(mg*sin(thetas)+sin(thetag+thetas))/(ms*sin(thetag));ngc=[tz,1];dgc=[tp,1]; function [ngc,dgc,k]=rg_lag(ng0,dg0,KK,s1,a) ngv=polyval(ng0,s1);dgv=polyval(dg0,s1);g=dgv/ngv; k=abs(g);%ÆÚÍûÖ÷µ¼¼«µã´¦µÄ¸ù¹ì¼£ÔöÒæ beta=k/KK; [kosi1,wn1]=s2kw(s1); zc=-wn1*sin(a*pi/180)/sin(pi-atan(sqrt(1-kosi1^2)/kosi1)-(a*pi/180));%ÀûÓÃÕýÏÒ¶¨Àí pc=beta*zc; ngc=beta*[1,-zc];dgc=[1,-pc]; function varargout=rg_lead(ng0,dg0,s1)if nargout==1 ngv=polyval(ng0,s1);dgv=polyval(dg0,s1);g=ngv/dgv; thetal=pi-angle(g); zc=real(s1)-imag(s1)/tan(thetal); t=-1/zc; varargout{1}=[t,1];elseif nargout==2 ngv=polyval(ng0,s1);dgv=polyval(dg0,s1); g=ngv/dgv;theta=angle(g);phi=angle(s1); if theta>0 phi_c=pi-theta; end if theta<0;phi_c=-theta end theta_z=(phi+phi_c)/2;theta_p=(phi-phi_c)/2; z_c=real(s1)-imag(s1)/tan(theta_z); p_c=real(s1)-imag(s1)/tan(theta_p); nk=[1-z_c];varargout{2}=[1-p_c];kc=abs(p_c/z_c); if theta<0 kc=-kc end varargout{1}=kc*nk;else error('Êä³ö±äÁ¿ÊýÄ¿²»ÕýÈ·£¡');end function [bp,ts]=s2bpts(s,delta)[kosi,wn]=s2kw(s); bp=exp(-kosi.*pi./sqrt(1-kosi.^2)); ts=-1./(kosi.*wn)*log(delta.*sqrt(1-kosi.^2)); function [kosi,wn]=s2kw(s)kosi=1./sqrt(1+(imag(s)/real(s)).^2); wn=-real(s)./kosi; %Èç¹ûwnΪ¸ºÖµ£¬ÔòwnÈ¡Õý£¬²¢ÇÒkosiÈ¡·´ iwn=(wn<0);wn(iwn)=-wn(iwn);kosi(iwn)=-kosi(iwn); function [pos,tr,ts,tp]=stepchar(g0,delta) [y,t]=step(g0);[mp,ind]=max(y);dimt=length(t);yss=y(dimt); pos=100*(mp-yss)/yss;tp=t(ind);for i=1:dimt if y(i)>=1 tr=t(i); break; end end; for i=1:length(y) if y(i)<=(1-delta)*yss|y(i)>=(1+delta)*yss ts=t(i); end end 第十一章 11.1a=[0 1 0;0 0 1;-1-5-6];b=[0 0 1]'; p=[-2+4j;-2-4j;-10];K=acker(a,b,p)eig(a-b*K) 11.2a=[0 1 0;0 0 1;-6-11-6];b=[1,0,0]'; p=[-2+2*sqrt(3)*j;-2-2*sqrt(3)*j;-10]; K=acker(a,b,p)eig(a-b*K) 11.6A=[-1 0 0;0-2-3;0 0-3];B=[1 0;2 3;-3-3];C=[1 0 0;1 1 1 ]; [G,K,L]=decoupling(A,B,C) 11.8A=[0 20.6;1 0];b=[0 1]';c=[0 1];d=0; G=ss(A,b,c,d); Q=diag([1,0,0,0,0]);R=1; p=[-1.8+2.4j;-1.8-2.4j];[k,P]=lqr(A,b,Q,R);l=(acker(A',c',p))' Gc=-reg(G,k,l);zpk(Gc), eig(Gc.a), t=0:0.05:2; G_1=feedback(G*Gc,1);a1=eig(G_1.a), y_1=step(G_1,t); 第十二章 function [t,xx]=diffstate(G,H,x0,u0,N,T)xk=x0;u=u0;t=0 for k=1:N xk=G*xk+H*u;x(:,k)=xk;t=[t,k*T];end;xx=[x0,x]; 12.1 function sys=M601(t,x)u=1; sys=[x(2);x(3);-800*x(1)-80*x(2)-24*x(3)+u]; function [t,y]=ode4(A,B,C,D,x0,h,r,v,t0,tf) Ab=A-B*v*C;B=B;C=C;x=x0';y=0;t=t0; N=round((tf-t0)/h);for i=1:N k1=Ab*x+B*r; k2=Ab*(x+h*k1/2)+B*r;k3=Ab*(x+h*k2/2)+B*r;k4=Ab*(x+h*k3)+B*r;x=x+h*(k1+2*k2+2*k3+k4)/6;y=[y,C*x];t=[t,t(i)+h];end 12.1 tspan=[0,10];x0=[0,0,0]'; [t,y]=ode45('M601',tspan,x0);y1=800*y(:,1);plot(t,y1); 12.2 num=10;den=conv([1,0],conv([1,2],[1,3])); [A,B,C,D]=tf2ss(num,den);x0=[0,0,0];v=1;t0=0;tf=10;h=0.01;r=1; [t,y]=ode4(A,B,C,D,x0,h,r,v,t0,tf); plot(t,y),grid 12.3 12.4 g=[-2.8-1.4 0 0;1.4 0 0 0;-1.8-0.3-1.4-0.6;0 0 0.6 0];h=[1 0 1 0]';c=[0 0 0 1];d=0; x0=[0 0 0 0]';u=1;N=30;T=0.1; [t,xx]=diffstate(g,h,x0,u,N,T);plot(t,xx);y=c*xx;figure stairs(t,y)grid on 12.6 第十四章 14.1 clear all;load optcar.mat; t=signals(1,:);p=signals(2,:);v=signals(3,:);a=signals(4,:);theta=signals(5,:); subplot(4,1,1);plot(t,p);grid on;ylabel('λÖÃ(m)');subplot(4,1,2);plot(t,v);grid on;ylabel('ËÙ¶È(m/s)');subplot(4,1,3);plot(t,a);grid on;ylabel('¼ÓËÙ¶È(m/s2)');subplot(4,1,4);plot(t,theta);grid on;ylabel('½Ç¶È(¶È)'); 14.1 clear all load car.mat %½«µ¼Èëµ½car.matÖеķÂÕæʵÑéÊý¾Ý¶Á³ö t=signals(1,:);x=signals(2,:);theta=signals(3,:);x1=signals(4,:);theta1=signals(5,:); plot(t,x,t,x1);ylabel('С³µÎ»ÖÃ(m)'),grid on;% »æÖÆ¿ØÖÆÁ¦×÷ÓÃϽüËÆÄ£Ðͺ;«È·Ä£ÐÍxµÄµ¥Î»½×Ô¾ÏìÓ¦ÇúÏß figure % »æÖÆ¿ØÖÆÁ¦×÷ÓÃϽüËÆÄ£Ðͺ;«È·Ä£ ÐÍthetaµÄµ¥Î»½×Ô¾ÏìÓ¦ÇúÏß plot(t,theta,t,theta1);ylabel('°Ú½ÇÖµ(rad)'),grid on; 第二章 1>>x=[15 22 33 94 85 77 60] >>x(6)>>x([1 3 5])>>x(4:end)>>x(find(x>70))2>>T=[1-2 3-4 2-3];>>n=length(T);>>TT=T';>>for k=n-1:-1:0 >>B(:,n-k)=TT.^k;>>end >>B >>test=vander(T)3>>A=zeros(2,5);>>A(:)=-4:5 >>L=abs(A)>3 >>islogical(L)>>X=A(L)4>>A=[4,15,-45,10,6;56,0,17,-45,0] >>find(A>=10&A<=20)5>>p1=conv([1,0,2],conv([1,4],[1,1]));>>p2=[1 0 1 1];>>[q,r]=deconv(p1,p2);>>cq='商多项式为 ';cr='余多项式为 ';>>disp([cq,poly2str(q,'s')]),disp([cr,poly2str(r,'s')])6>>A=[11 12 13;14 15 16;17 18 19];>>PA=poly(A)>>PPA=poly2str(PA,'s')第三章 1>>n=(-10:10)';>>y=abs(n);>>plot(n,y,'r.','MarkerSize',20)>>axis equal >>grid on >>xlabel('n')2>>x=0:pi/100:2*pi;>>y=2*exp(-0.5*x).*sin(2*pi*x);>>plot(x,y),grid on;3>>t=0:pi/50:2*pi;>>x=8*cos(t);>>y=4*sqrt(2)*sin(t); >>z=-4*sqrt(2)*sin(t);>>plot3(x,y,z,'p');>>title('Line in 3-D Space');>>text(0,0,0,'origin');>>xlabel('X'),ylable('Y'),zlable('Z');grid;4>>theta=0:0.01:2*pi;>>rho=sin(2*theta).*cos(2*theta);>>polar(theta,rho,'k');5>>[x,y,z]=sphere(20);>>z1=z;>>z1(:,1:4)=NaN;>>c1=ones(size(z1));>>surf(3*x,3*y,3*z1,c1);>>hold on >>z2=z;>>c2=2*ones(size(z2));>>c2(:,1:4)=3*ones(size(c2(:,1:4)));>>surf(1.5*x,1.5*y,1.5*z2,c2);>>colormap([0,1,0;0.5,0,0;1,0,0]);>>grid on >>hold off 第四章 1>>for m=100:999 m1=fix(m/100);m2=rem(fix(m/10),10);m3=rem(m,10);if m==m1*m1*m1+m2*m2*m2+m3*m3*m3 disp(m)end end M文件: function[s,p]=fcircle(r)s=pi*r*r;p=2*pi*r;主程序: [s,p]=fcircle(10)3>>y=0;n=100;for i=1:n y=y+1/i/i;end >>y M文件: function f=factor(n)if n<=1 f=1;else f=factor(n-1)*n;end 主程序: >>s=0;for i=1:5 s=s+factor(i);end >>s 5>>sum=0;i=1;while sum<2000 sum=sum+i;i=i+1;end;>>n=i-2 6 for循环M文件: function k=jcsum(n)k=0;for i=0:n k=k+2^i;end 主程序: >>jcsum(63) While循环M文件: function k=jcsum1(n)k=0;i=0;while i<=n k=k+2^i;i=i+1;end 主程序: >>jcsum1(63)第五章 1>>A=[2,1,-5,1;1,-5,0,7;0,2,1,-1;1,6,-1,-4];>>b=[13,-9,6,0]';>>x=Ab M文件: function f=fxyz(u)x=u(1);y=u(2);z=u(3);f=x+y.^2./x/4+z.^2./y+2./z;主程序: [U,fmin]=fminsearch('fxyz',[0.5,0.5,0.5])3>>X=linspace(0,2*pi,50);>>Y=sin(X);>>P=polyfit(X,Y,3)>>AX=linspace(0,2*pi,50);>>Y=sin(X);>>Y1=polyval(P,X)>>plot(X,Y,':O',X,Y1,'-*')4>>x=0:2.5:10;>>h=[0:30:60]';>>T=[95,14,0,0,0;88,48,32,12,6;67,64,54,48,41];>>xi=[0:0.5:10];>>hi=[0:10:60]';>>temps=interp2(x,h,T,xi,hi,'cubic');>>mesh(xi,hi,temps);第六章 1>>syms x >>y=finverse(1/tan(x))2>>syms x y >>f=1/(1+x^2);g=sin(y);>>fg=compose(f,g)3>>syms x >>g=(exp(x)+x*sin(x))^(1/2);>>dg=diff(g)4>>F=int(int('x*exp(-x*y)','x'),'y')5>>syms x >>F=ztrans(x*exp(-x*10))6>>a=[0 1;-2-3];>>syms s >>inv(s*eye(2)-a);7>>f=solve('a*x^2+b*x+c')8>>f=solve('x+y+z=1','x-y+z=2','2*x-y-z=1')9>>y=dsolve('D2y+2*Dy+2*y=0','y(0)=1','Dy(0)=0')>>ezplot(y),grid on 10>>a=maple('simplify(sin(x)^2+cos(x)^2);')11>>f=maple('laplace(exp(-3*t)*sin(t),t,s);') 12>>syms t x >>F=sin(x*t+2*t);>>L=laplace(F)第七章 第八章 1-1>>h=tf([5,0],[1,2,2])1-2>>s = tf('s');>>H = [5/(s^2+2*s+2)];>>H.inputdelay =2 1-3>>h=tf([0.5,0],[1,-0.5,0.5],0.1)2>>num=2*[1,0.5];den=[1,0.2,1.01];>>sys=tf(num,den)>>[z,p,k]=tf2zp(num,den);>>zpk(z,p,k)>>[A,B,C,D]=tf2ss(num,den);>>ss(A,B,C,D)3 >>num=[1,5];den=[1,6,5,1];ts=0.1;>>sysc=tf(num,den);>>sysd=c2d(sysc,ts,'tustin') >>r1=1;r2=2;c1=3;c2=4;>>[A,B,C,D]=linmod('x84');>>[num,den]=ss2tf(A,B,C,D);>>sys=tf(num,den)5>>A=[1,1,0;0,1,0;0,0,2];B=[0,0;1,0;0,-2];>>n=size(A)>>Tc=ctrb(A,B);if n==rank(Tc)disp('系统完全能控');else disp('系统不完全能控');end 第九章 1>>num=[2,5,1];den=[1,2,3];>>bode(num,den);grid on;>>figure;>>nyquist(num,den);2>>num=5*[1,5,6];den=[1,6,10,8];>>step(num,den);grid on;>>figure;>>impulse(num,den);grid on;3>>kosi=0.7;wn=6;>>num=wn^2;den=[1,2*kosi*wn,wn^2];>>step(num,den);grid on;>>figure;>>impulse(num,den);grid on;4 M文件: function [rtab,info]=routh(den)info=[];vec1=den(1:2:length(den));nrT=length(vec1);vec2=den(2:2:length(den)-1);rtab=[vec1;vec2, zeros(1,nrT-length(vec2))];for k=1:length(den)-2, alpha(k)=vec1(1)/vec2(1);for i=1:length(vec2), a3(i)=rtab(k,i+1)-alpha(k)*rtab(k+1,i+1); end if sum(abs(a3))==0 a3=polyder(vec2);info=[info,'All elements in row ',...int2str(k+2)' are zeros;'];elseif abs(a3(1)) rtab=[rtab;a3, zeros(1,nrT-length(a3))];vec1=vec2;vec2=a3;end 主程序: >>den=[1,2,8,12,20,16,16];>>[rtab,info]=routh(den)>>a=rtab(:,1)if all(a>0)disp('系统是稳定的');else disp('系统是不稳定的');end 5>>num=7*[1,5];den=conv([1,0,0],conv([1,10],[1,1]));>>[gm,pm,wg,wc]=margin(num,den)第十章 M文件: function varargout=rg_lead(ng0,dg0,s1)if nargout==1 ngv=polyval(ng0,s1);dgv=polyval(dg0,s1);g=ngv/dgv;thetal=pi-angle(g);zc=real(s1)-imag(s1)/tan(thetal);t=-1/zc;varargout{1}=[t,1];elseif nargout==2 ngv=polyval(ng0,s1);dgv=polyval(dg0,s1);g=ngv/dgv;theta=angle(g);phi=angle(s1);if theta>0 phi_c=pi-theta;end if theta<0;phi_c=-theta end theta_z=(phi+phi_c)/2;theta_p=(phi-phi_c)/2;z_c=real(s1)-imag(s1)/tan(theta_z);p_c=real(s1)-imag(s1)/tan(theta_p);nk=[1-z_c];varargout{2}=[1-p_c];kc=abs(p_c/z_c);if theta<0 kc=-kc end varargout{1}=kc*nk;else error('输出变量数目不正确!');end 主程序: >> ng0=[1];dg0=10000*[1 0-1.1772];>>g0=tf(ng0,dg0);%满足开环增益的为校正系统的传递函数 >>s=kw2s(0.7,0.5)%期望的闭环主导极点 >>ngc=rg_lead(ng0,dg0,s);>>gc=tf(ngc,1)>>g0c=tf(g0*gc);>>rlocus(g0,g0c);>>b1=feedback(g0,1);%未校正系统的闭环传递函数 >>b2=feedback(g0c,1);%校正后系统的闭环传递函数 >>figure,step(b1,'r--',b2,'b');grid on %绘 2 M文件: function [ngc,dgc,k]=rg_lag(ng0,dg0,KK,s1,a)ngv=polyval(ng0,s1);dgv=polyval(dg0,s1);g=dgv/ngv;k=abs(g);%期望主导极点处的根轨迹增益 beta=k/KK;[kosi1,wn1]=s2kw(s1);zc=-wn1*sin(a*pi/180)/sin(pi-atan(sqrt(1-kosi1^2)/kosi1)-(a*pi/180));%利用正弦定理 pc=beta*zc;ngc=beta*[1,-zc];dgc=[1,-pc];主程序: >>KK=20;s1=-2+i*sqrt(6);a=1 >>ng0=[10];dg0=conv([1,0],[1,4]);>>g0=tf(ng0,dg0);>>[ngc,dgc,k]=rg_lag(ng0,dg0,KK,s1,a);>>gc=tf(ngc,dgc)>>g0c=tf(KK*g0*gc);>>b1=feedback(k*g0,1);>>b2=feedback(g0c,1);>>step(b1,'r--',b2,'b');grid on M文件: function [ngc,dgc,k]=rg_lag(ng0,dg0,KK,s1,a)ngv=polyval(ng0,s1);dgv=polyval(dg0,s1);g=dgv/ngv;k=abs(g);%期望主导极点处的根轨迹增益 beta=k/KK;[kosi1,wn1]=s2kw(s1);zc=-wn1*sin(a*pi/180)/sin(pi-atan(sqrt(1-kosi1^2)/kosi1)-(a*pi/180));%利用正弦定理 pc=beta*zc;ngc=beta*[1,-zc];dgc=[1,-pc];主程序: >>KK=128;s1=-2+i*2*sqrt(3);a=2 >>ng0=[10];dg0=conv([1,0],conv([1,2],[1,8]));>>g0=tf(ng0,dg0);>>[ngc,dgc,k]=rg_lag(ng0,dg0,KK,s1,a);>>gc=tf(ngc,dgc)>>g0c=tf(KK*g0*gc);>>rlocus(g0,g0c);>>b1=feedback(k*g0,1);>>b2=feedback(g0c,1);>>figure,step(b1,'r--',b2,'b');grid on 4 M文件: function [ngc,dgc]=lead4(ng0,dg0,KK,Pm,w)[mu,pu]=bode(KK*ng0,dg0,w);[gm,pm,wcg,wcp]=margin(mu,pu,w);alf=ceil(Pm-pm+5);phi=(alf)*pi/180;a=(1+sin(phi))/(1-sin(phi)), dbmu=20*log10(mu);mm=-10*log10(a);wgc=spline(dbmu,w,mm), T=1/(wgc*sqrt(a)), ngc=[a*T,1];dgc=[T,1];主程序: >>ng0=[1];dg0=conv([1,0,0],[1,5]);>>g0=tf(ng0,dg0);>>w=logspace(-3,3);>>KK=1;Pm=50;>>[ngc,dgc]=lead4(ng0,dg0,KK,Pm,w);>>gc=tf(ngc,dgc);g0c=tf(KK*g0*gc);>>bode(KK*g0,w);hold on,bode(g0c,w);grid on,hold off >>[gm,pm,wcg,wcp]=margin(g0c)>>Kg=20*log10(gm)>>g1=feedback(g0c,1);>>bode(g1),grid on, >>[mag,phase,w]=bode(g1);>>a=find(mag<=0.707*mag(1));>>wb=w(a(1)) >>max(mag)>>b=find(mag==max(mag))>>wr=w(b)5 M文件: function [ngc,dgc]=fg_lead_pm(ng0,dg0,Pm,w)[mu,pu]=bode(ng0,dg0,w);%计算原系统的对数频率响应数据 [gm,pm,wcg,wcp]=margin(mu,pu,w);%求取原系统的相角裕度和剪切频率 alf=ceil(Pm-pm+5);%计算控制器提供的最大超前角度,phi=(alf)*pi/180;%将最大超前角转换为弧度单位 a=(1+sin(phi))/(1-sin(phi));%计算a值 dbmu=20*log10(mu);%系统的对数幅值 mm=-10*log10(a);%wm处的控制器对数幅值 wgc=spline(dbmu,w,mm);%差值求取wm,认为wm=wc T=1/(wgc*sqrt(a));%计算T ngc=[a*T,1];dgc=[T,1];主程序: >>KK=40;Pm=50;>>ng0= KK *[1];dg0=conv([1,0],conv([1,1],[1,4]));>>g0=tf(ng0,dg0);>>w=logspace(-2,4);>>[ngc,dgc]=fg_lead_pm(ng0,dg0,Pm,w)>>gc=tf(ngc,dgc),g0c=tf(g0*gc);>>b1=feedback(g0,1);b2=feedback(g0c,1);>>step(b1,'r--', b2,'b');grid on >>figure, bode(g0,'r--',g0c,'b',w), grid on, >>[gm,pm,wcg,wcp]=margin(g0c), Km=20*log10(gm) 求解:1.模拟比赛车道曲线和选手速度曲线; 2.估计车道长度和所围区域面积; 3.分析车道上相关路段的路面状况(用不同颜色或不同线型标记出来); 4.对参加比赛选手提出合理建议。 四.合理建议 1.通过赛道曲线可知,选手所经过的赛道上不平整的地方很多,如果平常不多多尝试不同的路况会造成比赛时的很多突发情况,都会造成选手的成绩受到很大的干扰,甚至退赛等严重的后果。所以我建议选手平时要多在不同类型的路况上练习,以增强应变能力,取得更好的成绩。 2.选手的速度分配有一些不合理,在平直的沙土路段应该全力加速,以最快速度通过这个路段,以达到最好的比赛效果。在经过坑洼碎石路时尽量保持一个恒定的速度,因为如果速度一直在变化,很容易在这种路段上陷入或者熄火,造成比赛时的极大不利。将加速尽量用在沙土路等摩擦力较大的路上,以免耗费太多的动力。我们需要将动力的效率尽量的提高。 五.实验的总结 我认为,本实验的主要目的在于让我们掌握对三次样条差值来模拟离散点表示的曲线的运用,我认为我们已经基本掌握,并且我们也掌握了用梯形法求不规则封闭图形的面积的方法,除此之外,本实验中还有考查所学知识外的方面,就是画v-t图。 事实上,根据题目所给的条件,并不能准确地画出v-t图,所以需要找到一种方法,来尽量 使结果接近真正的情况。我采用了中值的方法,这是我想到的一种比较有效的方法,并且在使用这种方法时,又运用到了三次样条差值的方法,使我对三次样条差值法理解地更加深刻,并且能更加灵活地运用。 所以我发现三次样条差值的方法运用的范围十分广泛,不仅是对路径的拟合,许多已知离散点,对应的函数连续变化的问题也可以用此方法解决,比如已知一天中几个离散时间点对应的气温,估计出一天气温的变化趋势,就可以用此方法。 最重要的是,我感到了数学建模的重要性,我发现原来生活中不少类似的问题,都是用数学建模的方法解决的。第四篇:控制系统的MATLAB仿真与设计课后答案
第五篇:matlab实验报告