第一篇:食堂设计规范
食堂、餐馆及饮食店的建筑设计规范
(2012-04-11 02:15:23)转载▼ 标签:
饭堂餐厅设计
饭堂建筑设计
食堂建筑设计
厨房建筑设计
杂谈 分类: 制度政策-方案合同
第一章 总则
第 1.0.1条 为保证饮食建筑设计的质量,使饮食建筑符合适用、安全、卫生等基本要求,特制定本规范。
第1.0.2条 本规范适用于城镇新建、改建或扩建的以下三类饮食建筑设计(包括单建和联建):
一、营业性餐馆(简称餐馆);
二、营业性冷、热饮食店(简称饮食店);
三、非营业性的食堂(简称食堂)。
第1.0.3条 餐馆建筑分为三级。
一、一级餐馆,为接待宴请和零餐的高级餐馆,餐厅座位布置宽畅、环境舒适,设施、设备完善; 二、二级餐馆,为接待宴请和零餐的中级餐馆,餐厅座位布置比较舒适,设施、设备比较完善;
三、三级餐馆,以零餐为主的一般餐馆。
第1.0.4条 饮食店建筑分为二级。
一、一级饮食店,为有宽畅、舒适环境的高级饮食店,设施、设备标准较高;
二、二级饮食店,为一般饮食店。
第1.0.5条 食堂建筑分为二级。
一、一级食堂,餐厅座位布置比较舒适;
二、二级食堂,餐厅座位布置满足基本要求。
第1.0.6条 饮食建筑设计除应执行本规范外,尚应符合现行的《民用建筑设计通则》(JGJ37-87)以及国家或专业部门颁布的有关设计标准、规范和规定。
第二章 基地和总平面
第2.0.1条 饮食建筑的修建必须符合当地城市规划与食品卫生监督机构的要求,选择群众使用方便,通风良好,并具有给水排水条件和电源供应的地段。
第2.0.2条 饮食建筑严禁建于产生有害、有毒物质的工业企业防护地段内;与有碍公共卫生的污染源应保持一定距离,并须符合当地食品卫生监督机构的规定。
第2.0.3条 饮食建筑的基地出入口应按人流、货流分别设置,妥善处理易燃、易爆物品及废弃物等的运存路线与堆场。
第2.0.4条 在总平面布置上,应防止厨房(或饮食制作间)的油烟、气味、噪声及废弃物等对邻近建筑物的影响。
第2.0.5条 一、二级餐馆与一级饮食店建筑宜有适当的停车空间。
第三章 建筑设计
第一节 一般规定
第3.1.1条 餐馆、饮食店、食堂由餐厅或饮食厅、公用部分、厨房或饮食制作间和辅助部分组成。
第3.1.2条 餐馆、饮食店、食堂的餐厅与饮食厅每座最小使用面积应分别为(㎡/座): 1.10、1.10、0.85。
第3.1.3条 100座及100座以上餐馆、食堂中的餐厅与厨房(包括辅助部分)的面积比(简称餐厨比)应符合下列规定:
一、餐馆的餐厨比宜为1∶1.1;食堂餐厨比宜为1∶1;
二、餐厨比可根据饮食建筑的级别、规模、经营品种、原料贮存、加工方式、燃料及各地区特点等不同情况适当调整。
第3.1.4条 位于三层及三层以上的一级餐馆与饮食店和四层及四层以上的其他各级餐馆与饮食店均宜设置乘客电梯。
第3.1.5条 方便残疾人使用的饮食建筑,在平面设计和设施上应符合有关规范的规定。
第3.1.6条 饮食建筑有关用房应采取防蝇、鼠、虫、鸟及防尘、防潮等措施。
第3.1.7条 饮食建筑在适当部位应设拖布池和清扫工具存放处,有条件时宜单独设置用房。
第二节 餐厅、饮食厅和公用部分
第3.2.1条 餐厅或饮食厅的室内净高应符合下列规定:
一、小餐厅和小饮食厅不应低于2.60m;设空调者不应低于2.40m;
二、大餐厅和大饮食厅不应低于3.00m;
三、异形顶棚的大餐厅和饮食厅最低处不应低于2.40m。
第3.2.2条 餐厅与饮食厅的餐桌正向布置时,桌边到桌边(或墙面)的净距应符合下列规定:
一、仅就餐者通行时,桌边到桌边的净距不应小于1.35m;桌边到内墙面的净距不应小于0.90m;
二、有服务员通行时,桌边到桌边的净距不应小于1.80m;桌边到内墙面的净距不应小于1.35m;
三、有小车通行时,桌边到桌边的净距不应小于2.10m;
四、餐桌采用其他型式和布置方式时,可参照前款规定并根据实际需要确定。
第3.2.3条 餐厅与饮食厅采光、通风应良好。天然采光时,窗洞口面积不宜小于该厅地面面积的1/6。自然通风时,通风开口面积不应小于该厅地面面积的1/16。
第3.2.4条 餐厅与饮食厅的室内各部面层均应选用不易积灰、易清洁的材料,墙及天棚阴角宜作成弧形。
第3.2.5条 食堂餐厅售饭口的数量可按每50人设一个,售饭口的间距不宜小于1.10m,台面宽度不宜小于0.50m,并应采用光滑、不渗水和易清洁的材料,且不能留有沟槽。
第3.2.6条 就餐者公用部分包括门厅、过厅、休息室、洗手间、厕所、收款处、饭票出售处、小卖及外卖窗口等,除按第3.2.7条规定设置外,其余均按实际需要设置。
第3.2.7条 就餐者专用的洗手设施和厕所应符合下列规定:一、一、二级餐馆及一级饮食店应设洗手间和厕所,三级餐馆应设专用厕所,厕所应男女分设。三级餐馆的餐厅及二级饮食店饮食厅内应设洗手池;
一、二级食堂餐厅内应设洗手池和洗碗池;
二、卫生器具设置数量应符合以下规定:洗手间中洗手盆≤50座设1个,洗手水龙头50座时每100座增设1个,厕所中大小便器100座时设男大便器1个,小便器1个,女大便器1个。
三、厕所位置应隐蔽,其前室入口不应靠近餐厅或与餐厅相对;
四、厕所应采用水冲式。所有水龙头不宜采用手动式开关。
第3.2.8条 外卖柜台或窗口临街设置时,不应干扰就餐者通行,距人行道宜有适当距离,并应有遮雨、防尘、防蝇等设施。外卖柜台或窗口在厅内设置时,不宜妨碍就餐者通行。
第三节 厨房和饮食制作间
第3.3.1条 餐馆与食堂的厨房可根据经营性质、协作组合关系等实际需要选择设置下列各部分:
一、主食加工间——包括主食制作间和主食热加工间;
二、副食加工间——包括粗加工间、细加工间、烹调热加工间、冷荤加工间及风味餐馆的特殊加工间;
三、备餐间——包括主食备餐、副食备餐、冷荤拼配及小卖部等。冷荤拼配间与小卖部均应单独设置;
四、食具洗涤消毒间与食具存放间。食具洗涤消毒间应单独设置;
五、烧火间。
第3.3.2条 饮食店的饮食制作间可根据经营性质选择设置下列各部分:
一、冷食加工间——包括原料调配、热加工、冷食制作、其他制作及冷藏用房等;
二、饮料(冷、热)加工间——包括原料研磨配制、饮料煮制、冷却和存放用房等;
三、点心、小吃、冷荤等制作的房间内容参照第3.3.1条规定的有关部分;
四、食具洗涤消毒间与食具存放间。食具洗涤消毒间应单独设置。
第3.3.3条 厨房与饮食制作间应按原料处理、主食加工、副食加工、备餐、食具洗存等工艺流程合理布置,严格做到原料与成品分开,生食与熟食分隔加工和存放,并应符合下列规定:
一、副食粗加工宜分设肉禽、水产的工作台和清洗池,粗加工后的原料送入细加工间避免反流。遗留的废弃物应妥善处理;
二、冷荤成品应在单间内进行拼配,在其入口处应设有洗手设施的前室;
三、冷食制作间的入口处应设有通过式消毒设施;
四、垂直运输的食梯应生、熟分设。
第3.3.4条 厨房和饮食制作间的室内净高不应低于3.00m。
第3.3.5条 加工间的工作台边(或设备边)之间的净距:单面操作,无人通行时不应小于0.70m,有人通行时不应小于1.20m;双面操作,无人通行时不应小于1.20m,有人通行时不应小于1.50m。
第3.3.6条 加工间天然采光时,窗洞口面积不宜小于地面面积的1/6;自然通风时,通风开口面积不应小于地面面积的1/10。
第3.3.7条 通风排气应符合下列规定:
一、各加工间均应处理好通风排气,并应防止厨房油烟气味污染餐厅;
二、热加工间应采用机械排风,也可设置出屋面的排风竖井或设有挡风板的天窗等有效自然通风措施;
三、产生油烟的设备上部,应加设附有机械排风及油烟过滤器的排气装置,过滤器应便于清洗和更换;
四、产生大量蒸汽的设备除应加设机械排风外,尚宜分隔成小间,防止结露并做好凝结水的引泄。
第3.3.8条 厨房和饮食制作间的热加工用房耐火等级不应低于二级。
第3.3.9条 各加工间室内构造应符合下列规定:
一、地面均应采用耐磨、不渗水、耐腐蚀、防滑易清洗的材料,并应处理好地面排水;
二、墙面、隔断及工作台、水池等设施均应采用无毒、光滑易洁的材料,各阴角宜做成弧形;
三、窗台宜做成不易放置物品的形式。
第3.3.10条 以煤、柴为燃料的主食热加工间应设烧火间,烧火间宜位于下风侧,并处理好进煤、出灰的问题。严寒与寒冷地区宜采用封闭式烧火间。
第3.3.11条 热加工间的上层有餐厅或其他用房时,其外墙开口上方应设宽度不小于1m的防火挑檐。
第四节 辅助部分
第3.4.1条 辅助部分主要由各类库房、办公用房、工作人员更衣、厕所及淋浴室等组成,应根据不同等级饮食建筑的实际需要,选择设置。
第3.4.2条 饮食建筑宜设置冷藏设施。设置冷藏库时应符合现行《冷库设计规范》(GBJ72-84)的规定。
第3.4.3条 各类库房应符合第3.1.6条规定。天然采光时,窗洞口面积不宜小于地面面积的1/10。自然通风时,通风开口面积不应小于地面面积的1/20。
第3.4.4条 需要设置化验室时,面积不宜小于12㎡,其顶棚、墙面及地面应便于清洁并设有给水排水设施。
第3.4.5条 更衣处宜按全部工作人员男女分设,每人一格更衣柜,其尺寸为0.50×0.50×0.50m3。
第3.4.6条 淋浴宜按炊事及服务人员最大班人数设置,每25人设一个淋浴器,设二个及二个以上淋浴器时男女应分设,每淋浴室均应设一个洗手盆。
第3.4.7条 厕所应按全部工作人员最大班人数设置,30人以下者可设一处,超过30人者男女应分设,并均为水冲式厕所。男厕每50人设一个大便器和一个小便器,女厕每25人设一个大便器,男女厕所的前室各设一个洗手盆,厕所前室门不应朝向各加工间和餐厅。
第四章 建筑设备
第一节 给水排水
第4.1.1条 饮食建筑应设给水排水系统,其用水量标准及给水排水管道的设计,应符合现行《建筑给水排水设计规范》(GBJ15-88)的规定,其中淋浴用热水(40℃)可取40l/人次。
第4.1.2条 淋浴热水的加热设备,当采用煤气加热器时,不得设于淋浴室内,并设可靠的通风排气设备。
第4.1.3条 餐馆、饮食店及食堂设冷冻或空调设备时,其冷却用水应采用循环冷却水系统。
第4.1.4条 餐馆、饮食店及食堂内应设开水供应点。
第4.1.5条 厨房及饮食制作间的排水管道应通畅,并便于清扫及疏通,当采用明沟排水时,应加盖篦子。沟内阴角做成弧形,并有水封及防鼠装置。带有油腻的排水,应与其他排水系统分别设置,并安装隔油设施。
第二节 采暖、空调和通风
第4.2.1条 采暖
一、各类房间冬季采暖室内设计温度应符合如下的规定:餐厅18℃~20℃,厨房和饮食制作间(冷加工间)16℃,厨房和饮食制作间(热加工间)10℃,干菜库饮料库8℃~10℃,蔬菜库5℃,洗涤间16℃ ~20℃。
二、厨房和饮食制作间内应采用耐腐蚀和便于清扫的散热器。
第4.2.2条 空调一、一级餐馆的餐厅、一级饮食店的饮食厅和炎热地区的二级餐馆的餐厅宜设置空调,空调设计参数应符合如下规定:一级餐厅、饮食厅温度24℃~26℃;二级餐厅 25℃~28℃。
第4.2.3条 通风
一、厨房和饮食制作间的热加工间机械通风的换气量宜按热平衡计算,计算排风量的65%通过排风罩排至室外,而由房间的全面换气排出35%;
二、排气罩口吸气速度一般不应小于0.5m/s,排风管内速度不应小于10m/s;
三、厨房和饮食制作间的热加工间,其补风量宜为排风量的70%左右,房间负压值不应大于5Pa。
第4.2.4条 蒸箱以及采用蒸汽的洗涤消毒设施,供汽管表压力宜为0.2MPa。
第4.2.5条 厨房的排风系统宜按防火单元设置,不宜穿越防火墙。厨房水平排风道通过厨房以外的房间时,在厨房的墙上应设防火阀门。
第三节 电气
第4.3.1条 一级餐馆的宴会厅及为其服务的厨房的照明部分电力应为二级负荷。
第4.3.2条 厨房及饮食制作间的电源进线应留有一定余量。配电箱留有一定数量的备用回路及插座。电气设备、灯具、管路应有防潮措施。
第4.3.3条 主要房间及部位的平均照度推荐值宜符合表4.3.3的规定。
第4.3.4条 厨房、饮食制作间及其他环境潮湿的场地,应采用漏电保护器。
第4.3.5条 餐馆、饮食店应设置市内直通电话,一级餐馆及一级饮食店宜设置公用电话。
第4.3.6条 一级餐馆的餐厅及一级饮食店的饮食厅宜设置播放背景音乐的音响设备。
附录一 名词解释
1.餐馆:凡接待就餐者零散用餐,或宴请宾客的营业性中、西餐馆,包括饭庄、饭馆、饭店、酒家、酒楼、风味餐厅、旅馆餐厅、旅游餐厅、快餐馆及自助餐厅等等,统称为餐馆。
2.饮食店:设有客座的营业性冷、热饮食店,包括咖啡厅、茶园、茶厅、单纯出售酒类冷盘的酒馆、酒吧以及各类小吃店等等,统称为饮食店。
3.食堂:设于机关、学校、厂矿等企事业单位、为供应其内部职工、学生等就餐场所,统称为食堂。
4.污染源:一般指传染性医院、易于孳生蚊、蝇的粪坑、污水池、牲畜棚圈、垃圾场等处所。
5.餐厅:餐馆、食堂中的就餐部分统称为餐厅。40座及40座以下者为小餐厅,40座以上者为大餐厅。
6.饮食厅:饮食店中设有客座接待就餐者的部分统称为饮食厅。40座及40座以下者为小饮食厅,40座以上者为大饮食厅。
7.就餐者:餐馆、饮食店的顾客和食堂就餐人统称为就餐者。
8.主食制作间:指米、面、豆类及杂粮等半成品加工处。
9.主食热加工间:指对主食半成品进行蒸、煮、烤、烙、煎、炸等的加工处。
10.副食粗加工间:包括肉类的洗、去皮、剔骨和分块;鱼虾等刮鳞、剪须、破腹、洗净;禽类的拔毛、开膛、洗净;海珍品的发、泡、择、洗;蔬菜的择拣、洗等的加工处。
11.副食细加工间:把经过粗加工的副食品分别按照菜肴要求洗、切、称量、拼配为菜肴半成品的加工处。
12.烹调热加工间:指对经过细加工的半成品菜肴,加以调料进行煎、炒、烹、炸、蒸、焖、煮等的热加工处。
13.冷荤加工间:包括冷荤制作与拼配两部分,亦称酱菜间、卤味间等。本规范统称为冷荤加工间。冷荤制作处系指把粗、细加工后的副食进行煮、卤、熏、焖、炸、煎等使其成为熟食的加工处;冷荤拼配处系指把生冷及熟食按照不同要求切块、称量及拼配加工成冷盘的加工处。
14.风味餐馆的特殊加工间:如烤炉间(包括烤鸭、鹅肉等)或其他加工间等,根据需要设置,其热加工间应按本规范要求处理。
15.备餐间:主、副食成品的整理、分发及暂时置放处。
16.付货处:主、副食成品、点心、冷热饮料等向餐厅或饮食厅的交付处。
17.小卖部:指烟、糖、酒与零星食品的出售处。
18.化验室:主要指自行加工食品的检验处。
19.库房:包括主食库、冷藏库、干菜库、调料库、蔬菜库、饮料库、杂品库以及养生池等。
附录二 本规范用词说明
一、为便于在执行本规范条文时区别对待,对要求严格程度不同的用词说明如下:
1.表示很严格,非这样做不可的: 正面词采用“必须”,反面词采用“严禁”。
2.表示严格,在正常情况下均应这样做的: 正面词采用“应”,反面词采用“不应”或“不得”。
3.表示允许稍有选择,在条件许可时首先应这样做的: 正面词采用“宜”或“可”,反面词采用“不宜”。
二、条文中指明应按其他有关标准、规范执行的,写法为“应按……执行”或“应符合……要求或规定”。非必须按所指定的标准、规范执行时,写法为“可参照……执行”。
第二篇:钢结构设计规范
《建筑地面设计规范》 GB50037-2001
《建筑采光设计标准》GB/T50033-2001
《屋面工程施工质量验收规范》GB50207-2002
《彩色涂层钢板与钢带》GB/T12754-91
《压型钢板、夹芯板屋面及墙体建筑结构》01J925-1 《建筑结构可靠度设计统一标准》GBJ50068-2001 《建筑结构载荷规范》GBJ50009-2012
《建筑结构抗震设计规范》GB50011-2001
《钢结构设计规范》GBJ50017-2003
《冷弯薄壁型钢结构技术规范》GB50018-2002
《门式钢架轻型房屋钢结构技术规范》 CECS102:2002 《屋面工程技术规范》GB50345-2012
《工业建筑防腐蚀设计规范》GB50046-2008
《建筑钢结构焊接技术规范》JBJ81-2002
《压型金属板设计施工规范》YBJ216-88
《钢结构高强度螺栓连接的设计施工及验收规范》 JGJ82-91 《涂装前钢材表面锈蚀等级和除锈等级》 GB8923 《建筑防腐工程施工及验收规范》 GB50212-91
.《建筑结构荷载规范》(GB50009-2012)
《钢结构设计规范》(GB50017-2003)
《混凝土结构设计规范》(GB50010-2010)
《建筑抗震设计规范》(GB50011-2010)
《建筑工程抗震设防分类标准》(GB50223-2008)《砌体结构设计规范》(GB50003-2011)
《建筑地基基础设计规范》(GB50007-2011)
《门式刚架轻型房屋钢结构技术规程》(CECS102:2002)《建筑设计防火规范》(GB50016-2006)
《冷弯薄壁型钢结构技术规范》(GB50018-2002)《建筑钢结构焊接技术规程》(JGJ 81-2002)
《钢结构高强度螺栓连接技术规程》(JGJ82-2011)
第三篇:GCK设计规范
低压抽出式开关柜GCK设计规范
为了使设计人员更好地熟悉和了解GCK柜型的特点和性能,提高设计人员的综合素质和业务能力,特将此柜型的电气性能和机械性能以及在设计中的注意事项总结如下,供大家参考使用。
一、主要结构性能
1、柜体骨架采用C型材,模数为25mm,通过锁紧自攻螺钉和高强度螺栓紧固组装而成。
2、柜体采用2mm冷轧钢板或进口敷铝锌板制作(门板及喷涂件不能采用敷铝锌板制作)。
3、柜体结构由柜架、门、封板、隔板、安装支架等零部件组成。
4、柜体类型分为:固定柜、抽屉柜、固定分隔柜及混装柜(固定单元和抽屉单元)。
5、柜体尺寸分为
1)固定柜:宽1000、800、600;深1000、800、600(非标);柜高2200。
2)抽屉柜:宽1000(可以非标制作侧出线)、800、600;深1000、800、600(非标);柜高2200。
3)说明:抽屉柜的柜深可做1000、800、600(制作600深的抽屉柜要考虑安装空间是否够用);600和800宽的抽屉柜的柜深首选1000,也可做800。
6、柜体结构分为四个功能单元:水平母线室、垂直母线室、功能单元室、电缆室。
7、功能单元隔离形式:部分隔离。
8、进出线形式:电缆/母线槽(桥),可柜顶、柜侧或柜底进出线。
9、表面处理:高压静电喷涂(可根据用户提供的颜色或色标制作)。
二、主要电气性能
1、电气参数:
a、额定绝缘电压:AC660V b、额定工作电压:主电路AC380V、AC660V;辅助电路AC220V、AC380V c、额定频率:50HZ、60HZ d、额定冲击耐受电压:8KV e、水平母线额定电流:630~3150A f、垂直母线额定电流:1500A g、水平母线额定短时耐受电流(1S):30KA、50KA(热稳定)h、水平母线额定峰值耐受电流:65KA、105KA(动稳定)i、j、垂直母线额定短时耐受电流(1S):30KA~、50KA(热稳定)垂直母线额定峰值耐受电流:65KA、105KA(动稳定)
k、外壳防护等级:IP30、IP40 l、过电压等级:IV m、污染等级:3 n、母线系统可采用三相四线、三相五线 o、海拔高度:不超过2000米
2、开关柜按照用途分为:进线柜、PC柜、MCC柜、电容柜、计量柜、母线转接柜(PC柜和MCC柜统称为馈电柜)。
3、水平母线规格:
630A采用TMY-3(50X5)
1250A采用TMY-3(80X8)
1600A采用TMY-3(100X8)
2000A采用TMY-3X2(60X10)
2500A采用TMY-3X2(80X10)
3150A 采用TMY-3X2(120X10)
4、垂直母线采用矩形铜母线(TMY-50X6/ TMY-60X6/ TMY-80X6/ TMY-100X6),置于塑料功能盒中。
5、水平母线与垂直母线之间的搭接采用螺栓连接。
6、抽屉按照模数可分为5种规格:1/2单元、1单元(200高)、1.5单元(非标300高)、2单元(400高)、3单元(600高)。
7、1单元抽屉模数尺寸:600X200X400(抽屉内部空间505X170X400),柜深800;或600X200X500(抽屉内部空间505X170X500),柜深1000;1/2单元抽屉模数尺寸:待定。
8、抽屉的额定电流(内装一只空开的情况):1/2单元抽屉最大做到100A;1单元抽屉最大做到225A(在开关外形尺寸允许的情况下可做到250A);1.5单元和2单元抽屉最大做到400A;3单元抽屉最大做到630A。
9、每台柜可配置18个1/2单元,或9个1单元;抽屉单元区域总高度1800mm。
10、抽屉抽出后的防护等级为IP20。
11、抽屉具有可靠的三位置:连接、试验、分离/移出,抽屉通过右侧的小连锁手柄和面板上的断路器操作手柄配合,实现三位置的机械连锁关系,特殊情况可通过小连锁手柄右侧的解锁孔解锁后打开面板检修。
12、抽屉的二次线采用专用的接插件连接,1/2单元有20个;1单元及以上有四种规格:10个/20个/24个/32个。
13、其他性能及参数可参照产品样本和技术文件。
三、设计注意事项
1、图纸上所选水平母线规格与GCK柜是否匹配?注意零母线是否有合适的母线夹。
2、必须明确系统的进出线方式:a)母线上进(侧进)电缆下出;b)母线下进电缆下出;c)电缆下进电缆下出;d)电缆上进电缆上出。
3、必须明确系统中所有开关柜的排列顺序和操作面方向,搞清楚是靠墙(靠墙的开关柜要考虑安装和检修)还是离墙安装?
4、设计时要保证系统图上的外形尺寸和平面布置图上的外形尺寸一致,并考虑各柜的安装空间是否够用?
5、系统中有母线桥(槽)的情况,要考虑母线桥(槽)的走向与系统进出线方式有无冲突,并考虑母线桥(槽)进出线位置有无困难?
6、在系统图上要注明母线桥(槽)的实际去向。
7、设计时要考虑面板和测控板布局合理,要保证相同容量的回路或其备用回路的互换性。
8、设计二次原理图时要保证系统图上的主方案和二次原理图中的主方案一致,并在有传动号的原理图中要注明“线号前加传动号,传动号见一次系统图”。
9、在材料清单中要特别注意元器件的型号、参数要符合样本和资料上的规范写法;查资料时首先考虑生产厂家的样本,尤其是参数(包括外形及安装尺寸)。
10、在提元器件清单时,必须保证其参数和性能要符合二次原理图的要求,如各种元件带的附件是否齐全、时间继电器的触点性质是否符合要求、辅助触点是否够用、控制电压是否符合要求等等,尤其是进口元件要特别留意。
11、GCK柜:标准的抽屉柜宽为800和600(后出线),水平母线放柜顶靠前(后中前布置),柜深可做到800、1000(非标可做600,但要考虑其余柜的安装空间),水平母线额定电流最大做到3150A;1000宽的抽屉柜可非标做侧出线,柜深可做到800、1000。
12、固定分隔柜及混装柜是标准GCK柜结构的一种演变,在柜宽允许的情况下水平母线可放柜顶也可放柜后,位置和电流大小同第“11”条。
13、在设计GCK柜时可参照低压部制定的设计规范,文件路径:DY——WXL设计规范*.*,有不明之处请咨询。
希望此规范的制定能给大家在工作上带来一定的帮助,在提高自身素质和能力方面积累一些经验,尽快适应公司快速发展的需要,欢迎大家多提宝贵意见和建议,力争将低压部的工作做得更完善一些!
第四篇:钢结构设计规范
钢结构设计规范
第一章 总结 第二章 材料
第三章 基本设计规定 第四章 受弯构件的计算
第五章 轴心受力构件和拉弯、压弯构件的计算 第六章 疲劳计算 第七章 连接计算 第八章 构造要求 第九章 塑性设计 第十章 钢管结构章
第十一章 圆钢、小角钢的轻型钢结构 第十二章 钢与混凝土组合梁 附录一 梁的整体稳定系数
附录二 梁腹板局部稳定的计算 附录三 轴心受压构件的稳定系数 附录四 柱的计算长度系数
附录五 疲劳计算的构件和连接分类 附录六 螺栓的有效面积
附录七 非法定计量单位与法定计量单位的换算关系
第一章 总 则
第1.0.1条 为在钢结构设计中贯彻执行国家的技术经济政策,做到技术先进、经济合理、安全适用、确保质量,特制定本规范。
第1.0.2条 本规范适用于工业与民用房屋和一般构筑物的钢结构设计。
第1.0.3条 本规范的设计原则是根据《建筑结构设计统 一标准》(CBJ68-84))制订的。
第1.0.4条 设计钢结构时,应从工程实际情况出发,合理选用材料、结构方案和构造措施,满足结构在运输、安装和使用过程中的强度、稳定性和刚度要求,宜优先采用定型的和标准化的结构和构件,减少制作、安装工作量,符合防火要求,注意结构的抗腐蚀性能。
第1.0.5条 在钢结构设计图纸和钢材订货文件中,应注明所采用的钢号(对普通碳素钢尚应包括钢类、炉种、脱氧程度等)、连接材料的型号(或钢号)和对钢材所要求的机械性能和化学成分的附加保证项目。此外,在钢结构设计图纸中还应注明所要求的焊缝质量级别(焊缝质量级别的检验标准应符合国家现行《钢结构工程施工及验收规范》)。
第1.0.6条 对有特殊设计要求和在特殊情况下的钢结构设计,尚应符合国家现行有关规范的要求。
第二章 材 料
第2.0.1条 承重结构的钢材,应根据结构的重要性、荷载特征、连接方法、工作温度等不同情况选择其钢号和材质。承重结构的钢材宜采用平炉或氧气转炉3号钢(沸腾钢或镇 静钢)、16Mn钢、16Mnq钢、15MnV钢或15MnVq钢,其质量应分别符合现行标准《普通碳素结构钢技术条件》、《低合金结构钢技术条件》和《桥梁用碳素钢及普通低合金钢钢板技术条件》的规定。
第2.0.2条 下列情况的承重结构不宜采用3号沸腾钢:
一、焊接结构:重级工作制吊车梁、吊车桁架或类似结构,冬季计算温度等于或低于-20℃时的轻、中级工作制吊车梁、吊车桁架或类似结构,以及冬季计算温度等于或低于-30℃时的其它承重结构。
二、非焊接结构:冬季计算温度等于或低于-20℃时的重级 工作制吊车梁、吊车桁架或类似结构。
注明:冬季计算温度应按国家现行《采暖通风和空气调节设计规范》中规定的冬季空气调节室外计算温度确定,第2.0.3条 承重结构的钢材应具有抗拉强度、伸长率、屈服强度(或屈服点)和硫、磷含量的合格保证,对焊接结构尚应具有碳含量的合格保证。承重结构的钢材,必要时尚应具有冷弯试验的合格保证。对于重级工作制和吊车起重量等于或大于50t的中级工作制 焊接吊车梁、吊车桁架或类似结构的钢材,应具有常温冲击韧性的合格保证。但当冬季计算温度等于或低于-20℃时,对于3号钢尚应具有-20℃冲击韧性的合格保证;对于16Mn钢、16Mnq钢、15MnV钢或15MnVq钢尚应具有-40℃冲击韧性的合格保证。对于重级工作制的非焊接吊车梁、吊车桁架或类似结构的钢材,必要时亦应具有冲击韧性的合格保证。
第2.0.4条 钢铸件应采用现行标准《一般工程用铸造碳钢》中规定的ZG200-400、ZG230-450、ZG270-500或ZG310-570号钢。
第2.0.5条 钢结构的连接材料应符合下列要求:
一、手工焊接采用的焊条,应符合现行标准《碳钢焊条》或《低合金钢焊条》的规定。选择的焊条型号应与主体金属强度相适应。对重级工作制吊车梁、吊车桁架或类似结构,宜采用低氢型焊条。
二、自动焊接或半自动焊接采用的焊丝和焊剂,应与主体金属强度相适应。焊丝应符合现行标准《焊接用钢丝》的规定。
三、普通螺栓可采用现行标准《普通碳素结构钢技术条件》中规定的3号钢制成。
四、高强度螺栓应符合现行标准《钢结构用高强度大六角头 螺栓、大六角螺母、垫圈型式尺寸与技术条件》或《钢结构用扭剪型高强度螺栓连接副型式尺寸与技术条件》的规定。
五、铆钉应采用现行标准《普通碳素钢铆螺用热轧圆钢技术条件》中规定的ML2或ML3号钢制成。
六、锚栓可采用现行标准《普通碳素结构钢技术条件》中规定的3号钢或《低合金结构钢技术条件》中规定的16Mn钢制成。对采暖房屋内的结构可按该规定值提高10℃采用。
第三章基本设计规定
第一节设计原则
第3.1.1条 本规范除疲劳计算外,采用以概率理论为基础的极限状态设计方法,用分项系数的设计表达式进行计算。
第3.1.2条 结构的极限状态系指结构或构件能满足设计规定的某一功能要求的临界状态,超过这一状态结构或构件便不再能满足设计要求。承重结构应按下列承载能力极限状态和正常使用极限状态进行设计:
一、承载能力极限状态为结构或构件达到最大承载能力或达到不适于继续承载的变形时的极限状态;
二、正常使用极限状态为结构或构件达到正常使用的某项规定限值时的极限状态。
第3.1.3条 设计钢结构时,应根据结构破坏可能产生的后果,采用不同的安全等级。一般工业与民用建筑钢结构的安全等级可取为二级,特殊建筑钢结构的安全等级可根据具体情况另行确定。
第3.1.4条 按承载能力极限状态设计钢结构时,应考虑荷载效应的基本组合,必要时尚应考虑荷载效应的偶然组合。按正常使用极限状态设计钢结构时,除钢与混凝土组合梁外,应只考虑荷载短期效应组合。
第3.1.5条 计算结构或构件的强度、稳定性以及连接的强度时,应采用荷载设计值(荷载标准值乘以荷载分项系数);计算疲劳和正常使用极限状态的变形时,应采用荷载标准值。
第3.1.6条 对于直接承受动力荷载的结构:在计算强度和稳定性时,动力荷载设计值应乘动力系数;在计算疲劳和变形时,动力荷载标准值不应乘动力系数。计算吊车梁或吊车桁架及其制动结构的疲劳时,吊车荷载应按作用在跨间内起重量最大的一台吊车确定。
第3.1.7条 设计钢结构时,荷载的标准值、荷载分项系数、荷载组合系数、动力荷载的动力系数以及按结构安全等级确定的重要性系数,应按《建筑结构荷载规范》(GBJ9-87)的规定采用。
第3.1.8条 计算重级工作制吊车梁(或吊车桁架)及其制动结构的强度和稳定性以及连接的强度时,吊车的横向水平荷载应乘以表3.1.8的增大系数。
第3.1.9条 计算平炉、电炉、转炉车间或其它类似车间的工作平台结构时,由检修材料所产生的荷载,可乘以下列折减系数:
主 梁
0.85
柱(包括基础)
0.75
第二节设计指标
第3.2.1条 钢材的强度设计值(材料强度的标准值除以抗力分项系数),应根据钢材厚度或直径(对3号钢按表3.2.1-1的分组)按表3.2.1-2采用。钢铸件的强度设计值应按表3.2.1-3
第3.2.2条 计算下列情况的结构构件或连接时,第3.2.1条规定的强度设计值应乘以相应的折减系数:
一、单面连接的单角钢
1.按轴心受力计算强度和连接0.85;
2.按轴心受压计算稳定性
二、施工条件较差的高空安装焊缝和铆钉连接0.90;
三、沉头和半沉头铆钉连接0.80。
注:当几种情况同时存在时,其折减系数应连乘。
第3.2.3条 钢材和钢铸件的物理性能指标应按表3.2.3 采用。
第三节结构变形的规定
第3.3.1条 计算钢结构变形时,可不考虑螺栓(或铆钉)孔引起的截面削弱。
第3.3.2条 受弯构件的挠度不应超过表3.3.2中所列的容许值。
第3.3.3条 多层框架结构在风荷载作用下的顶点水平位移与总高度之比值不宜大于1/500,层间相对位移与层高之比值不宜大于1/400。
注:对室内装修要求较高的民用建筑多层框架结构,层间相对位移与层高之比值宜适当减小。无隔墙的多层框架结构,层间相对位移可不受限制。
第3.3.4条 在设有重级工作制吊车的厂房中,跨间每侧吊车梁或吊车桁架的制动结构,由一台最大吊车横向水平荷载所产生的挠度不宜超过制动结构跨度的1/2200。
第3.3.5条 设有重级工作制吊车的厂房柱和设有中、重级工作制吊车的露天栈桥柱,在吊车梁或吊车桁架的顶面标高处,由一台最大吊车水平荷载所产生的计算变形值,不应超过表3.3.5中所列的容许值。
第四章 受弯构件的计算
第一节 强 度
第4.1.1条 在主平面内受弯的实腹构件,其抗弯强度应按下列规定计算:
一、承受静力荷载或间接承受动力荷载时,第4.1.3条 当梁上翼缘受有沿腹板平面作用的集中荷载、且该荷载处又未设置支承加劲肋时,腹板计算高度上边缘的局部承压强度应按下式计算:
第4.1.4条 在组合梁的腹板计算高度边缘处,若同时受有较大的正应力、剪应力和局部压应力,或同时受有较大的正应力和剪应力(如连续梁支座处或梁的翼缘截面改变处等),其折算应力应按下式计算:
式中σ、τ、σc——腹板计算高度边缘同一点上同时产生的正应力、剪应力和局部压应力,r和σ c应按公式(4.1.2)和公式(4.1.3-1|)计算,σ应按下式计算:
第二节 整体稳定
第4.2.1条 符合下列情况之一时,可不计算梁的整体稳定性:
一、有铺板(各种钢筋混凝土板和钢板)密铺在梁的受压翼缘上并与其牢固相连、能阻止梁受压翼缘的侧向位移时。
二、工字形截面筒支梁受压翼缘的自由长度L1与其宽度B1之比不超过表4.2.1所规定的数值时。②梁的支座处,应采取构造措施以防止梁端截面的扭转。
对跨中无侧向支承点的梁,L1 为其跨度;对跨中有侧向支承点的梁,L1为受压翼缘侧向支承点间的距离(梁的支座处视为有侧向支承)。
第4.2.2条 除第4.2.1条所指情况外,在最大刚度主平面内受弯的构件,其整体稳定性应按下式计算:
注:见第4.2.1条注②。
第4.2.3条 除第4.2.1条所指情况外,在两个主平面受弯的工字形截面构件,其整体稳定性应按下式计算:
注:见第4.2.1条注②。
第4.2.4条 不符合第4.2.1条第一项情况的箱形截面简支梁,其截面尺寸(图4.2.4)应满足h/bo ≤6,且L1/bo 不应超过下列数值:
符合上述规定的箱形截面简支梁,可不计算整体稳定性。注:其它钢号的梁,其L1/bo 值不应大于95(235/fy)。
第4.2.5条 用作减少梁受压翼缘自由长度的侧向支撑,其轴心力应根据侧向力F确定,梁的侧向力应按下式计算:
第三节 局部稳定
第4.3.1条 为保证组合梁腹板的局部稳定性,应按下列规定在腹板上配置加劲肋(图4.3.1):
一、当ho /tw ≤80235/fy时,对有局部压应力(σc≠0)的梁,宜按构造配置横向加劲肋;但对无局部压应力(σc=0)的梁,可不配置加劲肋。
二、当80235/fy <ho /tw ≤170235/fy时,应配置横向加劲肋,并应按第4.3.2条的规定进 行计算(对无局部压应力的梁,当ho /tw ≤100235/fy 时,可不计算)。
三、当ho /tw >170235/fy 时,应配置横向加劲肋和在受压区配置纵向加劲肋,必要时尚应在受压区配置短加劲肋,并均应按第4.3.2条的规定进行计算。此处ho为腹板的计算高度,tw为腹板的厚度。
四、梁的支座处和上翼缘受有较大固定集中荷载处,宜设置支承加劲肋,并应按第4.3.8条的规定进行计算。
第4.3.2条 无局部压应力(σc=0)的梁和简支吊车梁,当其腹板用横向加劲肋加强或用横向和纵向加劲肋加强时,应按第 4.3.3条至第4.3.6条计算加劲肋间距。其它情况的梁,应按附录二计算腹板的局部稳定性。
第4.3.3条 无局部压应力(σ=0)的梁,其腹板仅 用横向加劲肋加强时,横向加劲肋间距α应符合下列要 求:
σ——与τ同一截面的腹板计算高度边缘的弯曲压应力(N/mm2),应按σ=My/I计算,I为梁毛截面惯性矩,y1为腹板计算高度受压边缘至中和轴的距离。公式(4.3.3.1)右端算得的值若大于第4.3.7条规定的最大间距时,应取α不超过最大间距。
第4.3.4条 无局部压应力(σc=0)的梁,其腹板同时用横向加劲肋和纵向加劲肋加强时(图4.3.1b、c),纵向加劲肋至腹板计算高度受压边缘的距离h1应在ho/5~/ho/4范围内,并应符合下式的要求: 式中σ——所考虑区段内最大弯矩处腹板计算高度边缘的弯曲压应力(N燉mm2),应按σ=MmaxY1/I计算。横向加劲肋间距a仍应按第4.3.3条和第4.3.7条确定,但应以h2代替h0,并取η=1.0。
第4.3.5条 简支吊车梁的腹板仅用横向加劲肋加强时,加劲肋的间距a应同时符合下列公式的要求:
公式(4.3.5-1)和公式(4.3.5-2)右端算得的值若大于2ho或分母为负值时,应取a=2ho。对变截面吊车梁,当端部变截面区段长度不超过梁跨度的1/6时,a值应按下列情况确定:
一、腹板高度变化的吊车梁:端部变截面区段的a值应符合公式(4.3.5-1)的要求,式中的ho取该区段的腹板平均计算高度,τ取梁端部腹板的最大平均剪应力;不变截面区段内的a值,应同时符合公式(4.3.5-1)和公式(4.3.5-2)的要求,式中τ取两区段交界处的腹板平均剪应力。
二、翼缘截面变化的吊车梁:由端部至变截面处区段的a值,应同时符合公式(4.3.5-1)和公式(4.3.5-2)的要求,但σ取变截面处腹板计算高度边缘的弯曲压应力,同时由表4.3.5-2查得的k3、k4值应乘以0.75;中部不变截面区段的a值,应同时符合公式(4.3.5-1)和公式(4.3.5-2)的要求,但τ取变截面处的腹板平均剪应力。
第4.3.6条 简支吊车梁的腹板同时用横向加劲肋和纵向加劲肋加强时(图4.3.1b、c),纵向加劲肋至腹板计算高度受压边缘的距离h1应在h0/5~h0/4范围内,并应符合下列公式的要求:
当公式(4.3.6-1)或公式(4.3.6-2)右端算得的值小于ho/5时,尚应在腹板受压区配置短加劲肋(图4.3.1d),并应按附录二进行计算。
横向加劲肋间距α应按公式(4.3.5-1)确定,但应以h2代替式中的ho,以0.3σc代替表4.3.5-1中的σc。若公式(4.3.5-1)右端算得的值大于2h2或分母为负值时,应取a≤2h2。对腹板高度变化的吊车梁:在确定梁端部变截面区段内(有纵向加劲肋)的α值时,h2取该区段腹板下区格的平均高度,τ取该区段梁端部处的腹板平均剪应力;在确定不变截面区段内的α值时,τ取两区段交界处的腹板平均剪应力。对翼缘截面变化的吊车梁,确定α值时,τ取梁端部腹板平均剪应力。
第4.3.7条 加劲肋宜在腹板两侧成对配置,也可单侧配置,但支承加劲肋和重级工作制吊车梁的加劲肋不应单侧配置。横向加劲肋的最小间距为0.5ho,最大间距为2ho(对无局部压应力的梁,当ho/tw≤100时,可采用2.5ho)。
在腹板两侧成对配置的钢板横向加劲肋,其截面尺寸应符合 下列公式要求:
在腹板一侧配置的钢板横向加劲肋,其外伸宽度应大于按公式(4.3.7-1)算得的1.2倍,厚度不应小于其外伸宽度的1/15。在同时用横向加劲肋和纵向加劲肋加强的腹板中,横向加劲肋的截面尺寸除应符合上述规定外,其截面惯性矩Iz尚应符合下式要求:
短加劲肋的最小间距为0.75h1。短加劲肋外伸宽度应取为横向加劲肋外伸宽度的0.7~1.0倍,厚度不应小于短加劲肋外伸宽度的1/15。
注:①用型钢(工字钢、槽钢、肢尖焊于腹板的角钢)作成的加劲肋,其截面惯性矩不得小于相应钢板加劲肋的惯性矩。
②在腹板两侧成对配置的加劲肋,其截面惯性矩应按梁腹板中心线为轴线进行计算。在腹板一侧配置的加劲肋,其截面惯性矩应按与加劲肋相连的腹板边缘为轴线进行计算。
第4.3.8条 梁的支承加劲肋,应按承受梁支座反力或固定集中荷载的轴心受压构件计算其在腹板平面外的稳定性。此受压构件的截面应包括加劲肋和加劲肋每侧15tw235/fy范围内的腹板面积,其计算长度取ho。
梁支承加劲肋的端部应按其所承受的支座反力或固定集中荷载进行计算:当端部为刨平顶紧时,计算其端面承压应力(对突缘支座尚应符合第8.4.13条的要求);当端部为焊接时,计算其焊缝应力。
第4.3.9条 梁受压翼缘自由外伸宽度b与其厚度t之比,应符合下式要求:
箱形截面梁受压翼缘板在两腹板之间的宽度bo与其厚度t之比,应符合下式要求:
当箱形截面梁受压翼缘板设有纵向加劲肋时,则公式(4.3.9-2)中的bo取为腹板与纵向加劲肋之间的翼缘板宽度。
注:翼缘板自由外伸宽度b的取值为:对焊接构件,取腹板边至翼缘板(肢)边缘的距离;对轧制构件,取内圆弧起点至翼缘板(肢)边缘的距离。
第五章 轴心受力构件和拉弯、压弯构件的计算
第一节 轴心受力构件
第5.1.1条 轴心受拉构件和轴心受压构件的强度,除摩擦型高强度螺栓连接处外,应按下式计算:
式中N——轴心拉力或轴心压力;An——净截面面积。摩擦型高强度螺栓连接处的强度应按下列公式计算:
式中n——在节点或拼接处,构件一端连接的高强度螺栓数目;n1——所计算截面(最外列螺栓处)上高强度螺栓数目;A——构件的毛截面面积。
第5.1.2条 实腹式轴心受压构件的稳定性应按下式计算:
式中υ——轴心受压构件的稳定系数,应根据表5.1.2的截面分类并按附录三采用。
第5.1.3条 格构式轴心受压构件的稳定性仍应按公式(5.1.2)计算,但对虚轴(图5.1.3a的x轴和图5.1.3b、c的x轴和y轴)的长细比应取换算长细比。
换算长细比应按下列公式计算:
一、双肢组合构件(图5.1.3a):
式中λx——整个构件对x轴的长细比;λl——分歧对最小刚度轴1—1的长细比,其计算长度取为:焊接时,为相邻两缀板的净距离;螺栓连接时,为相邻两缀板边缘螺栓的距离;Alx——构件截面中垂直于x轴的各斜缀条毛截面面积之和。
二、四肢组合构件(图5.1.3b);
式中λy——整个构件对y轴的长细比;Aly——构件截面中垂直于y轴的各叙缀条毛截面面积之和。
三、缀件为缀条的三肢组合构件(图5.1.3c):
式中A1——构件截面中各斜缀条毛截面面积之和;
注:①缀板的线刚度应符合第8.4.1条的规定。
②斜缀条与构件轴线间的夹角应在40°~70°范围内。
第5.1.4条 对格构式轴心受压构件:当缀件为缀条时,其分肢的长细比λ1不应大于构件两方向长细比(对虚轴取换算长细比)的较大值λmax的0.7倍,当缀件为缀板时,λ1不应大于40,并不应大于λmax的0.5倍(当λmax<50时,取λmax=50)。
第5.1.5条 用填板连接而成的双角钢或双槽钢构件,可按实腹式构件进行计算,但填板间的距离不应超过下列数值:
受压构件 40i
受拉构件 80i
i为截面回转半径,应按下列规定采用:
一、当为图5.1.5α、b所示的双角钢或双槽钢截面时,取一个角钢或一个槽钢与填板平行的形心轴的回转半径;
二、当为图5.1.5c所示的十字形截面时,取一个角钢的最小回转半径。受压构件的两个侧向支承点之间的填板数不得少于两个。
第5.1.6条 轴心受压构件应按下式计算剪力:
剪力v值可认为沿构件全长不变。
对格构式轴心受压构件,剪力v应由承受该剪力的缀材面(包括用整体板连接的面)分担。
第5.1.7条 用作减小轴心受压构件自由长度的支撑,其轴心力应根据被支承构件的剪力v(作为侧向力)确定。v可按公式(5.1.6)计算。
第二节 拉弯构件和压弯构件
第5.2.1条 弯矩作用在主平面内的拉弯构件和压弯构件,其强度应按下列规定计算:
一、承受静力荷载或间接承受动力荷载时,式中Yx、Yy——截面塑性发展系数,应按表5.2.1采用。
二、直接承受动力荷载时,仍应按公式(5.2.1)计算,但取Yx=Yy=1.0
第5.2.2条 弯矩作用在对称轴平面内(绕x轴)的实腹式压弯构件,其稳定性应按下列规定计算:
一、弯矩作用平面内的稳定性:
(1)无横向荷载作用时:βmx=0.65+0.35M2M1,但不得小于0.4,M1和M2为端弯矩,使构件产生同向曲率(无反弯点)时取同号,使构件产生反向曲率(有反弯点)时取异号,M1≥M2;
(2)有端弯矩和横向荷载同时作用时:使构件产生同向曲率时,βmx=1.0;使构件产生反向曲率时,βmx=0.85;
(3)无端弯矩但有横向荷载作用时;当跨度中点有一个横向集中荷载作用时,βmx=1-0.2N/NEx;其它荷载情况时,βmx=1.0对于表5.2.1第3、4项中的单轴对称截面压弯构件,当弯矩作用在对称轴平面内且使较大翼缘受压时,除应按公式(5.2.2-1)计算外,尚应按下式计算:
式中W2x——对较小翼缘的毛截面抵抗矩。
二、弯矩作用平面外的稳定性:
式中υy——弯矩作用平面外的轴心受压构件稳定系数;υb——均匀弯曲的受弯构件整体稳定系数,对工字形和T形截面可按附录一第(五)项确定,对箱形截面可取υb=1.4;Mx——所计算构件段范围内的最大弯矩;βtx——等效弯矩系数,应按下列规定采用:
1.在弯矩作用平面外有支承的构件,应根据两相邻支承点间构件段内的荷载和内力情况确定:(1)所考虑构件段无横向荷载作用时:βtx=0.65+0.35M2M1,但不得小于0.4,M1和M2是在弯矩作用平面内的端弯矩,使构件段产生同向曲率时取同号,产生反向曲率时取异号,M1≥M2;
(2)所考虑构件段内有端弯矩和横向荷载同时作用时;使构件段产生同向曲率时,βtx=1.0;使构件段产生反向曲率时,βtx=0.85;
(3)所考虑构件段内无端弯矩但有横向荷载作用时:βtx=1.0。2.悬臂构件,βtx=1.0。
注:①无侧移框架系指框架中设有支撑架、剪力墙、电梯并等支撑结构,且共抗侧移刚度等于或大于框架本身抗侧移刚度的5倍者。
②有侧移框架系指框架中未设上述支撑结构,或支撑结构的抗侧移刚度小于框架本身抗侧移刚度的5倍者。
第5.2.3条 弯矩绕虚轴(x轴)作用的格构式压弯构件,其弯矩作用平面内的整体稳定性应按下式计算:
式中Wlx=Ix/Yo,Ix为x轴的毛截面惯性矩,Yo为由x轴到压力较大分肢的轴线距离或者到压力较大分肢腹板边缘的距离,二者取较大者;υx、NEx由换算长细比确定。弯矩作用平面外的整体稳定性可不计算,但应计算分肢的稳定性,分肢的轴心力应按桁架的弦杆计算。对缀板柱的分肢尚应考虑由剪力引起的局部弯矩。
第5.2.4条 弯矩绕实轴作用的格构式压弯构件,其弯矩作用平面内和平面外的稳定性计算均与实腹式构件相同。但在计算弯矩作用平面外的整体稳定性时,长细比应取换算长细比,υb应取1.0。
第5.2.5条 弯矩作用在两个主平面内的双轴对称实腹式工字形和箱形截面的压弯构件,其稳定性应按下列公式计算:
第5.2.6条 弯矩作用在两个主平面内的双肢格构式压弯构件,其稳定性应按下列规定计算:
第5.2.7条 计算格构式压弯构件的缀件时,应取构件的实际剪力和按公式(5.1.6)计算的剪力两者中的较大值进行计算。
第5.2.8条 用作减小压弯构件弯矩作用平面外计算长度的支撑,其轴心力应按公式(4.2.5)计算的侧向力确定,但式中Af为被支承构件的受压翼缘(对实腹式构件)或受压分肢(对格构式构件)的截面面积。
第三节 构件的计算长度和容许长细比
第5.3.1条 确定桁架弦杆和单系腹杆的长细比时,其计算长度ιo应按表5.3.1采用。
注:①l为构件的几何长度(节点中心间距离);l1为桁架弦杆侧向支承点之间的距离。
②斜平面系指与桁架平面斜交的平面,适用于构件截面两主轴均不在桁架平面内的单角钢腹杆和双角钢十字形截面腹杆。
③无节点板的腹杆计算长度在任意平面内均取其等于几何长度。
当桁架弦杆侧向支承点之间的距离为节间长度的2倍(图5.3-1)且两节间的弦杆轴心压力有变化时,则该弦杆在桁架平面外的计算长度,应按下式确定(但不应小于0.5L1):N
桁架再分式腹杆体系的受压主斜杆及K形腹杆体系的竖杆等,在桁架平面外的计算长度也应按公式(5.3.1)确定(受拉主斜杆仍取l1);在桁架平面内的计算长度则取节点中心间距离。
第5.3.2条 确定桁架交叉腹杆的长细比时,在桁架平面内的计算长度应取节点中心到交叉点间的距离;在桁架平面外的计算长度应按下列规定采用:
一、压杆
当相交的另一杆受拉,且两杆在交叉点均不中断0.5l当相交的另一杆受拉,两杆中有一杆在交叉点中断并以节点板搭接0.7l其它情况l
二、拉杆l
注:①l为节点中心间距离(交叉点不作为节点考虑)。
②当两交叉杆均受压时,不宜有一杆中断。
③当确定交叉腹杆中单角钢压杆斜平面内的长细比时,计算长度应取节点中心至交叉点的距离。
第5.3.3条 单层或多层框架等截面柱,在框架平面内的计算长度应等于该层柱的高度乘以计算长度系数μ。对无侧移框架,μ值应按附表4.1确定;对有侧移框架,μ值应按附表4.2确定。
第5.3.4条 单层厂房框架下端刚性固定的阶形柱,在框架平面内的计算长度应按下列规定确定:
一、单阶柱:
1.下段柱的计算长度系数μ2:当柱上端与横梁铰接时,等于按附表4.3(柱上端为自由的单阶柱)的数值乘以表5.3.4的折减系数;当柱上端与横梁刚接时,等于按附表4.4(柱上端可移动但不转动的单阶柱)的数值乘以表5.3.4的折减系数。
2.上段柱的计算长度系数μl,应按下式计算:
1.下段柱的计算长度系数μ3:当柱上端与横梁铰接时,等于按附表4.5(柱上端为自由的双阶柱)的数值乘以表5.3.4的折减系数;当柱上端与横梁刚接时,等于按附表4.6(柱上端可移动但不转动的双阶柱)的数值乘以表5.3.4的折减系数。
2.上段柱和中段柱的计算长度系数μ1和μ2,应按下列公式计算:
式中η
1、η2——参数,按附表4.5或附表4.6中的公式计算。
第5.3.5条 当计算框架的格构式柱和桁架式横梁的线刚度时,应考虑柱或横梁截面高度变化和缀件(或腹杆)变形的影响。
第5.3.6条 框架柱沿房屋长度方向(在框架平面外)的计算长度应取阻止框架平面外位移的支承点(柱的支座、吊车梁、托架以及支撑和纵梁的固定节点等)之间的距离。
第5.3.7条 受压构件的长细比不宜超过表5.3.7的容许值。
注:桁架(包括空间桁架)的受压腹杆,当其内力等于或小于承载能力的50%时,容许长细比值可取为200。
第5.3.8条 受拉构件的长细比不宜超过表5.3.8的容许值。
注:①承受静力荷载的结构中,可仅计算受拉构件在竖向平面内的长细比。
②在直接或间接承受动力荷载的结构中,计算单角钢受拉构件的长细比时,应采用角钢的最小回转半径;在计算单角钢 交叉受拉杆件平面外的长细比时,应采用与角钢肢边平行轴的回转半径。
③中、重级工作制吊车桁架下弦杆的长细比不宜超过200。
④在设有夹钳吊车或刚性料耙吊车的厂房中,支撑(表中第2项除外)的长细比不宜超过300。
⑤受拉构件在永久荷载与风荷载组合作用下受压时,其长细比不宜超过250。
第四节 受压构件的局部稳定
第5.4.1条 在受压构件中,翼缘板自由外伸宽度b与其厚度t之比,应符合下列要求:
一、轴心受压构件:
式中λ——构件两方向长细比的较大值:当λ<30时,取λ=30;当λ>100时,取λ=100。
二、压弯构件:
注:见第4.3.9条的注。
第5.4.2条 在工字形截面的受压构件中,腹板计算高度ho与其厚度tw之比,应符合下列要求:
一、轴心受压构件:
式中λ——构件两方向长细比的较大值:当λ<30时,取λ=30;当λ>100时,取λ=100。
二、压弯构件:
第5.4.3条 在箱形截面的受压构件中,受压翼缘的宽厚比应符合第4.3.9条的要求。箱形截面受压构件的腹板计算高度ho与其厚度tw之比,应符合下列要求:
一、轴心受压构件,第5.4.4条 在T形截面受压构件中,腹板高度与其厚度之比,不应超过下列数值:
λ和αo分别按第5.4.1条和第5.4.2条的规定采用。
第六章 疲劳计算
第一节 一般规定
第6.1.1条 承受动力荷载重复作用的钢结构构件(如吊车梁、吊车桁架、工作平台梁等)及其连接,当应力变化的循环次数n等于或大于105次时,应进行疲劳计算。
第6.1.2条 本章规定不适用于特殊条件(如构件表面温度大于150℃,处于海水腐蚀环境,焊后经热处理消除残余应力以及低周-高应变疲劳条件等)下的结构构件及其连接的疲劳计算。
第6.1.3条 疲劳计算应采用容许应力幅法,应力按弹性状态计算,容许应力幅按构件和连接类别以及应力循环次数确定。在应力循环中不出现拉应力的部位可不计算疲劳。
第二节 疲劳计算
第6.2.1条 对常幅(所有应力循环内的应力幅保持常量)疲劳,应按下式进行计算:
第6.2.2条 重级工作制吊车梁和重级、中级工作制吊车桁架的疲劳可作为常幅疲劳按下式计算:
注:表中的容许应力幅是按公式(6.2.1-2)算得的。
第6.2.3条 对变幅(应力循环内的应力幅随机变化)疲劳,若能预测结构在使用寿命期间各种荷载的频率分布、应力幅水平以及频次分布总和所构成的设计应力谱,则可将其折算为等效常 幅疲劳,按下式进行计算:
第七章 连接计算
第一节 焊缝连接
第7.1.1条 对接焊缝应按下列规定计算:
一、在对接接头和T形接头中,垂直于轴心拉力或轴心压力的对接焊缝,其强度应按下式计算:N
二、在对接接头和T形接头中,承受弯矩和剪力共同作用的对接焊缝,其正应力和剪应力应分别进行计算。但在同时受有较大正应力和剪应力处(例如梁腹板横向对接焊缝的端部),应按下式计算折算应力:
注:①当承受轴心力的板件用斜焊缝对接,焊缝与作用力间的夹角θ符合tgθ≤1.5时,其强度可不计算。
②当对接焊缝无法采用引弧板施焊时,每条焊缝的长度计算时应各减去10mm。
第7.1.2条 直角角焊缝(图7.1.2)的强度应按下列公式计算:
一、在通过焊缝形心的拉力、压力或剪力作用下:当力垂直于焊缝长度方向时,二、在其它力或各种力综合作用下,σf和Tf共同作用处:
第7.1.4条 不焊透的对接焊缝(图7.1.4)的强度,应按角焊缝的计算公式(7.1.2-1)至公式(7.1.2-3)计算,但取βf=1.0,其有效厚度应采用:
当熔合线处焊缝截面边长等于或接近于最短距离s时(图7.1.4b、c、e),抗剪强度设计值应按角焊缝的强度设计值乘以0.9。在垂直于焊缝长度方向的压力作用下,强度设计值可采用角焊缝的强度设计值乘以1.22。
第二节 螺栓连接和铆钉连接
第7.2.1条 普通螺栓、锚栓和铆钉应按下列规定计算:
一、在普通螺栓或铆钉受剪的连接中,每个普通螺栓或铆钉的承载力设计值应取受剪和承压承载力设计值中的较小者:
受剪承载力设计值:
二、在普通螺栓、锚栓或铆钉杆轴方向受拉的连接中,每个普通螺栓、锚栓或铆钉的承载力设计值应按下列公式计算:
三、同时承受剪力和杆轴方向拉力的普通螺栓和铆钉,应分别符合下列公式的要求:
第7.2.2条 摩擦型高强度螺栓应按下列规定计算:
一、在抗剪连接中,每个摩擦型高强度螺栓的承载力设计值应按下式计算:
二、在杆轴方向受拉的连接中,每个摩擦型高强度螺栓的承载力设计值,取Nbt=0.8p。
三、当摩擦型高强度螺栓连接同时承受摩擦面间的剪切和螺栓杆轴方向的外拉力时,每个摩擦型高强度螺栓的受剪承载力设计值仍应按公式(7.2.2)计算,但应以p-1.25Nt代替p。此处Nt为每个高强度螺栓在其杆轴方向的外拉力,其值不应大于0.8p。
第7.2.3条 承压型高强度螺栓应按下列规定计算:
一、承压型高强度螺栓的预拉力p和连接处构件接触面的处理方法应与摩擦型高强度螺栓相同。承压型高强度螺栓仅用于承受静力荷载和间接承受动力荷载结构中的连接。
二、在抗剪连接中,每个承压型高强度螺栓的承载力设计值的计算方法与普通螺栓相同,但当剪切面在螺纹处时,其受剪承载力设计值应按螺纹处的有效面积进行计算。
三、在杆轴方向受拉的连接中,每个承压型高强度螺栓的承载力设计值,Nbt=0.8p。
四、同时承受剪力和杆轴方向拉力的承压型高强度螺栓,应符合下列公式的要求:
五、在抗剪连接中以及同时承受剪力和杆轴方向拉力的连接中,承压型高强度螺栓的受剪承载力设计值不得大于按摩擦型连接计算的1.3倍。
第7.2.5条 在下列情况的连接中,螺栓或铆钉的数目应予增加: 一、一个构件借助填板或其它中间板件与另一构件连接的螺栓(摩擦型高强度螺栓除外)或铆钉数目,应按计算增加10%。
二、搭接或用拼接板的单面连接,螺栓(摩擦型高强度螺栓除外)或铆钉数目,应按计算增加10%。
三、在构件的端部连接中,当利用短角钢连接型钢(角钢或槽钢)的外伸肢以缩短连接长度时,在短角钢两肢中的一肢上,所用的螺栓或铆钉数目应按计算增加50%。
四、当铆钉连接的铆合总厚度超过铆钉直径的5倍时,总厚度每超过2mm,铆钉数目应按计算增加1%(至少应增加一个铆钉),但铆合总厚度不得超过铆钉直径的7倍。
第三节 组合工字梁翼缘连接
第7.3.1条 组合工字梁翼缘与腹板的双面角焊缝连接,其强度应按下式计算:
公式(7.3.1)中,F、Ψ和Lz应按第4.1.3条采用;βf应按第7.1.2条采用。
注:①当梁上翼缘受有固定集中荷载时,宜在该处设置顶紧上翼缘的支承加劲肋。此时取F=0。②当腹板与翼缘的连接焊缝采用焊透的对接焊缝时,其强度可不计算。
第7.3.2条 组合工字梁翼缘与腹板的铆钉(或摩擦型高强度螺栓)的承载力,应按下式计算:
注:见第7.3.1条注①。
第四 节支座
第7.4.1条 铰轴式支座的圆柱形枢轴(图7.4.1),当接触面中心角θ≥90°时,其承压应力应按下式计算:
第7.4.2条 弧形支座板与平板自由接触(图7.4.2)的承压应力应按下式计算:
第7.4.3条 滚轴与平板自由接触(图7.4.3)的承压应力应按下式计算:
第7.4.4条 轴心受压柱或压弯柱的端部为铣平端时,柱身的最大压力直接由铣平端传递,其连接焊缝、铆钉或螺栓应按最大压力的15%计算;当压弯柱出现受拉区时,该区的连接尚应按最大拉力计算。
第八章 构造要求
第一节 一般规定
第8.1.1条 钢结构的构造应便于制作、安装、维护并使结构受力简单明确,减少应力集中。以受风载为主的空腹结构,应力求减少受风面积。第8.1.2条在钢结构的受力构件及其连接中,不宜采用:厚度小于5mm的钢板;厚度小于3mm的钢管;截面小于45×4或56×36×4的角钢(对焊接结构)或截面小于50×5的角钢(对螺栓连接或铆钉连接结构)。但第十一章的轻型钢结构不受此限。
第8.1.3条 焊接结构是否需要采用焊前预热或焊后热处理等特殊措施,应根据材质、焊件厚度、焊接工艺、施焊时气温等综合因素来确定。在正常情况下,焊件的厚度为:对低碳钢,不宜大于50mm;对低合金钢,不宜大于36mm。第8.1.4条为了保证结构的空间工作,提高结构的整体刚度,承担和传递水平力,防止杆件产生过大的振动,避免压杆的侧向失稳,以及保证结构安装时的稳定,应根据结构及其荷载的不同情况设置可靠的支撑系统。在建筑物每一个温度区段或分期建设的区段中,应分别设置独立的空间稳定的支撑系统。
第8.1.5条 单层房屋和露天结构的温度区段长度(伸缩缝的间距),当不超过表8.1.5的数值时,可不计算温度应力。
注:①厂房柱为其它材料时,应按相应规范的规定设置伸缩缝。围护结构可根据具体情况参照有关规范单独设置伸缩缝。
②无桥式吊车房屋的柱间支撑和有桥式吊车房屋吊车梁或吊车桁架以下的柱间支撑,宜对称布置于温度区段中部。当不对称布置时,上述柱间支撑的中点(两道柱间支撑时为两支撑距离的中点)至温度区段端部的距离不宜大于表8.1.5纵向温度区段长度的60%。
第二节 焊缝连接
第8.2.1条 焊缝金属宜与基本金属相适应。当不同强度的钢材连接时,可采用与低强度钢材相适应的焊接材料。
第8.2.2条 在设计中不得任意加大焊缝,避免焊缝立体交叉和在一处集中大量焊缝,同时焊缝的布置应尽可能对称于构件重心。
注:钢板的拼接:当采用对接焊缝时,纵横两方向的对接焊缝,可采用十字形交叉或丁形交叉;当为T形交叉时,交叉点的间距不得小于200mm。
第8.2.3条 对接焊缝的坡口形式,应根据板厚和施工条件按现行标准《手工电弧焊焊接接头的基本型式与尺寸》和《埋弧焊焊接接头的基本型式与尺寸》的要求选用。
第8.2.4条 在对接焊缝的拼接处:当焊件的宽度不同或厚度相差4mm以上时,应分别在宽度方向或厚度方向从一侧或两侧做成坡度不大于1/4的斜角(图8.2.4);当厚度不同时,焊缝坡口形式应根据较薄焊件厚度按第8.2.3条的要求取用。
在承受动力荷载的结构中,垂直于受力方向的焊缝不宜采用不焊透的对接焊缝。
第8.2.6条 角焊缝两焊脚边的夹角a一般为90°(直角角焊缝)。夹角a>120°或a<60°的斜角角焊缝,不宜用作受力焊缝(钢管结构除外)。
第8.2.7条 角焊缝的尺寸应符合下列要求:
二、角焊缝的焊脚尺寸不宜大于较薄焊件厚度的1.2倍(钢管结构除外),但板件(厚度为t)边缘的角焊缝最大焊脚尺寸,尚应符合下列要求:
1.当t≤6mm时,hf≤t;
2.当t>6mm时,hf≤t-(1~2)mm。
圆孔或槽孔内的角焊缝焊脚尺寸尚不宜大于圆孔直径或槽孔短径的1/3。
三、角焊缝的两焊脚尺寸一般为相等。当焊件的厚度相差较大,且等焊脚尺寸不能符合本条第一、二项要求时,可采用不等焊脚尺寸,与较薄焊件接触的焊脚边应符合本条第二项的要求;与较厚焊件接触的焊脚边应符合本条第一项的要求。
四、侧面角焊缝或正面角焊缝的计算长度不得小于8hf和40mm。
五、侧面角焊缝的计算长度不宜大于60hf(承受静力荷载或间接承受动力荷载时)或40hf(承受动力荷载时);当大于上述数值时,其超过部分在计算中不予考虑。若内力沿侧面角焊缝全长分布时,其计算长度不受此限。
第8.2.8条 在直接承受动力荷载的结构中,角焊缝表面应做成直线形或凹形。焊脚尺寸的比例:对正面角焊缝宜为1∶1.5(长边顺内力方向);对侧面角焊缝可为1∶1。
第8.2.9条 在次要构件或次要焊缝连接中,可采用断续角焊缝。断续角焊缝之间的净距,不应大于15t(对受压构件)或30t(对受拉构件),t为较薄焊件的厚度。
第8.2.10条 当板件的端部仅有两侧面角焊缝连接时,每条侧面角焊缝长度不宜小于两侧面角焊缝之间的距离;同时两侧面角焊缝之间的距离不宜大于16t(当t>12mm)或200mm(当t≤12mm),t为较薄焊件的厚度。
第8.2.11条 杆件与节点板的连接焊缝(图8.2.11),一般宜采用两面侧焊,也可用三面围焊,对角钢杆件可采用L形围焊,所有围焊的转角处必须连续施焊。
第8.2.12条 当角焊缝的端部在构件转角处作长度为2hf的绕角焊时,转角处必须连续施焊。
第8.2.13条 在搭接连接中,搭接长度不得小于焊件较小厚度的5倍,并不得小于25mm。
第三节 螺栓连接和铆钉连接
第8.3.1条 每一杆件在节点上以及拼接接头的一端,永久性的螺栓(或铆钉)数不宜少于两个。对组合构件的缀条,其端部连接可采用一个螺栓(或铆钉)。
第8.3.2条 高强度螺栓孔应采用钻成孔。摩擦型高强度螺栓的孔径比螺栓公称直径d大1.5~2.0mm;承压型高强度螺栓的孔径比螺栓公称直径d大1.0~1.5mm。
第8.3.3条 在高强度螺栓连接范围内,构件接触面的处理方法应在施工图中说明。
第8.3.4条 螺栓或铆钉的距离应符合表8.3.4的要求。
注:①do为螺栓或铆钉的孔径,t为外层较薄板件的厚度。
②钢板边缘与刚性构件(如角钢、槽钢等)相连的螺栓或铆钉的最大间距,可按中间排的数值采用。
第8.3.5条 c级螺栓宜用于沿其杆轴方向受拉的连接,在下列情况下可用于受剪连接:
一、承受静力荷载或间接承受动力荷载结构中的次要连接。
二、不承受动力荷载的可拆卸结构的连接。
三、临时固定构件用的安装连接。
第8.3.6条 对直接承受动力荷载的普通螺栓连接应采用双螺帽或其它能防止螺帽松动的有效措施。
第8.3.7条 当型钢构件的拼接采用高强度螺栓连接时,其拼接件宜采用钢板。
第8.3.8条 沉头和半沉头铆钉不得用于沿其杆轴方向受拉的连接。
第四节 结构构件
(I)柱
第8.4.1条 在缀材面剪力较大或宽度较大的格构式柱,宜采用缀条柱。缀板柱中,同一截面处缀板(或型钢横杆)的线刚度之和不得小于柱较大分肢线刚度的6倍。
第8.4.2条 当实腹式柱的腹板计算高度ho与厚度tw之比大于80时,应采用横向加劲肋加强,其间距不得大于3ho。
横向加劲肋的尺寸和构造应按第4.3.7条的有关规定采用。
第8.4.3条 格构式柱或大型实腹式柱,在受有较大水平力处和运送单元的端部应设置横隔,横隔的间距不得大于柱截面较大宽度的9倍或8m。
(II)桁架
第8.4.4条 焊接桁架应以杆件重心线为轴线,螺栓(或铆钉)连接的桁架可采用靠近杆件重心线的螺栓(或铆钉)准线为轴线,在节点处各轴线应交于一点。当桁架弦杆的截面变化时,如轴线变动不超过较大弦杆截面高度的5%,可不考虑其影响。
第8.4.5条 分析桁架杆件内力时,可将节点视为铰接。当桁架杆件为H型、箱型等刚度较大的截面,且在桁架平面内的杆件截面高度与其几何长度(节点中心间的距离)之比大于1/10(对弦杆)或大于1/15(对腹杆)时,应考虑节点刚性所引起的次弯矩。
第8.4.6条 当桁架杆件用节点板连接时,弦杆与腹杆、腹杆与腹杆之间的间隙,不宜小于20mm。
第8.4.7条 节点板厚度一般根据所连接杆件内力的大小确定,但不得小于6mm。节点板的平面尺寸应适当考虑制作和装配的误差。
第8.4.8条 跨度大于36m的两端铰支桁架,应考虑在竖向荷载作用下,下弦弹性伸长所产生水平推力对支承构件的影响。
第8.4.9条 两端简支、跨度为15m或15m以上的三角形屋架和跨度为24m或24m以上的梯形和平行弦桁架,当下弦无曲折时,宜起拱,拱度约为跨度的1/500。
(Ⅲ)梁
第8.4.10条 焊接梁的翼缘一般用一层钢板作成,当采用两层钢板时,外层钢板与内层钢板厚度之比宜为0.5~1.0。不沿梁通长设置的外层钢板,其理论截断点处的外伸长度l1应符合下列要求:
b和t分别为外层翼缘板的宽度和厚度;hf为侧面角焊缝和正面角焊缝的焊脚尺寸。
第8.4.11条 铆接(或摩擦型高强度螺栓连接)梁的翼缘板不宜超过三层,翼缘角钢面积不宜少于整个翼缘面积的30%,当采用最大型号的角钢仍不能符合此要求时,可加设腋板(图8.4.11)。此时角钢与腋板面积之和不应少于翼缘总面积的30%。当翼缘板不沿梁通长设置时,理论截断点处外伸长度内的铆钉(或摩擦型高强度螺栓)数目,应按该板1/2净截面面积的承载力进行计算。
第8.4.12条 焊接梁的横向加劲肋与翼缘板相接处应切角,当切成斜角时,其宽约bs/3(但不大于40mm),高约bs/2(但不大于60mm),见图8.4.12,bs为加劲肋的宽度。
第8.4.13条 梁的端部支承加劲肋的下端,按端面承压强度设计值进行计算时,应创平顶紧,其中突缘加劲板(图8.4.13b)的伸出长度不得大于其厚度的2倍。
(Ⅳ)柱脚锚栓
第8.4.14条 柱脚锚栓不得用以承受柱脚底部的水平反力,此水平反力应由底板与混凝土基础间的摩擦力或设置抗剪键承受。
第8.4.15条 柱脚锚栓埋置在基础中的深度,应使锚栓的内力通过其和混凝土之间的粘结力传递。当埋置深度受到限制时,则锚栓应牢固地固定在锚板或锚梁上,以传递锚栓的全部内力,此时锚栓与混凝土之间的粘结力可不予考虑。
第五节 对吊车梁转吊车桁架(或类似的梁和桁架)的要求
第8.5.1条 焊接吊车梁的翼缘板宜用一层钢板,当采用两层钢板时,外层钢板宜沿梁通长设置,并应在设计和施工中采取措施使上翼缘两层钢板紧密接触。
第8.5.2条 支承夹钳或刚性料耙硬钩吊车以及类似吊车的结构,不宜采用吊车桁架和制动桁架。
第8.5.3条 焊接吊车桁架应符合下列要求:
一、在桁架节点处,腹杆与弦杆之间的间隙a不宜小于50mm,节点板的两侧边宜作成半径r不小于60mm的圆弧;节点板边缘与腹杆轴线的夹角θ不应小于30°(图8.5.3);节点板与角钢弦杆的连接焊缝,起落弧点应至少缩进5mm(图8.5.3a);
节点板与工字钢弦杆的T形连接焊缝应予焊透,圆弧处不得有起落弧缺陷,其中重级工作制吊车桁架的圆弧处应予打磨,使之与弦杆平缓过渡(图8.5.3b)。
二、杆件的填板当用焊缝连接时,焊缝起落弧点应缩进至少5mm(图8.5.3c),重级工作制吊车桁架杆件的填板应采用高强度螺栓连接。
第8.5.4条 吊车梁翼缘板或腹板的焊接拼接应采用加引弧板的焊透对接焊缝,引弧板割去处应予打磨平整。吊车梁的工地整段拼接宜采用摩擦型高强度螺栓。
第8.5.5条 在焊接吊车梁或吊车桁架中,下列部位的T形连接应予焊透;焊缝质量不低于二级焊缝标准(形式见图8.5.5):
一、重级工作制和起重量Q≥50t的中级工作制吊车梁腹板与上翼缘的连接;
二、吊车桁架中,节点板与上弦杆的连接。
第8.5.6条 吊车梁横向加劲肋的上端应与上翼缘创平顶紧(当为焊接吊车梁时,尚宜焊接)。中间横向加劲肋的下端宜在距受拉翼缘50~100mm处断开,不应另加零件与受拉翼缘焊接。中间横向加劲肋与腹板的连接焊缝,施焊时不宜在加劲肋下端起落弧。当吊车梁受拉翼缘与支撑相连时,不宜采用焊接。
第8.5.7条 直接铺设轨道的吊车桁架上弦,其构造要求应与吊车梁相同。
第8.5.8条 重级工作制吊车梁中,上翼缘与制动结构的连接以及对柱传递水平力的连接,宜采用摩擦型高强度螺栓。吊车梁端部与柱的连接构造应设法减少由于吊车梁弯曲变形而在连接处产生的附加应力。
第8.5.9条 当吊车桁架和重级工件制吊车梁跨度等于或大于12m,或轻、中级工作制吊车梁跨度等于或大于18m时,宜设置辅助桁架和水平支撑系统。当设置垂直支撑时,其位置不宜在吊车梁或吊车桁架竖向挠度较大处。
对吊车桁架,应采取构造措施,以防止其上弦因轨道偏心而扭转。
第8.5.10条 重级工作制吊车梁的受拉翼缘板(或吊车桁架的受拉弦杆)边缘,宜采用自动精密气割,当用手工气割或剪切机切割时,应沿全长刨边。
第8.5.11条 吊车梁的受拉翼缘(或吊车桁架的受拉弦杆)上不得焊接悬挂设备的零件,并不宜在该处打火或焊接夹具。
第8.5.12条 吊车钢轨的接头构造应保证车轮平稳通过。
当采用焊接长轨且用压板与吊车梁连接时,压板与钢轨间的接触不得过于紧密,以使钢轨受温度作用后有纵向伸缩的可能。
第六节 制作、运输和安装
第8.6.1条 结构运送单元的划分,除应考虑结构受力条件外,尚应注意经济合理、便于运输和易于拼装。
第8.6.2条 结构的安装连接应采用传力可靠、制作方便、连接简单、便于调整的构造形式。
第8.6.3条 安装连接采用焊接时,应考虑设置定位螺栓,将构件临时固定。
第七节 防锈和隔热
第8.7.1条 钢结构除必须采取防锈措施(彻底除锈后涂以油漆和镀锌等)外,尚应在构造上尽量避免出现难于检查、清刷和油漆之处以及能积留湿气和大量灰尘的死角或凹槽。闭口截面构件应沿全长和端部焊接封闭。除有特殊需要外,设计中一般不应因考虑锈蚀而加大钢材截面或厚度。
第8.7.2条 柱脚在地面以下的部分应采用强度等级较低的混凝土包裹(保护层厚度不应小于50mm),并应使包裹的混凝土高出地面约150mm。当柱脚底面在地面以上时,则柱脚底面应高出地面不小于100mm。
第8.7.3条 受侵蚀介质作用的结构以及在使用期间不能重新油漆的结构部位应采取特殊的防锈措施。受侵蚀性介质作用的柱脚不宜埋入地下。
第8.7.4条 受高温作用的结构,应根据不同情况采取下列防护措施:
一、当结构可能受到炽热熔化金属的侵害时,应采用砖或耐热材料做成的隔热层加以保护;
二、当结构的表面长期受辐射热达150℃以上或在短时间内可能受到火焰作用时,应采取有效的防护措施(如加隔热层或水套等)。
第九章 塑性设计
第一节 一般规定
第9.1.1条 本章规定适用于不直接承受动力荷载的固端梁、连续梁以及由实腹构件组成的单层和两层框架结构。
第9.1.2条 采用塑性设计的结构或构件,按承载能力极限状态设计时,应采用荷载的设计值,考虑构件截面内塑性的发展及由此引起的内力重分配,用简单塑性理论进行内力分析。按正常使用极限状态设计时,应采用荷载的标准值,并按弹性理论进行计算。
第9.1.3条 按本章规定进行塑性设计时,钢材和连接的强度设计值应按第3.2.1条和第3.2.2条的规定值乘以折减系数0.9。
第9.1.4条 塑性设计截面板件的宽厚比应符合表9.1.4的规定。
第二节 构件的计算
第9.2.1条 弯矩Mx(对工字形截面x轴为强轴)作用在一个主平面内的受弯构件,其弯曲强度应符合下式要求:
Mx≤Wpnxf(9.2.1)式中Wpnx——对x轴的净截面塑性抵抗矩。
第9.2.2条 受弯构件的剪力V假定由腹板承受,剪切强度应符合下式要求:
V≤hwtwfv(9.2.2)式中hw、tw——腹板高度和厚度;fv——塑性设计时采用的钢材抗剪强度设计值,见第9.1.3条。
第9.2.3条 弯矩作用在一个主平面内的压弯构件,其强度应符合下列公式的要求:
压弯构件的压力N不应大于0.6Anf,其剪切强度应符合公式(9.2.2)的要求。
第9.2.4条 弯矩作用在一个主平面内的压弯构件,其稳定性应符合下列公式的要求:
一、弯矩作用平面内:
式中Wpx——对x轴的毛截面塑性抵抗矩。υx、NEx和βmx应按第5.2.2条计算弯矩作用平面内稳定的有关规定采用。
二、弯矩作用平面外:
υy、υb和βtx应按第5.2.2条计算弯矩作用平面外稳定的有关规定采用。
第三节 容许长细比和构造要求
第9.3.2条 在构件出现塑性铰的截面处,必须设置侧向支承。该支承点与其相邻支承点间构件的长细比λy,应符合下列要求:
对不出现塑性铰的构件区段,其侧向支承点间距,应由第四章和第五章内有关弯矩作用平面外的整体稳定计算确定。
第9.3.3条 用作减少构件弯矩作用平面外计算长度的侧向支撑,其轴心力应分别按4.2.5条或第5.2.8条确定。
第9.3.4条 所有节点及其连接应有足够的刚度,以保证在出现塑性铰前节点处各构件间的夹角保持不变。构件拼接应能传递该处最大计算弯矩值的1.1倍,且不得低于0.25Wpxf。
第9.3.5条 当板件采用手工气割或剪切机切割时,应将出现塑性铰部位的边缘刨平。当螺栓孔位于构件塑性铰部位的受拉板件上时,应采用钻成孔或先冲后扩钻孔。
第十章 钢管结构
第10.0.1条 本章规定适用于不直接承受动力荷载、在节点处直接焊接的圆管结构。
第10.0.3条 钢管节点的构造应符合下列要求:
一、主管外径应大于支管外径,主管壁厚不应小于支管壁厚。在支管与主管连接处不得将支管穿入主管内。
二、主管和支管或两支管轴线之间的夹角θ不宜小于30°。
三、支管与主管的连接节点处,应尽可能避免偏心。
四、支管与主管的连接焊缝,应沿全周连续焊接并平滑过渡。
五、支管端部宜使用自动切管机切割,支管壁厚小于6mm时可不切坡口。
第10.0.4条 钢管构件在承受较大横向荷载的部位应采取适当的加强措施,防止产生过大的局部变形。钢管构件的主要受力部位应避免开孔,如必须开孔时,应采取适当的补强措施。
第10.0.5条 支管与主管的连接可沿全周采用角焊缝,也可部分采用角焊缝、部分采用对接焊缝,支管管壁与主管管壁之间的夹角大于或等于120°的区域宜采用对接焊缝或带坡口的角焊缝。角焊缝的焊脚尺寸hf不宜大于支管壁厚的两倍。
第10.0.6条 支管与主管的连接焊缝可视为全周角焊缝按公式(7.1.2-1)进行计算,但取βf=1。角焊缝的有效厚度沿支管周长是变化的,当支管轴心受力时,平均有效厚度可取0.7hf。焊缝的计算长度(支管与主管相交线长度)可按下列公式计算:
第10.0.7条
为保证节点处主管的强度,支管的轴心力不得大于下列规定中的承载力设计值:
注:①本条适用范围为:0.2≤β≤1.0,ds/ts≤50(ts-支管壁厚),θ≥30°。当d/t>50时,取d/t=50。
②本条中的X型和K型节点系指支管轴线与主管轴线在同一平面内。
第十一章 圆钢、小角钢的轻型钢结构
第11.0.1条 本章规定仅适用于在跨度不超过18m且起重量不大于5t的轻、中级工作制桥式吊车的房屋中,采用有圆钢或小角钢(小于45×4或56×36×4)的轻型钢结构。
注:型钢组成的结构有个别次要杆件采用小角钢时,可不受本章限制。
第11.0.2条 本章规定不适用于使用条件复杂的轻型钢结构(如直接承受动力荷载,处于高温、高湿和强烈侵蚀环境的轻型钢结构等)所需的特殊要求。
第11.0.3条 轻型钢结构的强度设计值,应按第3.2.1条、第3.2.2条和第11.0.6条的规定值并乘以下列折减系数:
一、拱的双圆钢拉杆及其连接0.85;
二、平面桁架式檩条和三铰拱斜梁,其端部主要受压腹杆0.85;
三、其它杆件和连接0.95。
第11.0.4条 在桁架中,应尽可能使杆件重心线在节点处交于一点,否则应考虑其偏心的影响。
第11.0.5条 三铰拱屋架的三角形组合斜梁,其截面高度与斜梁长度的比值不得小于1/18,截面宽度与截面高度的比值不得小于2/5。
第11.0.6条 单圆钢压杆连接于节点板一侧时,杆件应按公式(5.2.2-1)计算其稳定性,连接可按公式(11.0.8-1)计算,但焊缝强度设计值应乘以0.85。单圆钢拉杆连接于节点板一侧时,杆件和连接可按轴心受拉构件计算强度,但强度设计值应降低15%。
第11.0.7条 桁架中的主要压杆(弦杆、端斜杆、端竖杆)的长细比不宜大于150,其它压杆的长细比不宜大于200。
拉杆的长细比不宜大于400,张紧的圆钢拉杆的长细比不受限制。圆钢不宜用于桁架的受压弦杆和受压端斜杆。
第11.0.8条 圆钢与平板(钢板或型钢的平板部分,图11.0.8-1)、圆钢与圆钢(图11.0.8-2)之间的焊缝,其抗剪强度应按下式计算:
第11.0.9条 圆钢与圆钢、圆钢与平板(钢板或型钢的平板部分)间的焊缝有效厚度,不应小于0.2倍圆钢直径(当焊接两圆钢的直径不同时,取平均直径)或3mm,并不大于1.2倍平板厚度,焊缝计算长度不应小于20mm。
第11.0.10条 钢板厚度不宜小于4mm。圆钢直径不宜小于下列数值:
第十二章 钢与混凝土组合梁
第一节 一般规定
第12.1.1条 本章规定仅适用于不直接承受动力荷载由混凝土翼板与钢梁通过连接件组成的简支组合梁。组合梁的混凝土翼板,应按有关规范的规定进行设计。
第12.1.2条 混凝土翼板的有效宽度be(图12.1.2)应按下式计算:
第12.1.3条 按本章规定考虑全截面塑性发展进行组合梁的强度计算时,钢梁钢材的强度设计值应按第3.2.1条和第3.2.2条的规定乘以折减系数0.9。组合梁的变形计算应按弹性理论进行,对荷载的短期效应组合,可将截面中的混凝土翼板计算宽度除以钢材与混凝土弹性模量的比值αE换算为钢截面;对荷载的长期效应组合,则除以2αE换算为钢截面。在强度计算和变形计算中,可不考虑板托截面。
第12.1.4条 组合梁施工时,若钢梁下无临时支撑,则混凝土硬结前的材料重量和施工荷载应由钢梁承受,钢梁应按第三章和第四章规定计算其强度、稳定性和变形。
第二节 截面和连接件的计算
第12.2.1条 组合梁的抗弯强度应按下列规定计算:
一、塑性中和轴在混凝土翼板内(图12.2.1-1),即Af≤behc1fccm时:
第12.2.2条 组合梁截面上的全部剪力,假定仅由钢梁腹板承受,应按公式(9.2.2)进行计算。
第12.2.3条 简支组合梁上最大弯矩点至梁端区段内的连接件总数n,可按下式计算:
注:当有可靠根据时,可采用其它形式的连接件。
第三节 构造要求
第12.3.1条 钢梁截面高度不应小于组合梁截面总高度的1/2.5,当塑性中和轴在钢梁截面内时,钢梁板件的宽厚比应符合第9.1.4条的规定。
第12.3.2条 组合梁板托的高度不宜大于混凝土翼板厚度的1.5倍,板托的顶面宽度不宜小于板托高度的1.5倍。
第12.3.3条 按公式(12.2.3)算得的连接件数量,可在最大弯矩点与零弯矩点之间均匀布置。当此两点间有较大的集中荷载作用时,则应将连接件数量按各段剪力图面积之比进行分配,再各自均匀布置。
连接件沿梁跨度方向的间距不宜超过混凝土翼板厚度和板托高度之和的4倍。
第12.3.4条 圆柱头焊钉连接件的长度不应小于4d(d为焊钉直径)。在施焊时应采用专门的焊接机具和工艺方法牢固地焊于钢梁翼缘上,其沿梁跨度方向的间距不宜小于6d,垂直于梁跨度方向的间距不宜小于4d。
第12.3.5条 槽钢连接件的翼缘肢尖方向应与混凝土翼板对钢梁的水平剪应力方向一致,其与钢梁上翼缘的连接焊缝应按第七章的有关规定计算。
第12.3.6条 弯起钢筋宜采用直径d不小于12mm的I级钢筋成对对称布置,用两条长度不小于4d的侧焊缝焊接于钢梁翼缘上,其弯起角度一般为45°,弯折方向应与混凝土翼板对钢梁的水平应
力方向一致。在梁跨中可能产生剪应力变号处,必须在两个方向均有弯起钢筋。每个弯起钢筋从弯起点算起的总长度不宜小于25d(Ⅰ级钢筋另加弯钩),其中水平段长度不宜小于10d。
第12.3.7条 圆柱头焊钉钉头下表面或槽钢连接件上翼缘下表面应比混凝土翼板底部钢筋高出30mm以上。
连接件顶面的混凝土保护层厚度不应小于15mm。圆柱头焊钉钉杆的外表面或槽钢连接件的端面:至钢梁上翼缘侧边的距离不应小于20mm;至混凝土板托侧边的距离不应小于40mm;至混凝土翼板侧边的距离不应小于100mm。
第12.3.8条 钢梁顶面不得涂刷油漆,在灌浇(或安装)混凝土翼板以前应清除铁锈、焊渣、冰层、积雪、泥土和其它杂物。
附录一 梁的整体稳定系数
(一)焊接工字形等截面简支梁
焊接工字形等截面(附图1.1)简支梁的整体稳定系数υb应按下式计算:
(二)轧制普通工字钢简支梁
轧制普通工字钢简支梁整体稳定系数υb应按附表1.3采用,当所得的υb值大于0.60时,应按附表1.2查出相应的υb代替υb值。
(三)轧制槽钢简支梁
轧制槽钢简支梁的整体稳定系数,不论荷载的形式和荷载作用点在截面高度上的位置,均可按下式计算:
注:①同附表1.1的注③、⑤。②表中的υb适用于3号钢。对其它钢号,表中数值应乘以235/fy。
(四)双轴对称工字形等截面悬臂梁
双轴对称工字形等截面悬臂梁的整体稳定系数,可按公式(附1.1)计算,但式中系数βb应按附表1.4查得,λy=Ll/Iy中的Ll为悬臂梁的悬伸长度。当求得的υb大于0.6时,应按附表1.2查出相应的υb代替υb值。
注:本表是按支端为固定的情况确定的,当用于由邻跨延伸出来的伸臂梁时,应在构造上采取措施加强支承处的抗扭能力。
(五)受弯构件整体稳定系数的近似计算
按公式(附1.3)至公式(附1.7)算得的υb值大于0.60时,不需按附表1.2换算成υb值,当按公式(附1.3)和公式(附1.4)算得的υb值大于1.0时,取υb=1.0。
附录二 梁腹板局部稳定的计算
(一)用横向加劲肋加强的腹板
用横向加劲肋加强的腹板(图4.3.1a),其各区格的局部稳定性应按下式计算:
注:当产生局部压应力σc的荷载作用于梁受拉翼缘时,则应分别假定σc=0和σ=0,按公式(附2.1)计算腹板各区格的稳定性。
(二)用横向加劲肋和纵向加劲肋加强的腹板
同时用横向加劲肋和纵向加劲肋加强的腹板(图4.31b、c),其局部稳定性应按下列公式计算: 1.受压翼缘与纵向加劲肋之间的区格:
注:①纵向加劲肋应布置在距腹板计算高度受压翼缘ho/5~ho/4处。
②当产生局部压应力C1的荷载作用于梁的受拉翼缘时,应分别假定σc2=0(用σ3和τ)和假定σ2=0(用σc2=σc和τ),按公式(附2.10)计算受拉翼缘与纵向加劲肋之间腹板各区格的局部稳定性。
(三)用横向加劲肋、纵向加劲肋和短
加劲肋加强的腹板
同时用横向加劲肋和在受压区的纵向加劲肋与短加劲肋加强的腹板(图4.3.1d),其局部稳定性应按下列方法计算:
1.受压翼缘与纵向加劲肋之间区格,按公式(附2.6)计算,但以α1(图4.3.1d)代替α。2.受拉翼缘与纵向加劲肋之间的区格,按公式(附2.10)计算。
附录三 轴心受压构件的稳定系数
第五篇:粮库设计规范A
中央直属储备粮库初步设计暂行规定
(一九九八年九月二十六日 国家国内贸易局发布)
为了落实国务院关于中央直属储备粮库建设的决定,规范初步设计,统一建设 标准,控制工程造价,加快初步设计编制及审批进度,根据《中央直属储备粮库建 设规划大纲》和《中央直属储备粮库建设管理办法》,特制定《中央直属储备粮库
初步设计暂行规定》。
第一条 本规定是为在1999年夏收之前完成250亿公斤仓容建设的紧急 任务,本着特事特办的精神,针对这批储备粮库建设特点而制定,适用于《中央直 属储备粮库建设规划》确定的新建、改扩建项目。各编制初步设计的单位在设计中 首先要执行本规定中的各项要求,本规定未提及的仍按国家及有关部门现行的标准
和规范执行。
第二条 项目初步设计应确保储粮安全,有利于推行粮食“四散”(散装、散 运、散卸、散存)作业,建立现代化粮食储备体系;合理选择工艺技术,兼顾当前 需要和长远发展,根据项目具体特点合理确定机械化和自动化程度,设备选用和采 购原则上立足国产;充分利用现场有场地和设备,节约用地,节省投资,尽可能降
低运营成本。
第三条 储备库分成以下三类,并据此选用不同的仓储方式和建设标准。
一类:地理位置靠近海、河港区和铁路枢纽,重要的粮食集散地,储存最大,应急调出机动性强,可衔接粮食进出口和南北粮食中转调运的储备库。
二类:地理位置在主销区和主产区,以铁路、水路运粮为主,储存量较大,应
急调出机动性较强,承担省际间调控或直接服务于大城市的储备库。
三类:地理位置在粮食基本平衡区,铁路或公路调运,储存量一般,承担特定
地区调控服务的储备库。
第四条 储备粮库设计的仓型选择、工艺技术及其他设施围绕安全储粮进行,保证粮食品质安全。粮食储藏期根据国家储备粮管理办法确定的年限,小麦储存期
为3年,玉米储存期为1至2年,稻谷储存期为2至3年。
第五条 仓型选择应根据项目所在地域的自然条件、建设规模、储存粮种、新
建与改扩建等不同要求区别对待。
一、在主要港口、主要铁路交通枢纽等粮食集散地建设的储备库以选用机械化
作业程度较高的浅圆仓和立筒仓为主,辅以大跨度的平房仓。
二、需要与世行贷款粮食流通项目走廊相衔接的粮库应选择适合散粮储存的仓
型。
三、东北、华北地区可多选用钢结构仓,以加快建设进度。南方稻谷主产区应
主要选用平房仓或钢筋砼浅圆仓。
四、新建粮库主要根据外部条件是否允许散装运输来选择仓型,同时在设计中 应预留实施“四散”作业的条件,改扩建项目应根据原有仓型和布局情况选择仓型。
第六条 为了推进储备粮库建设的系列化、标准化,加快项目的设计和施工进 度,根据我国储备粮库建设的经验,推荐几类系列仓型供选用(另行印发)。
第七条 项目库区总平面布置在满足进出粮作业要求,不压车,不压船,发挥 正常储备功能的前提下,应力求紧凑合理、节约用地。建筑系数一般不低于35%,利用系数一般不低于65%,储备库占地面积应按附件的数值控制(附件另发),目前暂不能实现“四散”作业的新项目应预留今后实施“四散”的场地。总图设 计应有准确地形测绘图和可靠的工程水文、气象、地质资料。为节约资金,改扩建 项目应充分利用原有辅助生产设施,新建项目的辅助生产设施和公用工程应充分与
社会协作。除新建项目外,扩建项目一般不建办公楼等非生产性设施。
第八条 库区应与外部配套设施紧密结合,码头、铁路、公路引入线,动力、通讯线路,上、下水系统,都应与库区的要求相适应。库内铁路专用线等主要作业 场地,可适当建设钢罩棚。在东北地区应建设必要的烘干设施,并预留一定的粮食
堆晒场地。
第九条 粮库设计要着眼于提高生产效率和现代化管理水平。编制定员按生产 人员、非生产人员分别计算,从严掌握。行政管理等非生产定员,其比例不超过全
员的15%。
第十条 储备粮库的工艺设计和设备选择应首先满足安全储粮的功能,并按合 理的物流作业要求进行工艺总平面和流程设计;在外部条件允许进行散装运输的情 况下优先选用符合“四散”作业发展方向的工艺设备;因受外部条件和投资限制暂 时不能实行“四散”作业的项目,应在设计时预留发展和实现机械化的条件,并兼
顾设施(设备)的包、散两用要求。
粮库的机械化程序配置原则为,一类粮库选用机械化的工艺及相应设备,二类 粮库选用固定和移动式相结合的机械,三类粮库选用移动式机械,但应尽可能降低
人工辅助作业的劳动强度。
第十一条 无论何类储备库,工艺设计都必须作物流分析、计算,并以物流平衡计算为基础选择作业线和单个设备的能力,并据此确定满足进出和储存的不同仓
型的容量配置。
第十二条 要合理慎重选用设备,一类粮库的设备配置和流程必要时应能同时 进行粮食接收和发放作业;
一、二类粮库一般应配置散粮计量设备。商业交割用的 计量秤必须选择经技术监督部门的计量认证、实践证明运行可靠的产品;汽车卸粮 坑的散粮接收能力在100吨/小时及以上时,一般应设液压翻板,所在地坑应设 活页蔽尘装置;水平输送机械宜选用胶带输送机;斗式提升机一般应露天布置,宜 采用自支承式;仓顶输送机一般应露天布置,宜将输送机架与连廊结构结合设计。
平房仓的移动式设备必须具有达到设计仓房装粮高度的能力。
各设计单位在设计中工艺设备应选用标准化、系列化产品,以利于粮食主管部
门统一进行加工、定货和采购。
第十三条 储藏工艺设计应满足长期安全储粮、有效延缓陈化和环保、卫生要
求。
第十四条 仓内通风道应考虑通风与环流熏蒸系统共用,通风系统的设计参数 和通风控制设备的选用要符合《储粮通风技术规程》的要求。平房仓内的通风道以 地上笼形式为主,风网要适当组织,在满足通风要求的基础上,尽量减少单仓通风
机的数量。
第十五条 使用浅圆仓、立筒仓、钢结构仓较多的库和南方地区的粮库可配备 谷物冷却器。谷物冷却器所接风道要与通风风道相匹配。熏蒸作业应按仓外投药,管道熏蒸设计。
第十六条 仓体、门、窗的设计应有良好的气密性,仓门应便于入仓机械作业,仓梯要便于保粮人员入仓检查粮情。
第十七条 各类库均应配备粮食品质的物理和化学检验设备,大型粮库、港口
库和为大城市服务的库应增加粮食卫生检验设备。
第十八条 储备粮库中的立筒库、浅圆仓防爆区域划分应执行现行规范。散装平房仓仓内作业区,只安装粉尘防爆灯具,其余电器设备均选用防护型并设在仓外。
第十九条 连续输送机械的自动控制系统设计,应按照满足工艺,经济实用,因库制宜,能简不繁,留有余地,以利发展的原则进行设计。基本形式为:
一、采用可编程序控制器(PLC)系统进行工艺设备程序段的自动启停,适 当设置现场检测传感器件进行联锁控制,同时采用上位机方式,用计算机直接操作,构成监视控制与数据采集系统(仅限于少数项目)。
二、采用小型可编程序控制器(PLC)系统或直接采用继电器接触器系统进
行连锁启停(该系统带模拟屏)。
三、现场分散手动操作(不配模拟屏)或电机控制中心(MCC)集中手动操
作(配相应指示灯或模拟屏)。
第二十条 各类储备库均应设置计算机局域网,以完成粮温自动检测、通风自 动控制、货位信息和储备实物台帐管理、调运作业管理,财务统计管理等功能,并 具备与国家粮食储备局远程通讯联网能力。所采用的软、硬件系统要符合国家粮食 储备局的统一要求。其中粮情测控系统要符合《粮情测控系统技术规程》,应采用 国家科技主管部门推荐的优选机型统一选配,在建筑安装设计上要有传输线路防雷
击的措施。
第二十一条 储备粮库库区内应按防火规范配置消防设施。为了便于大跨度平房仓的机械化作业,防火墙间面积可超过现行规定的1500平方米。仓内不应敷
设给水管网。
第二十二条 针对这批储备粮库建设的特殊性,对编制初步设计概算工程造价 的费用做如下规定:
一、免计国务院有关部门和地方的各种相关税费。
二、设备购置费由设备原价、运杂费及工器具费组成,运杂费为设备原价的7
0%,工器具费为设备原价的4%。
三、非标设备中钢结构支撑、料斗、溜管及旋风除尘器等按6000元/吨计 取,风管、管件按8500元/吨计取。非标设备不计取运杂费的工器具费。
四、安装工程费国产设备为设备原价的15%,进口设备为设备原价的8%。
五、基本预备费、价差预备费由中央统一扣留,统一安排使用。
六、其他费用只计列如下项目:建设单位管理费、工程设计费按工程费的1% 计取,工程勘测费按工程费的0.5%计取;监理工作由中央负责,监理费统一支 付。新建项目办公及生活用具购置费按工程费的3‰计取,生产职工培训费按工程 的2‰计取。
七、电力、铁路工程等采用完整的概算价格分别编制,列入独立项目费用中。