《Matlab语言》实验(报告)题库
1、TDOA信号分析类
(1)已给出一段事先采集的信号,该信号为进行TDOA定位使用的基本信号,其格式为GPS+IQ + GPS+IQ …,即每包数据由GPS头文件和IQ信号构成,GPS头文件共58B,其数据格式为
$HT,20130114,084556,N3606.82273,E10343.59311,M1538.7,11,0*,每包IQ数据共8192B,其数据格式为I0,Q0,I1,Q1,I2,Q2…,I2047,Q2047,即I数据2048点、Q数据2048点交叉出现。换言之,每包数据实际内容为:$HT,20130114,084556,N3606.82273,E10343.59311,M1538.7,11,0* I0 Q0 I1 Q1 I2 Q2 … I2047 Q2047,程序前期已实现读取IQ数据文件并进行关键信息读取分解,请根据程序提醒,完成相关功能(数据及程序见“1-实际IQ信号实验”文件夹)。
2、TDOA时差估计仿真类
(2)在TDOA定位技术中,时差估计是一个非常重要的环节。自行仿真2个具有一定时差的信号,用广义互相关法(GCC)计算该2个信号的时差,并与设定时差进行对比分析(需给出详细过程及适当的仿真图)。
(3)在TDOA定位技术中,时差估计是一个非常重要的环节。自行仿真2个具有一定时差的信号,用互模糊函数法计算该2个信号的时差,并与设定时差进行对比分析(需给出详细过程及适当的仿真图)。
(4)在TDOA定位技术中,时差估计是一个非常重要的环节。自行仿真2个具有一定时差的信号,用广义互相关(GCC)结合多项式拟合方法计算该2个信号的时差,并比较广义互相关法估计时差和广义互相关结合多项式拟合方法估计时差的结果,进行分析(需给出详细过程及适当的仿真图)。
(5)在TDOA定位技术中,时差估计是一个非常重要的环节。自行仿真2个具有一定时差的信号,自选方法计算该2个信号的时差,并与设定时差进行对比分析(需给出详细过程及适当的仿真图)。
3、TDOA时差估计实测类
下面三题使用“3-TDOA实测类-数据”。
(6)在TDOA定位技术中,时差估计是一个非常重要的环节。根据提供的TDOA数据,用广义互相关(GCC)计算该2路信号的时差,统计每包数据计算结果,并分析之(需给出详细解决过程及适当的分析图)。
(7)在TDOA定位技术中,时差估计是一个非常重要的环节。根据提供的TDOA数据,用广义互相关(GCC)结合多项式拟合方法计算该2路信号的时差,比较广义互相关法估计时差和广义互相关结合多项式拟合方法估计时差的结果,并分析之(需给出详细解决过程及适当的分析图)。
(8)在TDOA定位技术中,时差估计是一个非常重要的环节。根据提供的TDOA数据,自选方法计算该2路信号的时差,统计每包数据计算结果,并分析之(需给出详细解决过程及适当的分析图)。
4、信号频域分析类
(9)生成一个带有噪声的正弦波信号,信号的频率、幅度,噪声的幅度自行设定。(将带有噪声的正弦信号放入for循环中,利于pause,实现噪声动态变化效果,并在for循环内画出其时域图和幅频图(采样率和采样点数自行设定),观察动态变化情况),最后总结系统采样率和采样点数对仿真信号效果的影响。
(10)自行生成一段时域信号,要求在不同的时间,信号具有不同的频率(即非平稳信号),用短时傅里叶变换对其进行时频分析,并呈现时频分析结果。
(11)自行生成一段时域信号,要求在不同的时间,信号具有不同的频率(即非平稳信号),用小波变换对其进行时频分析,并呈现时频分析结果。
5、信号调制解调类
(12)自行产生正弦信号作为基带信号、载波,试合成AM信号,在AM信号上加高斯白噪声,并将AM信号解调,画出各信号(基带信号、载波、合成的AM信号、解调后的基带信号)时域图及频谱图,并对比总结解调效果。
(13)自行产生正弦信号作为基带信号、载波,试合成FM信号,在FM信号上加高斯白噪声,并将FM信号解调,画出各信号(基带信号、载波、合成的FM信号、解调后的基带信号)时域图及频谱图,并对比总结解调效果。
(14)自行产生一个正弦信号,以此为载波,生成一段2ASK信号,其中数字序列随机生成,画出数字基带序列、正弦信号、2ASK信号的时域图。
(15)自行产生两个不同频率的正弦信号,以此为载波,生成一段2FSK信号,其中数字序列随机生成,画出数字基带序列、两个正弦信号、2FSK信号的时域图。
(16)用Matlab模拟通信系统收发过程,要求:发射站发射FM调制信号,接收站接收该信号,并进行解调,系统参数及传播环境/过程参数自定。
6、信号分离类
(17)自行生成一个含有3个频率(信号频率相近,如200Hz,210Hz,300Hz)的信号,其他参数自定,直接用FFT难以将不同频率信号,尤其频率较近的信号进行分离,试用AR等高阶功率谱方法,将该信号进行分离,并绘制分离前后的频谱图(即信号的FFT图、信号的AR分离图)。
(18)自行生成一个含有不同频率或不同相位的信号,直接用FFT难以将不同频率信号,尤其频率较近或同频率不同相位的信号进行分离,试用MUSIC方法,将该信号进行分离,并绘制分离前后的频谱图(即原信号的FFT图、信号的MUSIC分离图),并总结现象。
(19)自行产生一段含有低频、高频和噪声成分的信号,尝试设计不同的滤波器,将高频信号及噪声滤掉,并绘制滤波前后的信号对比图(含时域、频域图)。
7、深度学习类
(20)设计一个神经网络(可以是任意类型的神经网络),对手写数字进行分类,要求小组内每个成员至少每人手写一个数字,然后识别,并分析识别准确率。
(21)自行找一个预训练好的网络,对日常生活物品进行识别,要求小组内每个成员拍照1~2个物品,通过网络进行识别,并分析识别效果。