第一篇:变换工艺总结
变换工艺总结
一、变换工艺生产原理
(一)一氧化碳变换反应的特点 1.一氧化碳变换反应的化学方程式为
0CO+H2O(g)CO2+H2HR-41.19kJ/mol
(1-1)
可能发生的副反应:
CO+H2C+ H2O
(1-2)CO+3H2CH4+ H2O
(1-3)
2.一氧化碳变换反应具有如下特点
1)是可逆反应,即在一氧化碳和水蒸气反应生成二氧化碳和氢气的同时,二氧化碳和氢气也会生成一氧化碳和水。
2)是放热反应,在生成二氧化碳和氢气的同时放出热量,反应热的大小与反应温度有关。
HR-41868-1.2184T1.191110-3-4.062510-6T2 kJ/kmol
T-温度,K 3)该反应是湿基气体体积不变、干基气体体积增加的反应。4)反应需要在有催化剂存在的条件下进行,对反应1-1要有良好的选择性。同时,在催化剂的作用下,一氧化碳变换反应进行所需要的能量大大降低,反应速度因此而加快。
(二)一氧化碳变换反应的化学平衡
1.平衡常数:平衡常数用以衡量一定条件下可逆反应进行的限度。一氧化碳变换反应的平衡常数与反应体系中各组分的分压有关,具体计算方法如下:
Kp**pCOpH22pp*CO*H2O*y*yCO2H2yy*CO*H2O(1-4)
由于一氧化碳变换反应是放热,故平衡常数随温度的降低而增大。因而降低温度有利于变换反应的进行,变换气中残余的一氧化碳含量降低。一氧化碳变换反应是等体积的反应,故压力低于5MPa时,可不考虑压力对平衡常数的影响。
在变换温度范围内,平衡常数用下面简化式计算:
lnKp4757T-4.3
3(1-5)
2.变换率与平衡变换率:变换率定义为已变换的一氧化碳的量与变换前一氧化碳的量之百分比。而反应达平衡时的变换率为平衡变换率,其值为一定操作条件下一氧化碳变换反应可能达到的最大的极限。
在工业生产中由于受到各种条件的制约,反应不可能达到平衡,故实际变换率不等于平衡变换率,通过测量反应前后气体中一氧化碳的体积百分数(干基)来计算变换率,具体表达式如下:
a-a'(1-6)x'a(1a)
a—变换前气体中一氧化碳体积百分数(干基); a’—变换后气体中一氧化碳体积百分数(干基)。
由(1-5)和(1-4)式可以看出平衡变换率的影响因素: 变换温度:降低变换体系温度,平衡常数增大,故平衡一氧化碳含量降低,平衡变换率增加。变换压力:升高变换压力,平衡常数不变,故平衡一氧化碳含量不变,平衡变换率不变。
H2O/CO比:体系中增加H2O,即H2O/CO比高有利于反应平衡向生成氢气的方向移动,平衡变换率增加,平衡一氧化碳含量降低。但H2O/CO比过高,平衡变换率趋于平坦,经济上不合理。
原料气组成:原料气一氧化碳含量增加,二氧化碳减少,平衡变换率增加。
综上所述,生产中提高平衡变换率的措施为:降低变换温度、适当提高H2O/CO比、减少二氧化碳的含量。
(三)一氧化碳变换的反应机理
一氧化碳变换反应气固相催化反应。一氧化碳变换反应与一般气固催化反应一样,总过程由下列几个步骤连续组成:
a.反应物从气相主体扩散到固体催化剂的外表面;b.反应物从催化剂外表面扩散到内表面;c.反应物在催化剂内表面的吸附、表面上的化学反应以和反应产物从内表面上的脱附;d.产物由催化剂的内表面扩散至催化剂的外表面;e.产物由催化剂外表面扩散至气相主体。
其中a和b步骤为外扩散过程,d和e步骤为内扩散过程,c步骤为化学动力学过程。
反应过程若包括了反应气体流动状况、传质及传热等物理过程(即内外扩散过程)对催化反应速度的影响,其动力学为宏观动力学。而在催化剂表面上进行的化学反应动力学则为本征动力学。
研究表明,在一氧化碳变换的操作条件能保证气体与催化剂外表面之间的传递过程足够快,即外扩散的影响可忽略不计,以下将分别讨论内扩散和本征化学反应动力学过程。
一氧化碳在催化剂表面上进行的变换反应机理,普遍认为是按如下过程进行的:
水蒸气分子被催化剂的活性表面吸附,并分解为氢和吸附态氧原子,氢进入气相,吸附态氧在催化剂表形成吸附层
一氧化碳分子碰撞到氧原子吸附层而生成二氧化碳,并离开催化剂表面
上述过程表示为:
[K]+H2O(g)=[K]O+H快
[K]O+CO=[K]+CO2
慢,控制步骤 [K]:催化剂活性中心 [K]O:为吸附态氧
(四)一氧化碳变换反应速度的影响因素 一氧化碳变换反应本征动力学方程式如下:
lmnq rcokpCOpHpp(1-)OCOH222nq或rcokpylCOym
(1-7)(1-)HOyCOyH222=pCO2pH2KppCOpH2OyCO2yH2KpyCOyH2O
k: 速度常数,kmol/(kghMPa)k‘: 速度常数,kmol/(kgh)p、pi:总压、各组分分压,MPa l、m、n、q:幂指数
=l+m+n+q
由该式可知一氧化碳变换反应速度的影响因素:
变换压力:当温度和气体组成一定时,反应速度随反应总压增大而增大,研究发现,这是由于压力对催化剂活性有显著影响。所以升高变换压力使一氧化碳变换的速度加快。
H2O/CO比:在H2O/CO较低时,一氧化碳变换速度随之增加而加快,然后趋于平缓。这与H2O/CO对一氧化碳平衡变换率影响是一致的。
变换温度:气体组成和变换压力一定时,温度对反应速度的影响体现在k、KP随温度的变化中。在较低温度范围内,KP很大,温度提高,k显著提高,故一氧化碳的变换速度随变换温度提高而增大。但随温度逐渐升高,可逆放热的平衡常数KP降低,一氧化碳的变换速度随变换温度升高而减少。因此,有一最适宜变换温度,在这一温度下,一氧化碳变换速度最快,一氧化碳变换率最大,且一氧化碳变换率增大,最适宜变换温度是下降的。
(五)内扩散的影响
在工业条件下,当使用当量直径为2-10mm或更大的催化剂颗粒时,变换反应的内扩散是严重的,在一定程度上降低了反应速度。因此,一氧化碳变换反应过程的速度应是在本征反应速度的基础上计入内表面利用率的宏观反应速度。
对于同一尺寸的催化剂在相同压力下,温度升高,内表面利用率下降;在相同温度和压力下,小颗粒的催化剂具有较高的内表面利用率;而对同一尺寸的催化剂在相同温度下,内表面利用率随压力的增加而迅速下降。
(六)一氧化碳变换催化剂
20世纪60年代以前,一氧化碳变换催化剂主要以铁铬系列,操作温度较高,变换后一氧化碳含量较高。60年代以后,出现铜锌催化剂系列,操作温度较低,变换后一氧化碳较低,但抗硫毒能力较差。随后,人们发现钴钼系列变换催化剂不但变换温度较低,变换后一氧化碳低,而且抗硫毒能力极强,对水汽比也无要求。故本项目采用钴钼系列低变催化剂。
1.工业上对催化剂的一般要求
高的催化活性:催化剂的活性是表示催化剂加快反应速度能力的一种度量。高活性,即在相同条件下,能使反应具有较快的速度,对于可逆反应来说可缩短达到平衡的时间。
好的选择性:选择性是指反应能同时发生几种不同的反应时,催化剂只能加速希望发生的某一反应。如钴钼仅仅加速一氧化碳与水蒸气生成氢气和二氧化碳的反应,而不能加速甚至能抑制甲烷化反应和析炭反应。
活性温度低:活性温度也称操作温度,是指起始温度与催化剂耐热温度之间的范围。活性温度低,可在较低温度下进行,提高一氧化碳变换率,减少反应物预热,降低反应设备材质要求,简化热量回收装置。
2.催化剂的基本组成及性能 催化剂通常由活性组分、促进剂和载体组成。活性组分是催化剂中起决定作用的物质,促进剂是加入到催化剂中的少量物质,它本身没有活性或活性很小,加入它是提高催化剂的活性、选择性或稳定性,载体是为催化剂活性组分提供附着的多孔物质。主要有Fe-Cr、Cu-Zn、Co-Mo三大催化剂系列
Fe-Cr系变换催化剂的变换工艺,操作温度范围为320~500℃,称为中、高温变换工艺。其操作温度较高,在高水气比下经变换后变换气体仍含有3%左右的CO。Fe-Cr系变换催化剂的抗硫毒能力差,蒸汽消耗较高,有最低水气比要求。
Cu-Zn系变换催化剂的变换工艺,操作温度范围为190~280℃,称为低温变换工艺。这种工艺要求变换温升较小,通常串联在中、高温变换工艺之后,进一步将气体中3~5%左右的CO降低到0.3%以下。Cu-Zn系变换催化剂的抗硫毒能力极差,适用于总硫含量低于0.1ppm的气体。
Co-Mo系变换催化剂的变换工艺,操作温度范围为240~480℃,称为耐硫宽温变换工艺,宽温变换催化剂操作温区较宽,原料气经变换后CO可降至1.0%以下;Co-Mo系变换催化剂的抗硫毒能力极强,对总硫含量无上限要求。
在以煤为原料制取合成气工艺中,依据各煤种、煤气化工艺及上下游流程配置的特点,可以采用Fe-Cr非耐硫高温变换工艺或Co-Mo系耐硫变换工艺。非耐硫变换气体要先脱硫,由于脱硫工艺要求在常温下进行,故流程会出现“冷热病”,进入变换需补加蒸汽,增加消耗。而采用耐硫变换时,气体经提温后可直接进入变换,流程短,能耗低。
开发Co-Mo系催化剂的目的就是为了满足重油、煤气化制化工产品流程中可以将含硫气体直接进行CO变换,再脱硫脱碳的需要,从而简化工艺路线。目前国内的Co-Mo系变换催化剂发展已相当成熟,并已取得国内同类规模项目的应用业绩,能够满足本项目的要求。因此,本项考虑选择国内Co-Mo系变换催化剂配置变换流程。
3.催化剂的硫化
催化剂中的钴和钼是以氧化态形式存在的,使用前必须进行硫化,使氧化钴和氧化钼完全转化为硫化钴和硫化钼。为了保持活性组分处于稳定状态,正常操作时气体中应有一定的总硫含量。
对催化剂进行硫化,可用含氢的二硫化碳,也可直接用硫化氢或用含硫化氢的原料气。
用含氢的二硫化碳硫化催化剂的化学式如下: 首先进行的是二硫化碳的氢解反应
CS2+4H2=CH4+2H2S
+240.6KJ/mol
(2-8)然后是催化剂的硫化反应
CoO+H2SCoS+H2O
+13.4KJ/mol
(2-9)MoO3+2H2S+H2MoS2+3H2O
+48.1KJ/mol
(2-10)直接用硫化氢硫化催化剂的化学式为(2-9)和(2-10)用含硫化氢的原料气硫化催化剂的化学式(2-9)和(2-10),并且除上述反应外,还可能产生如下副反应:
CO+H2OCO2+H+39.7KJ/mol CO+3H2CH4+H2O
+214.6KJ/mol COS+H2OCO2+H2S
+35.2KJ/mol 所以使用原料气硫化必须注意避免副反应的发生,尤其在压力较高的情况下,甲烷化反应的可能性很高。为了避免副反应发生,或者已经发生了,一般往原料气中加氮气以降低氢含量和CO分压的方法来限制温度超过允许值。
上述硫化反应都是放热反应,个别的(甲烷化反应)是强放热反应,且只有达到一定温度硫化反应才能进行。硫化操作注意以下几方面的问题:
硫化温度的控制:温度过低,如室温,不会发生氢解反应,加入的二硫化碳在催化剂表面大量聚集,当温度升到200℃时,氢解反应和硫化反应都急骤发生,温度暴涨,温度高于500℃,引起活性组分微晶增大甚至烧结。操作温度过高,如大于300℃,因此时会发生还原反应生成金属钴,金属钴对甲烷化反应有很强的催化作用,再叠加上硫化反应,床层可能出温度暴涨。另外,粗原料气中氧含量过高、CS2加入过多过快或开始加入时床层温度过高或过低、温度调节不当,发生强放热的甲烷化反应,也将导致温度暴涨。所以,在床层温度为200℃时加入二硫化碳,因为二硫化碳的氢解反应在大约200℃时方可较快发生,即使加入较高浓度的二硫化碳,只要控制适当,也不会温度暴涨。
硫化物添加的速度:以H2S、COS、CS2或其它化合物形式存在的硫加入到催化剂中,应按一定的速度添加,避免加入过快,硫化反应放热量大,温度暴涨。如每吨催化剂加入60kg,添加时间应大于36h。
硫化终点的确定:硫化的终点应由反应炉出口的硫化氢浓度的增加来决定。在装置内催化剂是否完全硫化或硫化程度在一个较低的水平是无关紧要的,未完全硫化的催化剂影响不是很大,因为在正常过程中催化剂可以继续吸收硫。
催化活性的稳定:因上述硫化反应可逆反应,所以,为了保持硫化钴和硫化钼的稳定状态,正常操作中原料气中总硫不应低于0.1g/m3。
4.催化剂的反硫化
反硫化是指催化剂组分的MoS2和CoS的水解,反硫化是催化剂失活的重要原因。反硫化反应如下:
MoS2+2H2O=MoO2+2H2S CoS+H2O=CoO+H2
因催化剂活性组分反硫化反应是可逆吸热的,降低温度、增加硫化氢含量或降低水蒸气含量,有利于抑制反硫化反应,故抑制反硫化的因素如下:
操作温度:在相同汽气比的条件下,温度升高,易发生反硫化反应。此时,硫化氢浓度必须相应升高才能保持催化剂的活性,否则就会出现反硫化现象。
硫化氢浓度:在相同的温度条件下,汽气比增大,易发生反硫化反应,硫化氢浓度必须相应升高才能保持催化剂的活性,否则就会出现反硫化现象。当温度,汽气比一定时,开始使MoS2发生水解反应的H2S浓度为最低硫化氢含量,当变换炉出口温度升高时,相应的最低硫化氢含量也升高。
(七)操作条件
一氧化碳变换工序的操作条件包括:变换压力、变换温度、空间速度、H2O/CO比和最终一氧化碳变化率等。所选择的操作条件必须满足产量高、消耗定额低、工艺流程及设备结构简单、操作方便及安全可靠等要求。
1.变换压力
压力较低时,变换压力对变换反应的化学平衡几乎无影响,但变换压力对反应速度有影响,反应速度随压力的增加而增大,考虑到变换压力对系统动力消耗和后续操作等影响,一氧化碳变换生产中采用加压变换,其优点如下:
变换器的生产能力较大。这是因为提高压力加快了变换的反应速度,采用较大空速提高催化剂的生产能力。
动力消耗低。因合成甲醇采用较高压力,变换前干原料气体积小于干变换气体积,先压缩干原料气后再进行变换比常压变化后再压缩变换气的动力消耗低。
提高热能回收利用价值。加压变换使得变换气中水蒸气冷凝温度高,提高了过剩蒸汽的回收价值。
加压有利于传热和传质,所以,设备体积小,布置紧凑,设备投资小。生产中采用较高操作压力的缺点是:
需要较高压力的蒸汽,若采用的蒸汽全部靠外界引入,加压变换增大高压蒸汽的负荷。
设备投资大。这是因为较高的操作压力,系统冷凝液的酸度增大,系统腐蚀性增强,对设备的材质和制造技术均提出了较高的要求。
综上所述,加压变换采用较高的压力各有利弊,但优点是主要的,压力选取的出发点是考虑到合成甲醇的工艺特点、工艺蒸汽和压缩机各段的合理配置,现在合成甲醇工业广泛采用加压变换。
2.操作温度
一氧化碳变换操作温度必须控制在催化剂的活性温度范围内,目前工业上所用的钴钼催化剂的活性温度范围大体为200-550℃。
由于变换反应是可逆放热反应,所以,在温度范围,操作温度的高低对一氧化碳变换的结果有一个矛盾,即降低温度有利于提高一氧化碳的平衡转化率,但不利于加快变换反应速度。故在一定空速下存在最适宜的变换温度,使一氧化碳变换速度最快。
最适宜温度恒低于平衡温度。在反应过程中,反应物的组成是不断变化的,显然反应初期,相应物系组成的平衡温度最高,反应末期与物系组成相应的平衡温度最低。故一氧化碳变换率由低到高变化,最适宜温度随之由高向低转变。
实际生产中完全按照最适宜温度曲线操作是不现实的,反应初期,一氧化碳变换率较低,平衡温度较高,已大大超过催化剂允许使用温度范围,而此时,远离平衡,即使离开最适宜温度曲线在较低温度下操作,仍可有较高的反应速度。随反应的进行,一氧化碳变换率增加,反应热增加,适宜温度要求降低,要考虑适当移出热量。
同一催化剂在不同的使用时期,其最适宜温度不同。催化剂在使用初期活性较强,反应温度可以低些;使用中期活性减弱,操作温度要比使用初期提高8-10℃;后期活性衰退,操作温度要比使用中期更高一些。
所以,在实际中生产中一氧化碳变换温度要综合考虑各种因素而确定,变换炉的设计及生产中温度的控制原则是:
应在催化剂活性温度范围内操作,防止超温造成催化剂活性组分因烧结而降低活性,反应开始温度应高于催化剂起始活性温度20℃左右。随着催化剂使用年限的增长,由于中毒、老化等原因,催化剂活性降低,操作温度应适当提高。
尽可能接近最佳反应温度线进行反应。为此,必须从催化剂床层中排出热量,不断降低反应温度,对排出的热量加以合理利用。可采用分段冷却,段数越多,则越接近最佳反应温度线,但流程越复杂,根据原料气中的CO含量,一般多将催化剂床层分为一段、二段或多段。段间进行冷却,冷却的方式有两种,一是间接换热式,用原料气或饱和蒸汽进行间接换热,二是直接冷激式,用原料气、水蒸汽或冷凝液直接加入反应系统进行降温。
对于低变过程,还应特别根据气相中水蒸汽含量确定低变过程的温度下限,操作温度的下限必须高于气体的露点温度20-30℃。这是因为催化剂操作温度较低,而气相中水蒸汽含量又较高,当气体降温进入低变系统时,有可能达到该条件下的露点温度而析出液滴,液滴凝聚于催化剂的表面造成催化剂的破裂粉碎,引起床层阻力增加。注意,露点温度随气体中水蒸汽含量的增加而升高,随水蒸汽分压提高而提高,操作温度的下限也要相应提高。
3.空间速度
一氧化碳变换炉的空间速度是指1立方米的催化剂在1小时内通过的气体体积。该物理量的单位为h-1。增加空间速度,其实就是增加气体通过催化剂床层的速度。空间速度对一氧化碳工序操作的影响可归纳如下:
增加空间速度,气体与催化剂接触时间缩短,出炉气体中一氧化碳含量较高。
增加空间速度,处理气量大,生产强度提高。
增加空间速度,使气体通过催化剂床层的阻力增大,动力消耗增加。
降低空间速度,一氧化碳含量降低,但反应放热量过大,催化床层维持最佳温度难度加大。
空间速度的选取与催化剂的活性有关,活性好,反应速度快,可采用较大空间速度,一般空间速度在600-1500h-1。
4.汽气(H2O/CO)比
汽气比即水蒸汽与干原料气(或其中CO)的体积比,它对生产操作和经济效益都有重要影响。
采用高汽气(H2O/CO)比的优点是: 增加水蒸气用量,从化学平衡角度,有利于提高一氧化碳平衡变换率
增加水蒸气用量,反应初期由于过量的水蒸气对一氧化碳和二氧化碳起到稀释作用,不利于提高反应速度,但反应末期,有利于提高一氧化碳变换的反应速度
增加水蒸气用量,有利于抑制副反应2COC+CO2,CO+3H2CH4+H2O 大量过剩的水蒸汽在绝热反应器中起着热载体的作用,将反应热取出,使得床层温升减小。因此,对CO浓度或原料气中氧含量高者,可提高蒸汽比例,将反应热充分移出避免催化剂烧坏。
采用高汽气(H2O/CO)比的缺点是:
增加蒸汽消耗,这是变换过程中最主要的消耗指标 增加系统阻力或降低生产能力 变换炉内反应温度维持困难
蒸汽比例过大,会减少反应时间,降低变换率
一氧化碳变换过程汽气比确定的原则为:在保证工艺要求的一氧化碳变换率前提下,尽可能降低水蒸气用量,合理回收热能。汽气比确定与原料气CO含量、最终一氧化碳变换率和催化剂活性、变换温度等有关。具体减低水蒸气用量的措施如下:
采用低温活性高的催化剂,使反应在较低的温度下进行,平衡变换率较高,不需要很大的汽气比便可以实现最终一氧化碳变换率
将一氧化碳变换与后续工序脱除残余一氧化碳方法结合考虑,合理确定一氧化碳最终变换率
催化剂床层数要合适,段间冷却良好,注意提高变换系统自产蒸汽量及预热回收热量等措施均可直接或间接降低蒸汽消耗
综上,本项目由于原料气中CO含量较高,变换余热较多,为合理用能,需要进行逐级回收一氧化碳变换热量,故拟采用三段变换,一氧化碳变换采用两段宽温耐硫变换串一段低温耐硫变换工艺。为节省蒸汽消耗,段间采用锅炉给水激冷方法(在淬冷过滤器中,产生蒸汽),采用激冷流程一方面提高变换炉入口水/气比、另一方面降低变换炉入口温度。低温耐硫变换用于调节生产甲醇所需要的CO指标要求。
5.最终一氧化碳变换率 理论上提高变换率的途径有:
降低反应温度,这受到催化剂活性温度限制。增大蒸汽用量,这应当从经济上权衡得失。
变换到一定程度后除去CO2再变换,即变换和脱碳交替进行。这由于流程复杂,投资庞大,在实际生产中很少采用。
从制氢和除去CO角度都需要提高最终一氧化碳变换率,残余一氧化碳含量少,合成甲醇原料的利用率高,甲醇产量得到提高。但最终一氧化碳变换率过高,则要耗用过多蒸汽和催化剂,生产成本加大,而且蒸汽量增加到一定程度,一氧化碳变换率提高不大。
具体最终一氧化碳变换率的确定取决于原料气的来源和后工序的要求,当原料气中含有足够量蒸汽时,可提高一氧化碳变换率,当以液氮洗出去残余CO时,可适当降低变换率的要求。
二、工艺流程
由于变换过程需要消耗大量的水蒸气,通过改进工艺过程以尽量减少蒸汽消耗量对整个生产节能降耗具有重要的意义。而目前对变换工艺的模拟计算仅是在规定转化率的前提下得到水蒸气的消耗,从工艺本身而言,并不能确定最小的蒸汽耗量。目前变换工艺有如下几种流程:
A.水煤气经废热锅炉降温、分离冷凝液后的水煤气全部通过变换炉的流程(称为“全通过流程”),主要采用控制进变换炉的水气比来达到变换的程度以满足合成气对氢碳比的要求。
B.部分水煤气不经过变换,另一部分水煤气直接通过变换炉的流程(称为“纯配气流程”),主要采用控制进变换炉的气量和配气的流量来满足合成气对氢碳比的要求。
C.部分水煤气不经过变换,另一部分水煤气经废热锅炉降温气、分离冷凝液后通过变换炉的流程(称为“废锅-配气流程”),主要采用控制进变换炉的气量和配气的流量来满足合成气对氢碳比的要求。
以上三种流程各有其特点及优缺点。
“全通过流程”最早应用在鲁南化肥厂年产十万吨/年的生产装置(德士古气化),由水煤气废热锅炉降温气、分离冷凝液后的水煤气再进变换炉,其优点为:进变换炉的水煤气相当经过了一次洗涤,进变换炉的水煤气带灰极小、减小变换炉的压降、降低水煤气的水气比、降低反应温度延长催化剂的使用寿命。缺点是水煤气废热锅炉需要设计上留出足够大余量来控制进变换炉的水气比、相对催化剂的需要增加一些;随着气化压力的增加和规模大型化,“全通过流程”中的水煤气废热锅需要极大,为了解决这个问题,出现了配气流程。
“纯配气流程”实际上按照生产合成氨的流程加配气演变而来的,其优点为:需要的催化剂相对最小,缺点是进变换炉的水煤气带灰较多(在变换炉前单独加予变炉也作用不大,这在合成氨生产厂无法解决的通病),增大变换炉的压降、较高的水煤气的水气比、较高的反应温度缩短催化剂的使用寿命;
“废锅-配气流程”实际上是吸取了上述两种流程的优点克服了缺点的流程,其优点为;部分水煤经废热锅炉适当的降温气、分离冷凝液后进变换炉的水煤气相当经过了一次洗涤,进变换炉的水煤气带灰较小,减小变换炉的压降、降低水煤气的水气比、降低反应温度延长催化剂的使用寿命,缺点是需要水煤气废热锅炉,催化剂的相对装填量增加一点。变换工艺流程图详见附图附图
三、生产装置:
宁夏宝丰能源有限公司共有三套水煤气变换装置,采用耐硫低水汽宽温两段配气变换工艺,使用钴钼催化剂(两年一换),操作温度220-480℃,使用工艺包为青岛联信,去年5月原始开车,开车初期由于粗煤气中带灰严重,导致系统阻力增大,阻力最高达到0.9-1.0MPa,后对催化剂进行更换并对气化系统进行工艺优化,目前运行稳定。从技术到设备全部实现国产化。
神华宁煤集团煤炭化学工业公司共有两套水煤气变换装置,采用耐硫宽温变换工艺,使用齐鲁科力生产的催化剂。
陕西中煤榆林能源化工有限公司共有两套水煤气变换装置,采用部分变换工艺,使用工艺包为国内技术,从技术到设备全部实现国产化。目前催化剂已更换一次,第一次使用庄信万丰催化剂,运行了17月后进行更换,目前使用昌邑凯特生产的催化剂。从目前使用情况来看,国产催化剂并不比国外的差。
第二篇:工艺总结
2011年工作总结
进入公司已经有大半年的时间,在公司领导和部门负责人循循善诱的带领及关心支持下,本人在2011取得了不小的进步,较好地协助本部门完成了2011年工作计划。现将2011本人的个人工作情况作总结如下:
一、工作情况:
1、熟悉了解公司各项规章制度
本人于2011年5月进入公司,为了更快更好地融入公司团队,为日后的工作打好基础,我及时对公司的各项规章制度进行全面了解,熟悉了公司优秀的历史背景、发展历程以及企业文化。通过熟悉和了解,我为能进入公司这个团队感到自豪,同时也感到自身的学习压力之大。
2、熟悉项目流程,项目状况
作为工艺人员,熟悉和了解模具及状况对开展工作是相当有利的。为了能更好地进行工作,我多次与相关部门到车间现场,对工艺的进展做更深层次的了解。在掌握第一手资料之后,查阅相关技术文件,对工艺项目的进展完成提供了可靠的依据。
3、与各相关部门的沟通和协调
工艺的研发、进展和完成,离不开公司各相关部门的参与和努力。在公司领导的大力支持和关心下,本人积极参与各相关部门的工艺会议及评审,使工艺进度能按照公司要求顺利进行。
4、工艺文件完成状况
⑴对机加工车间的自制零件的工艺进行改进;
⑵完成了组装车间328C系列与678系列的工艺操作流程的编制,以及一系列的工装夹具,如:压铸炉头的工装夹具、678C进气管安装夹具、678C机器管组件安装夹具、328C进气管组件安装夹具;
⑶完成398系列、698系列、728C面板玻璃粘贴工装的设计正在完成工艺编制。
二、存在的不足以及改进措施
2011年已经结束,回想自己在公司大半年来的工作,虽然工作量大、工作时间长,但收效并不太大,许多工作还有不尽如意之处,总结起来存在的不足主
要有以下几点:
1、缺乏沟通,不能充分利用资源
在编写工艺的过程中,由于本人对多种专业知识比较陌生,性格有较为羞涩,未能积极向其他同事求教,间接造成工作效率降低甚至错误的出现,没能达到优势资源充分利用。在以后的工作中,我会主动加强与其他部门同事的沟通,从而增长各方面知识、提高自身工作能力。
2、缺乏计划性
在工作过程中,特别是工艺文件制作的初期阶段,由于本人没有实现做好完善的计划,导致工作目的不明确,主次矛盾辨别不清,常常事倍功半。在今后的工作中,我会认真制订工作计划,做事加强目的认知,分清主次矛盾,争取能事半功倍取得预期成果。
3、专业知识面狭窄
由于本人专业知识匮乏,对冷冲压、模具以及其它专业知识知之甚少,认识不够到位。在以后的工作过程中,我将提高主观能动性,加强相关专业知识的学习,充分利用公司软硬件资源,争取把本职工作做的更加完美和成功。
三、展望
2011年工作多,任务重,对于刚走出校门的我来说是种挑战。虽然一些工艺文件工作还没有正式完成,但收获也不少。特别是领导塌实的工作作风以及认真负责的工作态度给我树立了榜样。作为公司的工艺文件编辑和管理员,在新一年的工作中,我将认真执行公司的相关规定,充分发挥个人主观能动性,不断学习新技术新经验,善于总结、积极提高。也希望公司领导能给我更多的理解和支持,争取优质、高效、按期完成本人的本职工作任务,为工艺的开展贡献自己的力量。
第三篇:珠宝工艺总结
珠宝工艺总结
匆匆三年即将离去,从刚开始的懵懂到现在告一段落。预示着我对珠宝首饰工艺与鉴定专业的学习也由一无所知到对珠宝知识的熟知、珠宝制作工艺的掌握与运用。
通过接近三年的珠宝知识与工艺制作的学习,我对珠宝知识,珠宝工艺制作流程,整个珠宝行业都有了一定的了解;知道了珠宝首饰是如何生产制造出来的,并且自己也掌握了这方面的知识,有一定的操作能力。珠宝从设计到成品入库之间要经过一系列的工艺操作,其基本流程是:原料挑选:通过珠宝、钻石鉴定师,以及配备的现代化高科技设备,并严格遵守国家宝玉石机构的检测标准,对钻石和黄铂金原料进行专业细致的检测和挑选。设计:珠宝设计师使用JCAD3/Takumi首饰设计软件,能直接模拟出成品的逼真效果,极大的提高了设计的精确性和合理性,同时还极大的提高了首饰设计的效率一一起版:将JCAD3/Takumi软件设计出来的精美款式输入激光造型机,运用现代化科技,制作出精确、精美的银版模型,真实且准确保持了“精美、精工、高效”的设计原创风格一一制胶模:将银版模型包入专用的橡胶中,经过高温高压,形成一个个长方体的橡胶块,割开取出银版模型后就形成了中空的胶模---注蜡:通过注蜡设备将液态的蜡注入中空的胶模中,冷却后形成与银版模型完全一样的蜡版,取出后将蜡模固定在特定的支架上,形成一棵“蜡树” 一一铸造:将“蜡树”放入铸造筒中,并且注入石膏液,冷凝后形成石膏模具;将石膏模具放入烘炉内加高温,使石膏模具中的“蜡树”完全融脱;再将呈熔融状态下的金料(黄铂金)注入石膏模具中;冷凝后就形成了“金树”,剪下后就形成了首饰的雏形一一执模:珠宝专业技师使用吊机将首饰毛坯的表面修饰成基本形状。用预先裁好的砂纸装在吊机的吊机头上,对首饰进行表面打光和整形,必要时按标准刻度改制手寸,用水焊机进行焊接,并锉平改过手寸的焊接口,以防变形,使之表面达到光滑、亮、不变形、无砂粒和砂洞,线条清晰,棱角分明,没有毛疵。用磁力抛光机进行拍飞针处理,使其变得更加光亮一一-镶石:珠宝镶石部专业的技师,使用专门的镶嵌工具,将钻石、宝石固定在首饰上,严格按照首饰的初始设计,达到与设计图纸精确一致的完美效果;同时,还有严格的品质部人员对镶嵌好的首饰进行检测,确保品质的精良;至此,首饰的制作方面的步骤完成表一一面处理:对完成的首饰品进行表面的优化处理,通过精细的抛光设备和修补设备,将首饰品的细节部位处理得更加完美;同时,壹锭银还引进了具有领先水平的激光字印雕刻机,能为每一个顾客提供独特的印记服务,为顾客打造唯一的精品!传承以上各步的严谨制作要求,将首饰的各个部分再次进行最终的全面检测,保证每一件“壹锭银”首饰,都能闪耀动人,且经典流传 一一抛光:专业抛光技师将半成品首饰通过专用的抛光进行打磨,使之表面的再次处理,以清除首饰产品表面的金属末屑和砂眼,显得更加光亮一一电金:通过壹锭银珠宝专业技师,利用电金机和首饰专用镀液,进行成品镀层生产工序,以提高首饰的光亮度。
学习至今虽说中间多次可以调换岗位,但我确一直坚守在执模的岗位,并且担任执模组长一职,这让我有更多的时间和精力去学习执模。执摸是指失蜡铸造之后,镶嵌之前的工艺环节。由于铸造产生的缩孔和变形,铸模的外表通常会有沙眼,披峰,重边,凹陷甚至断裂等问题,需要进行修补和校正。如果是手链还要把一个个扣焊接成形,手镯和链类都要加工鸭利制,是一种象鸭舌头的金属弹片,用来作活扣。在首饰制作过程中,执模工序是一道重要的工序,首饰铸件执模不好将直接影响首饰质量;所以,执模人员必须掌握摩打吊机的使用、锉刀以及卓弓的使用、对首饰铸件的修复能力、榔头的使用和具备一定的审美能力。执摸的内容有焊接和补焊,锉刀的合理运用,砂纸和胶轮的使用,打字模等。通常的工艺顺序是:整形、剪水口,锉水口-检查并补焊裂缝,沙眼-校正形状(用过粗锉,锯切等)-中矬锉光-油锉锉光-煲矾水-打砂纸(或胶轮)-打字模(激光打字)。在这些学习中也发现了很多问题,很多平时容易忽略的问题、不注意的问题都会在平时的学习中显现出来。使我们更加深入的了解首饰质量的基本要求、首饰质量的检验方法、首饰生产过程中常见缺陷成因分析及解决措施。
在接近三年的珠宝工艺理论学习和实践的基础上,我对珠宝基本上有了一个大致的掌握,很清楚的知道珠宝的从设计、产出、到出售的一系列过程和程序。在老师的大力教导和同学的相互帮助下,我个人的技艺有了很大的提高,理论知识也有了很全面的进步,在这些可喜的进步后面是大家的共同努力,自己不断坚持。我很高兴自己能够把握住这样一个学习机会让自己在各方面有了一个质的提升,达到另一个层次水平上。在学习中也不免遇到很多自己个人不能解决的问题,这时候同学和老师的帮助显的异常重要,一个集体的力量也在这里面不断的体现出来。在学习执模期间我也不断到其他岗位上去学习、去实践,在其他岗位不断的继续学习,不断的向同学们请教,也让自己在不同的岗位上有了一个全面的发展、也让自己更加的成长、更加的自信。
三年时光即将过去,迎接我们的是一个新的开始,全新的面貌展现在我们面前,我们不免会有迷茫、不免有会些许失落、不免会有些伤感,但我们可以凭借自己的专业知识、专业技能为自己打造属于自己的一片天地。十年寒窗只为今早愤激勃发,勇往直前,站在社会的最高点。
第四篇:热处理工艺总结
1.退火
将钢件加热到Ac3+30~50度或Ac1+30~50度或Ac1以下的温度后,一般随炉温缓慢冷却。
目的:1.降低硬度,提高塑性,改善切削加工与压力加工性能 2.细化晶粒,改善力学性能,为下一步工序做准备 3.消除冷、热加工所产生的内应力。
应用要点:1.适用于合金结构钢、碳素工具钢、合金工具钢、高速钢的锻件、焊接件以及供应状态不合格的原材料 2.一般在毛坯状态进行退火。
2.正火
将钢件加热到Ac3以上30~50度,保温后以稍大于退火的冷却速度冷却。
目的:1.降低硬度,提高塑性,改善切削加工与压力加工性能 2.细化晶粒,改善力学性能,为下一步工序做准备 3.消除冷、热加工所产生的内应力。
应用要点:正火通常作为锻件、焊接件以及渗碳零件的预先热处理工序。对于性能要求不高的低碳的和中碳的碳素结构钢及低合金钢件,也可作为最后热处理。对于一般中、高合金钢,空冷可导致完全或局部淬火,因此不能作为最后热处理工序。
3.淬火
将钢件加热到相变温度Ac3或Ac1以上,保温一段时间,然后在水、硝盐、油、或空气中快速冷却。
目的:淬火一般是为了得到高硬度的马氏体组织,有时对某些高合金钢(如不锈钢、耐磨钢)淬火时,则是为了得到单一均匀的奥氏体组织,以提高耐磨性和耐蚀性。
应用要点:1.一般用于含碳量大于百分之零点三的碳钢和合金钢;2.淬火能充分发挥钢的强度和耐磨性潜力,但同时会造成很大的内应力,降低钢的塑性和冲击韧度,故要进行回火以得到较好的综合力学性能。4.回火
将淬火后的钢件重新加热到Ac1以下某一温度,经保温后,于空气或油、热水、水中冷却。
目的:1.降低或消除淬火后的内应力,减少工件的变形和开裂;2.调整硬度,提高塑性和韧性,获得工作所要求的力学性能;3.稳定工件尺寸。
应用要点:1.保持钢在淬火后的高硬度和耐磨性时用低温回火;在保持一定韧度的条件下提高钢的弹性和屈服强度时用中温回火;以保持高的冲击韧度和塑性为主,又有足够的强度时用高温回火;2.一般钢尽量避免在230~280度、不锈钢在400~450度之间回火,因为这时会产生一次回火脆性。
5.调质
淬火后高温回火称调质,即将钢件加热到比淬火时高10~20度的温度,保温后进行淬火,然后在400~720度的温度下进行回火。
目的:1.改善切削加工性能,提高加工表面光洁程度;2.减小淬火时的变形和开裂;3.获得良好的综合力学性能。
应用要点:1.适用于淬透性较高的合金结构钢、合金工具钢和高速钢;2.不仅可以作为各种较为重要结构的最后热处理,而且还可以作为某些紧密零件,如丝杠等的预先热处理,以减小变形。
6.时效
将钢件加热到80~200度,保温5~20小时或更长时间,然后随炉取出在空气中冷却。
目的:1.稳定钢件淬火后的组织,减小存放或使用期间的变形;2.减轻淬火以及磨削加工后的内应力,稳定形状和尺寸。
应用要点:1.适用于经淬火后的各钢种;2.常用于要求形状不再发生变化的紧密工件,如紧密丝杠、测量工具、床身机箱等。
7.冷处理 将淬火后的钢件,在低温介质(如干冰、液氮)中冷却到-60~-80度或更低,温度均匀一致后取出均温到室温。
目的:1.使淬火钢件内的残余奥氏体全部或大部转换为马氏体,从而提高钢件的硬度、强度、耐磨性和疲劳极限;2. 稳定钢的组织,以稳定钢件的形状和尺寸。
应用要点:1.钢件淬火后应立即进行冷处理,然后再经低温回火,以消除低温冷却时的内应力;2.冷处理主要适用于合金钢制的紧密刀具、量具和紧密零件。
8.火焰加热表面淬火
用氧-乙炔混合气体燃烧的火焰,喷射到钢件表面上,快速加热,当达到淬火温度后立即喷水冷却。
目的:提高钢件表面硬度、耐磨性及疲劳强度,心部仍保持韧性状态。
应用要点:1.多用于中碳钢制件,一般淬透层深度为2~6mm;2.适用于单件或小批量生产的大型工件和需要局部淬火的工件。
9.感应加热表面淬火
将钢件放入感应器中,使钢件表层产生感应电流,在极短的时间内加热到淬火温度,然后喷水冷却。
目的:提高钢件表面硬度、耐磨性及疲劳强度,心部保持韧性状态。
应用要点:1.多用于中碳钢和中堂合金结构钢制件;2. 由于肌肤效应,高频感应淬火淬透层一般为1~2mm,中频淬火一般为3~5mm,高频淬火一般大于10mm.
10.渗碳
将钢件放入渗碳介质中,加热至900~950度并保温,使钢件便面获得一定浓度和深度的渗碳层。
目的:提高钢件表面硬度、耐磨性及疲劳强度,心部仍然保持韧性状态。
应用要点:1.用于含碳量为0.15%~0.25%的低碳钢和低合金钢制件,一般渗碳层深度为0.5~2.5mm;2.渗碳后必须进行淬火,使表面得到马氏体,才能实现渗碳的目的。
第五篇:化工工艺总结
化学工艺学:是研究由化工原料加工成化工产品的化学生产过程的一门科学,内容包括生产 方法的评估,过程原理的阐述,工艺流程的组织和设备的选用和设计。焙烧:是将矿石,精矿在空气,氯气,氢气,甲烷,一氧化碳和二氧化碳等气流中,不加或 配加一定的物料,加热至低于炉料的熔点,发生氧化,还原或其他化学变化的单元过程 煅烧:是在低于熔点的适当温度下加热物料使其分解,并除去所含结晶水二氧化碳或三氧化
硫等挥发性物质的过程平衡转化率:可逆化学反应达到化学平衡状态时,转化为目的产物的某种原料量占该种原料 起始量的百分数 浸取:应用溶剂将固体原料中可溶组分提取出来的单元过程
烷基化:指利用取代反应或加成反应,在有机化合物分子中的N、O、S、C等原子上引入 烷基(R--)或芳香基的反应。
羰基合成:指由烯烃,CO和H2在催化作用下合成比原料烯烃多一个碳原子醛的反应。煤干馏:煤在隔绝空气条件下受强热而发生的复杂系列物化反应过程。水煤气:以水蒸气为气化剂制得的煤气(CO+H2)
精细化学品:对基本化学工业生产的初级或次级化学品进行深加工而制取的具有特定功能,特定用途,小批量生产的高附加值系列产品。高分子化合物:指相对分子质量高达104~106 的化合物 原子经济性:指化学品合成过程中,合成方法和工艺应被设计成能把反应过程中所用到的所 有原料尽可能多的转化到产物中。=目的产物分子量/所有产物分子量 环境因子:=废物质量/目标产物质量
1.化学工业的主要原料:化学矿,煤,石油,天然气
2.化工生产过程一般可概括为原料预处理,化学反应,产品分离及精制。3.三烯:乙烯,丙烯,丁二烯。三苯:苯,甲苯,二甲苯。4.石油一次加工方法为:预处理,常减压蒸馏。二次加工方法:催化裂化,加氢裂化,催化重整,焦化等。石油中的化合物可分为:烷烃,环烷烃,芳香烃。5.天然气制合成气的方法:蒸汽转化法,部分氧化法。主要反应为:CH4+H2O-----▶CO+3H2 和CH4+0.5O2-----▶CO+2H2 CH4+CO2----▶2CO+2H2 6.硫酸生产的原料有:硫磺,硫铁矿,有色金属冶炼炉气,石膏。7.工业废气脱硫,高硫含量用湿法脱硫,低硫含量用干法脱硫。8.硝酸生产的原料:氨,空气,水。9.浓硝酸生产方法:直接法,间接法,超共沸酸精馏法。
10.氨的主要用途:生产化肥,生产硝酸。平衡氨浓度与温度,压力,氢氮比,惰性气体浓 度有关。温度降低或压力升高时,都能使平衡氨浓度增大。
11.合成氨反应方程式:N2+3H2◀-----▶2NH3 300--600℃ 8--45MPa,催化剂。12.甲烷化反应:CO+3H2==CH4+H2O 13.变换反应:CO+H2O===CO2+H2 14.氯在氯碱厂主要用于生产:液氨,盐酸。氯碱厂主要产品有:烧碱,盐酸,液氨。15.食盐水电解阳极产物是:Cl2,阴极产物是:NaCl,H2 16.氯碱工业三种电解槽:隔膜,离子交换膜,汞阴极法。17.汽提法生产尿素工艺中,常用气提气有:CO2和NH3 18.铬铁矿焙烧方法:有钙焙烧,无钙焙烧。有钙焙烧的主要废物是:铬渣。含有致癌物:六价铬。常见铬盐产品:重铬酸钾,重铬酸钠,铬酐,铬绿(Cr2O3)。19.索尔维制碱法主要原料:NH3,CaCO3,NaCl。主要产品:Na2CO3,CaCl2 侯氏制碱法:NH3,CO2,NaCl。主要产品:Na2Co3,NH4Cl20.湿法磷酸生产的主要原料:磷矿石,硫酸。烷基化应用:烷基化汽油生产,MTBE生产。21.乙烯环氧化制环氧乙烷催化剂的活性组分是:Ag(银)
22.氯化反应三种类型:加成氯化,取代氯化,氧氯化。氯乙烯生产方法:乙烯法,乙炔法。23.烷烃热裂解主要反应为:脱氢反应,断链反应。深冷分离指温度低于—100℃的分离过程。24.羰基化最典型的应用是:用甲醇制醋酸。催化剂组成:活性组分,载体,助催化剂。25.丙烯腈的主要生产方法:氨氧化法。主要原料:丙烯,氨。
26环氧乙烷主要生产方法:乙烯环氧化法。原料:乙烯,氧。主要用途:制乙二醇。27皂化反应是指油脂在碱性条件下的水解反应。乙醇生产方法:乙烯水合法,发酵法。28.煤化工用途:煤干馏,煤气化,煤液化。煤气化工艺:固定床,流化床,气流床。29.煤干馏产物:焦炭,煤焦油,焦炉气。合成气的主要成分:CO和H2 30.煤气化发生炉中煤层分为:灰渣,氧化层,还原层,干馏层,干燥层。
31.煤液化工艺:直接液化,间接液化。三大合成材料:合成塑料,纤维,橡胶。32.精细化学品常用单元反应:磺化,硝化,氯化,重氮化和偶合 33.用量最大的聚合物是:聚乙烯(PE),聚丙烯(PP),聚氯乙烯(PVC)34.纯碱生产方法:索尔维制碱法(氨碱法),侯氏制碱法(联碱法),天然碱法。35.硫酸钙常见结晶形式:两水,半水,无水。高分子聚合反应为:加聚和缩聚。1..简述化学工程与化学工艺的关系
答:化学工程研究共性问题,单元操作,工程因素尤其是放大效应:化学工艺研究个性问 题,研究具体过程,从原料到产品的过程系统优化。两者相辅相成,密不可分。2..简述化学工业的发展方向
答:①高新技术,缩短开发周期;②最充分最彻底地利用原料;③大力发展绿色化工;④ 化工过程要高效、节能和智能化;⑤实施废弃物再生利用工程。3..简述氧化反应的特点
答:①强放热反应,要控制反应温度,及时移走反应热;②反应途径多样,副产物也多,导致后续分离工序困难,工艺流程组织也较复杂;③从热力学趋势来看,烃类易完全氧化 成CO2和水,故应选择性能优良的催化剂并及时终止氧化反应。4..简述浓硝酸的生产方法
答:直接法:NH3氧化制NO,NO氧化为NO2,浓硝酸吸收NO2制发烟硝酸,发烟硝 酸解吸制N2O4,N2O4和水加压氧化反应得浓硝酸。间接法:稀硝酸加脱水剂(硫酸或无机盐如硝酸镁)精馏。
超共沸酸精馏法:使氧化气中水脱除较多,NOX直接生产超共沸酸,在蒸馏得。5..合成气的应用已工业化的有哪些?
答:合成NH3;合成甲醇;合成醋酸(羰基化);烯烃的氢甲酸化产品;合成天然气和柴油 6..简述硫铁矿为原料制取硫酸的生产原理及主要设备
答:硫酸生产包括三步,即二氧化硫制取,二氧化硫催化氧化为三氧化硫,水吸收三氧化 硫制硫酸。主要反应为:4FeS2+11O2==2Fe2O3+8SO2;2SO2+O2==2SO3;SO3+H2O=H2SO4。主要 设备包括:沸腾炉,接触室,吸收塔等。7..举例说明化工生产中常用的节能降耗措施
答:一般来说,蒸汽压力越高,其热效率越高,因此,如果反应温度高,应尽可能产生高压蒸汽。燃烧废气带有大量的显热,应尽可能回收利用。蒸汽加热的冷凝水要视其压力进一步充分利用。高压下的减压膨胀过程要设计做功机械,避免过分的不可逆过程,造成能量的浪费。注意加强保温保冷措施,减少热量损失。精馏过程能耗很多,要充分重视换热措施,若有可能,可采用热泵技术。8..简述我国化学工业面临的问题及机遇
答:问题:规模小,能耗高,污染重,精细化率低,缺乏自主知识产权和创新能力。机遇:国民经济持续稳定增长为化学工业发展提供了机遇,改革开放为技术改造提供了 条件,国际合作更广泛,国际油价上涨为国内煤化工发展提供了机遇,需求增长及政策 支持位新技术、新产品开发提供了动力。9..对比国内外化学工业的现状,结合具体例子简述国内技术差距及努力方向。答:与国际先进水平相比,我国的化学工业还很落后,我国的化学工业产值只占世界化学工业总产值的5%左右,这与我国的国际地位极不相称。总的来说,我国工艺落后,能耗高,污染重,品种少,缺少自主知识产权。以硫酸为例,发达国家主要以回收硫为原料,而国内大量采用硫铁矿,流程长,设备多,污染重,其中当然有资源问题,也同样有技术问题,比如煤气化炉,大型炉依然全靠进口。努力方向:清洁生产,可持续发展,精细化。10..为什么常规的氨氧化工艺只能生产稀硝酸?怎样才能得到浓硝酸?简述一种流程。答:因为二氧化氮的吸收制酸是化学吸收,由于化学平衡的限制,无法直接得到浓硝酸。三种方法,直接法,稀硝酸脱水法,超共沸酸法。硝酸镁脱水法是常用方法之一。11..比较几种食盐电解工艺的优缺点。
答:离子膜:代表发展方向,占地面积小,产品质量好,投资大,投资回收期长 隔膜:技术成熟,投资小,产品质量差
水银:产品质量好,水银易造成环境污染,逐步淘汰 12..比较三种纯碱生产工艺的优缺点 答:索尔维制碱法:工艺成熟,原料丰富,但原料利用率低,三废排放量大
侯氏制碱法:原料利用率高,三废排放量小,但是原盐要求高,氯化铵销路有问题 天然碱法:在碱矿品位高时成本低,但原料受限制 13..甲基叔丁基醚MTBE的催化蒸馏工艺特点是什么?
答:特点:①将反应和精馏结合起来,反应热用来分离产物,节能效果明显;②由于反 应产物很快离开反应区,有利于平衡向MTBE方向进行,异丁烯转化率高;③对设备无 腐蚀,对催化剂和原料要求高;④设备少,只需一个反应器,投资省。14..简述烷基化反应及羰基化反应的定义,分别举例说明其典型应用
答:烷基化典型应用:烷基化汽油生产。羰基合成应用:甲醇羰基化制醋酸。15..简述两种氯乙烯生产方法及特点
答:乙烯氧氯化:C2H4+2HCl--▶CH2ClCH2Cl--▶HCl+CH2=CHCl(O2,CuCl2,250-350℃)成本低,(取决于原油价格),环境友好,但投资大,流程长。乙炔氯化氢加成:HC=CH+HCl--▶CH2=CHCl 成本高(取决于煤价和电价),有污染,但投资小,工艺可靠。16..乙烯氧氯化法生产氯乙烯由哪三大工艺组成,同时写出每步的主要反应 答:①乙烯液相加成氯化生产1,2-二氯乙烷,反应为:CH2=CH2+Cl2--▶ ②乙烯气相氧氯化生产1,2-二氯乙烷,反应:CH2=CH2+2HCl+0.5O2--▶ +H2O ③1,2-二氯乙烷热裂解制氯乙烯,反应见上。17..烃类热裂解过程为何采用水蒸气做稀释剂? 答:①易于裂解气分离②水蒸气热容量大,保护炉管防止过热③抑制裂解原料所含硫对 镍铬合金炉管的腐蚀④脱除结碳,抑制铁镍的催化生碳作用。18..间歇法水煤气工作循环由哪几个阶段组成? 答:①吹风阶段②水蒸气吹净阶段③上吹制气阶段④下吹制气阶段⑤二次上吹制气阶段 ⑥空气吹净阶段19..简述煤液化技术现状及该技术对我国的重要意义
答: 煤液化技术分为间接液化和直接液化两种,间接液化是指先将煤气化制得合成气,然后合成气在催化剂作用下再转化为液体。直接液化是煤在供氢溶剂中,在催化剂作用 下加氢,部分转化为液体。间接液化是成熟技术,南非已经生产近50年,直接液化尚 无工业化先例,我国第一套工业化装置正在建设中。中国是一个多煤少气贫油的国家,目前中国式世界上第二大石油消耗国,第三大石 油进口国,煤炭在中国的能源结构中占三分之二,煤液化技术不仅对我国的国家安全和 经济建设具有非常重要的意义,对改善民生,保护环境也非常重要。20..简述煤化工利用的主要途径及相关产品。
答:①焦化:焦炭,焦炉煤气,煤焦油。进一步可得上百种产品,如苯,酚,奈,蒽等。②煤气化:制氢,合成氨,甲醇,二甲醚,汽油等。③煤液化:汽油,柴油,蜡等。21..煤和石油在组成,结构以及应用上有什么差别。
答:①煤的H/C原子比远低于石油,含氧量远高于石油;②煤的主体是高分子聚合物,石油的主体是小分子化合物;③煤中矿物质较多;④石油采用蒸馏、萃取、催化裂化和 催化重整等简单的物化方法就可分离或改变结构,化工钟应用广泛;⑤煤须经焦化、气 化或液化等手段打破化学键,获得组分复杂的低相对分子量化合物,由于技术及成本原 因限制了它在化工中的应用,目前主要用来生产焦炭,制合成气、合成氨、甲醇等。22..目前合成氨生产的主要原料是什么?其原理及工艺流程差别有哪些?
答:煤和天然气。主要差别在造气和脱硫,煤的主要成分是碳,造气反应主要包括煤燃烧,碳和水蒸气反应。天然气主要成分是甲烷,造气主要反应是甲烷蒸汽转化。由于煤含硫 量高,因此一般采用湿法脱硫,然后再干法脱硫;天然气含硫量低,一般直接采用干法脱硫 23..变换反应为何存在最适宜反应温度,何为最适宜反应温度?实际工业生产中
答:变换反应时可逆放热反应,温度对平衡转化率和反应速率都有影响。温度升高,反应速率增大,但平衡转化率降低。最适宜反应温度Tm是当气体组成一定时,反应速率最大时的温度。工业生产中变换过程是采用分段冷却方法使操作温度接近最适宜反应温度曲线 24.索尔维制碱法原理及优缺点。
答:原理:2NaCl+CaCO3=Na2CO3+CaCl2 但该反应无法进行,必须经过以下过程实现: CaCO3--▶CaO+CO2 ;盐+水--▶盐水 ;盐水+氨--▶氨盐水;氨盐水+CO2--▶NaHCO3+NH4Cl(aq);2NaHCO3--▶Na2CO3+CO2+H2O ;2NH4Cl(aq)+CaO--▶2NH3+CaCl2+H2O 原料丰富,技术成熟,但原料利用率低,废液排放量大。25..简述尿素合成反应原理。
答:尿素合成反应为:CO2+2NH3=CO(NH2)2+H2O 该反应分两步进行:①液氨和CO2反应 生成中间产物甲铵:CO2+2NH3--▶NH2COONH4,反应为快速、强放热反应,平衡转化率 很高②甲铵脱水生成尿素:NH2COONH4--▶CO(NH2)2+H2O,该反应为慢速,温和吸热的 可逆反应,是控速步骤。26..简述尿素生产主要步骤
答:①尿素的合成;②合成反应液的分解与分解气的冷凝回收;③尿素溶液的蒸浓;④ 尿素的结晶与造粒。