电弧故障仿真分析讲稿

时间:2019-05-14 18:56:07下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《电弧故障仿真分析讲稿》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《电弧故障仿真分析讲稿》。

第一篇:电弧故障仿真分析讲稿

尊敬的各位老师,上下午好:

我叫111,我论文的题目是《串联电弧故障仿真分析》。下面我就把论文的基本思路向各位老师作简要陈述:

一、二、背景、意义 论文的结构和内容

结合本次毕设课题,主要完成以下4部分工作

(1)以串联电弧为研究对象,比较不同电弧模型的特点,利用Matlab软件搭建合适的电弧故障模型。

P4:现在比较常用的电弧模型主要有:Mayr模型、Cassie模型、Stokes模型等。据研究表明,Mayr 电弧模型经常用于小电流大电阻线路中,如低压配电线路运行;Stokes模型主要用于低压交流电线电弧故障模型的研究,有着比Mayr更明显的电弧电流零休区【4】。相反的是,Cassie电弧模型经常用于大电流小电阻电弧的数学模型中,能够较准确地反映了电弧中电流过零前的过程,这样得出的电弧电压为常数,与前人的结论相符。而且由Cassie模型公式得到的电弧电流,过零时电阻基本与实验值相符【1】可以为实际电弧故障的分析研究提供参考依据。(对mayr的没能正确设置参数和一些还没研究透的的原因导致一直调不出电弧的电压和电流波形,而对stokes只调出电流,而电压波形一直不正确)所以搭建cassie模型。

P5 :这就是cassie模型的结果原理图。中间的DEE是微分编辑器,输入的参数是有能量平衡原理推导而得的cassie电弧模型的数学方程式。这个是受控电流源,输出电流受到输入信号的控制。这个是定值检测,作用是检测电流的过零点。这是阶跃信号,用来控制断路器触头的分离。

具体的模块、封装、参数设置我论文里有说明。

P6:这只是含有cassie模型的比较简单的电路图,在后期的测量和数据分析时要再加入相应的模块。各个模块说明一下

(2)利用电弧模型仿真不同性质负载的电弧故障波形。P7:其他性质的负载论文里有阐述,这里我就不再详细介绍

P8:这就是纯阻性负载的故障电流、电压波形,从中可以看出0.02s以后,2个波形均产生畸变,电流波形有0休时区,幅值变小,电压波形有燃弧尖峰和熄弧尖峰。

(3)用matlab自带的工具箱对仿真波形进行FFT、小波分析,和用柳松同学搭建的Labview平台对仿真波形进行形态小波分析,并对故障特征值进行对比分析。

P9:为了对电弧故障信号进行处理,我们引进了3种信号处理算法,第一种是傅里叶变换 P10:第二种是小波分析 P12:第三种是形态小波

P13:下面对故障特征值进行对比分析,首先是快速傅里叶变换FFT,图中是纯阻性负载的正常波形和故障波形的FFT,其余阻感性负载的分析结果如下表所示,P14:,这个图是不同负载性质的3次谐波与基波幅值比。

由以上电弧故障电流的FFT频谱图和相应表格数据可以看出:当电路中发生串联电弧故障时,电流和电压均会产生谐波,而且以3,5,7奇次谐波为主,3次谐波所占的比例会更大。电流的三次谐波分量与基波分量幅值比超过11%。电弧故障的电流3次谐波随着功率因数的增加而增加。而正常电路电流的三次谐波分量接近于零。

同时由于傅里叶变换将信号变换成纯频域中的信号,使它不具有时间分辨能力,故对信号在时域中的突变点根本无法检测出来。因此,下面我们用小波变换来分析工作电弧的性质。

P15:这就是小波分析后的图形,我们采用典型的纯阻性负载的正常电流和故障电流来对比分析。可以看出,原始波形被分解成一个低频段a5和5个高频段dl,d2,d3,d4,d5。正常波形因为没有突变,它的高频段没有产生明显的模极大值。而故障波形有突变,它的高频段在相应的位置产生了明显的模极大值。P16:对右图中分解的高频段d1层波形放大处理可得出,在1994采样点处开始

s,接近故障时刻。出现畸变,所以奇异点对应的时间t10.01994P17:最后是用形态小波分析故障电流波形。

从上图形中可以看出,形态小波变换与db小波变换分析的结果不同,表现在:形态小波不能很好的区分出正常电流和电弧故障电流,对出现电弧故障的时间不能准确定位,而且不如db小波变换分析的直观、可靠,因此不能够有效分析信号的奇异性及奇异点位置。可见,db小波比形态小波更适合于电弧故障的分析。

(4)研究简单可靠的电弧故障判据。

P19:联合使用快速傅里叶变换FFT和小波分析可以得出简单可靠的电弧故障判据。

本篇论文已经完成,还有许多的地方需要更全面的改进,但总的来说,在撰写的过程中,我真实地学到了许多东西,也积累了不少经验,更进一步丰富了自己的知识。但由于个人能力不足,加之时间和精力有限,在许多内容表述、论证上存在着不当之处,与老师的期望还有差距,许多问题还有待进行一步思考和探究,借此答辩机会,希望各位老师能够提出宝贵的意见,指出我的错误和不足之处,我将虚心接受,从而进一步深入学习,使该论文得到完善和提高。

第二篇:故障电弧诊断总结

研究意义:

电弧故障(Arc Fault)有并联电弧故障和串联电弧故障之分。并联电弧故障表现为电路短路,故障电流大,现有电气保护体系能对其保护;而串联电弧故障因受线路负载限制,其故障电流小,常为5~30A,甚至更低(荧光灯电弧故障电流有效值约为0.1A),以至于现有保护体系无法实现对串联电弧故障保护,是现有电气保护体系的漏洞之一,存在潜在电气安全隐患。串联电弧可分为“好弧”和“坏弧”,如电弧焊机、有刷电机工作时产生的电弧及插拔插座时产生的电弧常称为“好弧”;其他非按人类意愿或控制产生的电弧称为“坏弧”。对电弧故障进行检测时,不应将“好弧”误判为电弧故障,进而切断电源造成不必要损失。

实时准确检测串联电弧故障,并切断故障电路是避免电弧持续燃烧以至于酿成火灾等事故的有效途径。依据电弧发生时所产生的声、光、电、磁等特性,采用实验方法研究电弧特性。以电弧电、磁特征作为检测方法输入,实验研究了电弧故障,分析说明串联电弧与并联电弧,交流电弧与直流电弧之不同;在频域展开电弧特性研究,指出故障电弧特征量多集中在2-200kHz频段。随着电力电子技术发展,非线性负载增多,传统基于电弧“零休”等特性的检测方法已不能满足要求。采用AR参数模型对低压电弧故障进行检测,并给出回路识别参考矢量;采用小波熵分析电弧故障,指出若小波熵值大于0.002则可判定发生电弧故障;基于小波变换模极大值建立电弧故障神经网络模型,以实现电弧故障检测与分类。

注:输入参数的提取可以从一下三个方面:(1)负载正常工作时的电流特性;(2)开关插拔产生的正常电弧电流特性现实中我们在拔、插插头的瞬间也会产生电弧,它们持续的时间短,在瞬间就熄灭了,不连续也不影响线路中设备的正常工作,几乎不会因此产生火灾而威胁环境的安全;(3)故障电弧(接触不良)的电流特性。主要是由于线路绝缘层老化、绝缘损坏或者短路等原因而产生的电弧。这种电弧持续时间长,电弧燃烧时放出大量的热量,对周围环境存在极大的火灾安全隐患,是需要预防制止的电弧,也称为故障电弧。

一、采用高频特性的低压电弧故障识别方法(2016.6)摘要:针对不同类型负载的电弧故障,提出一种基于小波熵的电弧故障普适性检测方法。运用小波变换提取电弧故障发生时在电流过零点附近产生的高频信号,采用该高频信号的小波熵表征电弧故障的突变信息,并利用最小二乘支持向量机对小波熵进行分类,实现对电弧故障的有效识别。

引言:电弧故障是引起电气火灾的重要原因之一,传统的电弧故障检测方法多基于电弧产生的弧光、弧声、温度等物理参数,但是线路中电弧故障位置的不确定性限制了这些方法的应用。电弧电流测量的便利性使其成为电弧故障检测的理想参数。

传统电弧故障的识别方法主要基于电弧电流的谐波占有率分析法,小波提取电弧电流故障特征的时频分析法以及基于自回归模型参数的识别方法等。其局限性在于:因为电弧故障位置不确定,电弧电压无法测得;负载类型繁多且连接方式不同,难于可靠区分电弧故障与正常负载电弧。

本文运用小波分析提取电弧故障发生时电流过零点附近1.25 MHz~2.5 MHz 的高频信号,以此高频信号的小波能量熵作为识别参数,借助支持向量机对电弧故障信号进行识别,以期获得具有适应于大多数负载及负载混联时电弧故障识别的普适性检测算法。

1、实验平台搭建

主要由以碳,石墨棒和铜棒为电极的可调式电弧故障发生装置、隔离变压器、电流波形传感器、数据采集系统以及计算机。系统采样频率为 5MHz/s。

2.小波熵原理简介

2.1 小波变换

传统的在频域分析方法是傅里叶变换,但其不能反映信号的时域特征,发生电弧故障时信号产生短时高频冲击和微弱的波形突变,经傅里叶变换后,这些时域特征因积分而被踢出,因此傅里叶变换难以提取电弧故障有效信息。小波变换从时域和频域两个方面来反映电弧故障信号时频特征,可以用于辨别电弧故障时电流信号的微小变化。

二、采用小波熵的串联型故障电弧检测方法(2010.12.30)摘要:一些电气设备正常工作时的电流特性与故障电弧电流的典型特性相似,当设备或线路发生串联型故障电弧时,使得故障电弧的可靠诊断与检测十分困难。提出一种利用小波熵来反应故障电弧电流信号的能量分布,并由此提取故障电弧电流中瞬变信号的方法,实现对故障电弧电流信号中低能量瞬变信号的有效提取,从而为串联型故障电弧的诊断提供依据。

引言:故障电弧它经常发生在绝缘老化或破损的线路和设备中,或者在导体松弛连接等情况下发生。能够描述故障电弧的物理量有很多,比如温度、弧声、弧光、电弧电压等。用于测量这些物理参数的传感器必须安装在故障电弧发生点附近,本文提出以电弧电流作为故障电弧检测和分析的物理参数,提取能用于快速有效诊断故障电弧的特征量。

注:线性负载与非线性负载区别

二者表现出来的区别就是:“二者都施加正弦电压时,线性负载的电流是正弦的,非线性负载的电流是非正弦的。”

线性负载:故障电弧发生时,电弧电流会产生较明显的“零休现象”,而故障电弧发生前电流却不存在这种“零休现象”。可以采用小波分析算法及快速傅里叶变换实现快速诊断。

非线性负载:施加正弦交流电压时波形将发生严重畸变,出现类似前述的电流“零休现象”,因此很难直接利用这一电流特征来诊断故障电弧。利用多分辨分析小波分析理论。

1.小波熵原理简介

1.1 小波变换

在瞬变信号检测领域中,引入小波熵的概念,用来发现信号中微小的异常变化,能够对时频域上能量分布特性进行定量描述。小波熵值表征了信号复杂度在时频的变化情况。

三、低压系统串联故障电弧在线检测方法(2016.4)摘要:本文首先基于居民用电系统搭建了模拟串联故障电弧的实验平台,以常见家用电器为负载的实验方案并采集到不同条件下的故障电弧信号。基于电弧电流的特性分析。

引言:国内外电弧检测的方法大致可以归纳为三类:①建立电弧模型并通过检测相应的参量检测电弧;②根据电弧发生时所产生的弧光、噪声、辐射、温度等变化检测电弧;③根据电弧发生时的电流、电压波形变化检测电弧。

在家庭供配电线路中,开关操作频繁(正常工作电弧)、设备线路状况复杂,容易发生触头松动、绝缘老

化、击穿、接地故障(故障电弧)等问题,增加了故障电弧发生的概率。由于用电设备分散,利用电弧光、热等物理现象来检测电弧并不现实,适合利用线路电流的变化来检测电弧。

1、利用线路电流检测电弧研究现状

目前的检测方法可以分为三大类:一类基于电弧的某个或某些特征,如基于电弧电流畸变点的小波分析法,基于电弧电流高频谐波的傅里叶分析方法,基于电弧电流上升率的分形法,基于电弧随机性的差值-方均根检测方法;二是对电弧进行整体识别,已有的算法有模型参数法,支持向量机法,神经网络法;三是上述两种方法的组合,基于电弧电流波形的畸变性,通过小波变换的细节系数检测电弧电流的畸变点,进而检测出电弧。然而某些非线性负载正常工作时也存在相似的畸变点,不同负载下的细节系数阈值不统一,需要判断负载的类型;从整体识别的角度,使用神经网络算法对电弧信号进行训练,其特点是识别率较高,但是实时性差,需要对大量数据进行训练。把小波(包)检测和神经网络识别进行结合,以减少模式识别的数据量,提高了检测的实时性,然而其改善程度并不明显。

对燃弧前后的电流数据进行波形分析,在相邻周期波形相减的基础上,利用小波阈值消噪提取到故障电弧特征量,并应用软件对实验数据进行分析,结果表明该检测方法具有很高的识别率。

2、实验装置与数据采集

2.1实验装置

2.2数据采集

数据采集使用示波器,采样速率选择为 20k Hz,实验步骤如图 2所示,调节示波器的采样速率和延迟时间,使采集到的波形跨越正常、起弧、燃弧、熄弧全过程。

四、电弧故障断路器的故障电弧电流特性研究(实例)(2012.6)摘要:电弧故障断路器能够发现故障电弧,其工作的关键在于准确辨识故障电弧。研究故障电弧电流同正常电流之间的本质差异,通过不同的数学方法分析电弧和正常情况下电 流数据的特征,为识别故障电弧提供依据。

通过搭建的电弧实验平台,模拟线路中发生串联电弧时的状况,获得了分别单独以纯电阻、调光灯、空调、计算机和调光灯组合作为负载时各自的故障弧电流和正常电流的实测数据(不同负载的故障电弧电流和正常电流)。

对于实测数据,首先进行数据指标的分析,分析了负载在故障电弧和正常两种情形下电流有效值、平均值、峰峰值、平肩部百分比和电流上升率等数据指标之间的差异,找出同一负载两情形下这些指标下的特征。其次,运用傅里叶变换观察两种情况下的频谱特征,并比较发生故障电弧时奇次谐波含量和偶次谐波含量与正常情形时存在的差异。进一歩运用小波变换分析实验数据,根据分解重构后的误差值大小选择合适的小波基函数及分解层数,依据所选择的小波基函数对数据进行去噪声处理,信号故障点的判断,提取小波变换后的能量特征向量,并运用该特征向量作为小波神经网络的输入样本。傅里叶分析结果和小波变化分析结果的故障电弧神经网络辨识方法。

1、对于电弧的一般特性:

(1)电压和电流中均包含大量的高频噪声信号;(2)电压的波形类似于矩形波;

(3)电弧存在电降,因此对同一电路来讲,非电弧电流幅值一般大于电弧电流,线路存在补偿的情况除外;

(4)非电弧电流的上升率通常小于电弧电流;

(5)每过半个周期,电弧电流先于非电弧电流的零点前熄灭,后于非电弧电流的零点后重燃,在这个区域建立一段幅值接近零且变换不明显的区域,被定义为“平肩部”;

(6)电弧通常也是零星的、短脉冲间穿插着部分正常的电流。对电弧的检测可依据这些特性,研究合适的检测方法。

故障电弧电压电流波形

电弧普遍分为三种形式:串联电弧、并联电弧和对地电弧,如下图所示。若将第三种形式产生的电弧归纳到第二类中,此时分为串联弧和并联电弧。

电弧发生器及测量电路图:

电弧实验实物图:

安装电极部分:

铜棒电极和碳极:

2、实测数据及其处理

比较了两种电流数据的有效值、平均值、峰峰值、平肩部百分比及上升率的差异,即指标分析法。

一般纯电阻负载,正常情形的波形与发生电弧故障时的波形差异明显;但负载位60W和300W的调光灯时,波形变化不是特别明显。

3、数据的小波变换

傅里叶变换是一种全局的分析,因此无法表述信号的时频局部特性,而时频局部特性恰好又是非平稳信号最基本且关键的性质,稳定信号理想的处理工具还是傅里叶变换分析。傅里叶分析:将信号分解为不同频率的正弦波。

小波分析:将信号分解为不同尺度(比例缩放)、平移(起始位置)的小波。

连续小波变换的5个基本步骤:

1、选取一个小波,将其与原始信号的开始一段进行比较。小波基函数的选取可通过小波分解层数误差比较。

2、计算小波系数C,其值的大小取决于小波与选取信号段的相似程度,越相似其值越大。更精确的是若信号与小波能量都等于1,则C可解释为互相关系数。

注意:系数的大小与所选择小波的形状有关。

3、从左到右平移小波逐段重复步骤1、2的比较,直到完成整个信号的比较。

4、小波伸缩(尺度化),重复步骤1~3。

5、重复1~4步得到所有尺度下的小波系数。

离散小波变换:

连续小波变换的计算量非常大,费时。

第一部滤波:逼近和细节逼近成分对应大尺度低频分量,细节成分对应小尺度高频分量。原始信号S通过两个互补的滤波器得到两个信号A和D.使用的原信号为一叠加有高频噪声的实正弦信号,其分解原理图如下,在离散小波分析中采用二取一的”降采样技术”得到分别具有500点的小波系数cD和cA;

Matlab语句如下

s = sin(20.*linspace(0,pi,1000))+ 0.5.*rand(1,1000);[cA,cD] = dwt(s,'db2');db2为小波类型。

离散小波多级分解(Multiple-Level Decomposition)小波分解树(wavelet decomposition tree)

分解时对逼近系数进行反复分解.信号的小波分解:

小波重构:小波分解是小波分析的一半,与此相对的另一半是信号的小波重构(reconstruction), 或综合(synthesis)(无信息丢失).称为小波逆变换(IDWT).下图为信号的小波重构示意图:

由小波分解得到的小波系数重构信号。信号的小波重构涉及滤波和上采样 上采样:

小波重构中的上采样是在两原数据点间插入零值。

前面所述的是由小波分解系数重构原始信号, 与此类似, 我们也可由小波分解系数重构某一级的逼近和细节信号.单级重构

多级重构

滤波器与小波形状的联系:

在实际使用小波中,很少直接从构造一个小波开始,而是设计适合的镜像滤波器,进而选定小波函数计出波形.构造适合db2小波的低通重构滤波器L:

(1)低通滤波器系数可由Matlab中的dbaux命令得到;

(2)若反转该滤波器系数向量, 并且每一偶数样本乘以-1, 则可得到高通重构滤波器H’的系数.(3)H’上采样(H’系数间隔插零)

(4)上采样向量与原始低通滤波器卷乘

(5)若重复该过程几次, 即上采样并将结果滤波器向量与原始低通滤波器系数卷乘,则可得到以下图案.不难看出滤波器形状越来越接近db2小波, 这表明小波的形状完全由重构滤波器决定.二者的重要联系说明:

我们不能任意选择一个形状称之为小波并进行小波分析.至少当需要对信号进行精确重构时,我们不能选择任意的小波形状.我们必须选取由积分镜像分解滤波器所决定的形状作为小波.通过重复上采样并与高通滤波器进行卷积可得到小波函数(小波的波形——细节信号);重复上采样并与低通滤波器进行卷积可得到尺度函数的近似形状(逼近信号).小波的多级分解和重构可表示为

这一过程包括两个方面: 信号分解得到小波系数, 由小波系数重构原信号.4、小波变换后的特征量提取

进一歩的分析实验数据的特性,采用了提取特征量是比较好的方式,能使分析的结果更具普遍性。

通过对分解后的信号釆用单支重构,然后提取每层小波的能量。采用的提取各频段能量的计算公式如下所示:

其中为分解层数,对于本文中计算机数据能量特征提取,此时取为分解重构后的数据长度,近似信号的能量只需计算分解的最后一层信号的能量,即

而总的能量计算公式为:

因此,可得到信号小波变换后的特征向量为;

小波变换最重要的是在众多小波基函数中选择合适的小波基函数,文中给出了常见的小波函数,重点介绍了本文使用的小波函数,并比较了函数各个系列在不同分解层数下的误差,以此为参考,选择合适的分解层数对信号进行了层分解。

采用小波分析统计了负载信号分解后的能量,提取能量特征向量,进一歩说明数据在小波变换后的特征,同时,为后面的进行神经网络的判别提供训练和测试样本。

5、小波神经网络的基本结构(其模型精度具有争议)

小波神经网络是小波分析和神经网络相结合的产物,神经网络与小波函数结合方式 为紧致型结构,将神经网络隐含层中神经元的传统激发函数用小波函数来代替。

注意:

1、理论上讲任何一个连续的非多项式、常数函数都可以做为BP的激活函数,而且这都是已经在数学上证明过的问题。

2、但sigmoid函数相对其他函数有它自身的优点,比如说光滑性,鲁棒性,以及在求导的时候可以用它自身的某种形式来表示。

3、这一点在做数值试验的时候很重要,因为权值的反向传播,要求激活函数的导数。

4、多层就有多个导数,如果用一般的连续函数,这对计算机的存储和运算都是一个问题,此外还要考虑整个模型的收敛速度,我上面提到连续函数都可以做激活函数。

5、但是相应的Sigmoidal型函数的收敛速度还是比较快的(相同的结构前提下)。

6、还有就是BP在做分类问题的时候,Sigmoidal函数能比较好的执行这一条件,关于连续函数可以做激活函数的证明,可以在IEEE trans.on neural networks 和NeuralNetworks以及Neural Computating 和Neural Computation上找到。

五、电流型串联电弧故障检测(2013.10)

摘要:对低压配电线路电弧故障的特征进行分析研究,采用 Mallat 算法对低压线路电弧故障电流实施变换,获得各尺度小波变换的小波分量,与正常运行分量相比其故障特征明显,且高尺度的小波分量还可以抑制噪声干扰。还对启动电流和电弧故障的小波分量加以比较。引言:低压配电线路常因接触不良等而出现电弧故障,如果没有及时切断线路,可能导致火灾的发生而电弧故障电流通常在额定范围之内,传统的断路器无法将这类电弧加以准确检测。美国全国电气规程在 2008 年强制规定所有的家用线路都必须安装防火灾的 AFCI(电弧故障断路器),为了提高 AFCI 的可靠性,国内外学者提出了多种电弧故障检测的方法,用短时傅里叶变换分别分析了在阻性负载和计算机负载下,串联电弧电流的基频分量谐波分量变化的特征。采用小波变换对电弧故障电流加以分解结合 BP 神经网络提取故障辨识模式,而 BP 神经网络的实现需要较多的样本数据。采用 SVM(支持向量机)对电弧故障进行识别,该方法对阻感性负载有一定的识别能力。计算了电流上升率,通过判断相邻电流的波动程度以辨别额定工作电流和电弧故障电流。

根据国标 GB /T 7260-3-2003,电路中可以分为线性负载和非线性负载两类。上述这几种检测方法的辨识泛化能力不强,未能提出一种可适用于多类型负载的检测方案。本研究结合多分辨率分析对配电线路的电流信号实施小波变换,提出一种可以提取电弧故障时的特征,解决配电线路电弧故障与非线性负载正常运行的有效区分,同时防止了负载设备的启动电流引起误判断。

1、电弧故障检测方案与理论分析

1.1故障检测原理

实验线路采用一个自制的电弧发生器来模拟线路发生电弧的现象。将它和各种负载设备串联接入线路,以研究不同负载下发生故障电弧的特性。电弧发生器由一根可移动电极(铜棒)和一根固定电极(碳棒)组成。

1.2算法理论分析

利用 Mallat 算法实现小波变换进行电弧故障识别,即用不同的分辨率逐级逼近信号函 数:

其中: V 反映了电弧故障电流信号 f(t)的近似分量,W 反映了电流信号的细节分量,因电弧故障电流信号其频谱是有限的,如果选择足够大的尺度空间,可将电流信号用各个尺度下标准正交基的组合将其展开,即:

将电弧故障电流信号 f(t)按 Mallat 算法进行逐层二抽取分解,如图 3。d为不同尺度下分解出来的高频分量即小波变换值,其包含着电弧故障电流噪声和突变信号信息。而且随着尺度的增大,噪声引起的小波变换模的极大值迅速减少,而表征电弧故障的奇异信号的小波变换值便可突显出来。

2、电弧故障特征的提取

常见负载下,配电线路电弧故障电流一般伴随着几个明显的特征,如电流“零休”现象、电流正负半周不对称、波形失去周期性以及具有丰富的高频谐波等。为了有效地区分负载启动、正常运行与电弧故障状态,选用基于 db4 小波函数的 Mallat 算法快速分析来提取电弧故障特征值。

六、电气火灾故障电弧探测器的研究(2013)

摘要:建筑物低压配电系统中,现有预防电气火灾的保护装置,主要对过载、短路等引起的过电流及由接地故障产生的剩余电流起到检测作用。当发生易引起电气火灾的串联型故障电弧时,因故障电流值低于传统保护装置的动作阀值,不能全面、有效的预防电气火灾致使我国每年因电气故障引发的火灾,居其他原因引发火灾的首位。

对建筑物低压配电系统中,常引起电气火灾的故障电弧,我国目前还没有颁布明确的标准和规范;现有预防电气火灾的预警装置不能全面有效的检测配电线路上的“串弧”。基于上述原因,本文对建筑物低压配电系统中,易引起电气火灾的故障电弧检测技术进行研究。

1、故障电弧检测的研究现状

为了检测故障电弧,美国学者在年就设计研发出了一种故障电弧断路器(AFCI),该设备可以检测因短路,线路误接,线路老化等引起的故障电弧。加拿大大学的等研究人员在燃弧点附近放置相应的传感器,通过这些传感器来检测故障电弧所产生的电磁福射、噪声和热量,只有当这三种传感器同时都检测到故障信号时,才能确定系统中产生了电弧故障。

电弧电流的频域特性的发现使得在频域领域进行电弧故障的检测成为了可能。后来电弧检测中引入了傅里叶分解、神经网络、小波分析等算法。

由于故障电弧发生的随机性,对于故障电弧的检测具有一定的难度。由于温度,弧光,气压等传统的电弧传感器无法精准的检测到故障电弧的发生位置。另一方面一些电弧是非常微弱和短暂的,比如通常所说的“好弧”它无法导致火灾的发生,它不是本文所提出的故障电弧,这样就会加大我们的检测难度。

2、故障电弧的产生

故障电弧电流“零休”:当故障电弧发生时,在电弧电流过零点的前后一段时间里,故障电弧气隙之间的阻抗会变得很大,这是限制故障电弧电流值的一个重要因素。在电弧电流 的上个周期结束与下半个周期开始的这个时间里,电弧电流并不是一般的正弦波,而是另外的一个规律,那就是电弧电流等于电弧两端电压与电弧阻抗的比值。在这段过零点的一小段时间内,由于阻抗变大,故障电弧电

流就会限制的非常小,几乎为零。下一个半周期同样也会出现相同的现象,在这段时间里我们把这种电流近乎为零的现象称之为电弧电流的“零休现象”。

电弧的零休时间跟许多因素有着很大的关联,一方面,它与气隙内部相关,另一个方面,它与电路的电压,电流以及负载的类型相关。一般情况,电弧的“零休”时间会从几微秒到几十微妙。故障电弧的“零休”现象为故障电弧的研究提供一定的理论基础,也为故障电弧检测技术指出了研究方向。

3、故障电弧实验装置的构建

本实验装置的主要构造分为以下几块:220V(50HZ)纯净交流电源,电弧发生装置,数字示波器,电流传感器。

它包括一个静止的直径为6.4mm碳石墨电极与一个可以移动的铜质电极,静止电极接220V交流电,移动电极可以接至负载。首先可以将两个电极处于一个完全接触的状态,即是一个线路完全闭合状态,这样可以观察到接负载后供电线路的正常情况的电流特性,然后旋转右边的调节器,可以将活动电极慢慢移动使得它与静止电极慢慢分离,当它们的间隙到达的了一定的距离以后电弧就会发生了,电弧发生以后立即停止移动电极确保电弧持续发生。这时候可以观察在接入负载以后供电线路上产生故障电弧时的电流特性。

为了保证采样精度达到实验的要求,该数字示波器的主要参数设定如下表2.1所示:

电弧电流的波形会发生很明显的畸变。于是必须针对这个现象展开研究,观察在供电线路中故障电弧的电流特性会受到哪些因素的影响。本文在实验中将不同类型的负载接入实验的供电线路,然后观察和分析故障电弧产生时零休现象的变化情况。

在建筑电气中,大量的存在着阻感性的负载,所以本文在本次实验中选用阻性,感性,阻感性三种负载进行研究,实验的主要工作有以下几点:

(1)在纯阻性负载的情况下,故障电弧电流的基本特性;(2)在纯感性负载的情况下,故障电弧电流的基本特性;(3)在阻感负载的情况下,故障电弧电流的基本特性;(4)对比以上三种负载下故障电弧的差别与相同点。

4、故障电弧电流数据处理与分析

很多专家都提到,对于故障电弧的检测的难点就在于区分一些热拔插或者特殊负载造成的好弧与故障电弧的差别,因为从直观上看它们都会出现一些共同的特征,这就需要利用小波分析对这个零休时间做一个判别。

七、故障电弧检测的关键技术研究及断路器开发(2013.6)

1、故障电弧发展背景

据相关统计,仅大约电流产生的电弧温度即可达到2000℃-3000℃,足以引燃任何可燃物,而且当电压低至20V时,电弧也可稳定存在,难以熄灭。这种故障电弧常成为电气火灾的点火源。

发生故障电弧时,负载电流通常是非常小的,小于目前电力系统特别是广泛安装在低压配电领域的设备的过电流保护设定值,线路发生故障电弧不在保护的范围之中。所以检测故障电弧时,必须把它和设备正常工作电弧如电焊、电机旋转产生的电弧或开关电器、插拔电器时产生的电弧)的信号及其他相似信号区别开来,提供迅速有效保护的同时,防止误动作的发生,做到检测故障电弧的同时,不影响线路正常工作。

2、故障电弧实验平台

2.1波形储存设备

我们采用Tektronix公司的DPO3000系列的示波器,该示波器为4条通道、100MHZ带宽、所有通道上采样率可以达到2.5GS/s、所有通道具有5M的记录长度。示波器能将记录的点以excel的格式存储在外围储存设备中(如U盘、移动硬盘),如此我们就可以将采集到的数据利用Matlab等软件进行分析。

3、故障电弧实验数据研究分析

利用Daubechies 4阶小波变换在软件中对数据进行处理分析。

低频系数只是重绘了原始波形,波形与原始波形一样,电流值没有改变,只能反映故障电弧波形的概貌,并不能反映故障电弧细节特征;高频系数部分,正常电流和产生故障电弧时的电流波形对应的高频系数区别很明显:正常电流高频系数值很小,故障电弧高频系数在每个周期中都有很大的值,其值大小是正常电流高频系数的十到几十倍,我们可以通过这一特性来判断回路是否有故障电弧发生。

然而,在实际应用中,回路连接的负载各式各样,每种负载的内阻各不相同,这将导致回路中的电流大小也不相同,那么对应小波变换获得的高频系数值会因负载的不同而不同,这给研发适用于多场合、多用途的故障电弧断路器带来了新的挑战。

本课题中采取的解决方案是:在某时刻,利用已经计算得到的高频系数除以该时刻回路中的对应的电流值(等效于低频系数),利用获得的比值大小来判断回路中是否有故障电弧产生。这样做的好处在于无需考虑回路中接了何种负载,只需计算上述的比值就能判断回路中是否有故障电弧产生。

我们可以通过能量的角度来解释高频系数与低频系数比值的物理意义:经小波变换后的低频系数是原信号去除了高频信号后、反应信号概貌的部分;高频系数部分是原信号包含的突变信号、反应信号细节的部分;高频系数与低频系数的比值反应了在某个时刻,单位能量所含的突变信号量,即线路正常工作时,单位能量保护的突变信号很少,比值很小,而线路发生故障电弧时,单位能量中包含了较多的突变信号,比值较大。

八、故障电弧检测技术研究(2016.3)

1、国内外研究现状

针对故障电弧能够造成一系列的危害,由上海电器科学研究院负责起草,中华人民共和国工业和信息化部于 2013年12月31日发布了有关故障电弧检测装置的准则《电弧故障检测装置(AFDD)》。该准则规定:自 2014 年 7 月 1 日开始实施的 JB/T11681-2013适用于在所规定的条件下能够实现燃烧的故障电弧电流实现检测。同时该准则还将燃烧的故障电弧电流与火灾危险动作值比较,并适用于当燃烧的故障电弧电流超过动作时断开被保护电路等功能的装置。

另外由公安部沈阳消防科学研究所负责起草并于 2014 年 6 月 24 日发布了有关故障电弧检测装置的国家标准 GB14287.4-2014。该国家标准《电气火灾监控系统》的第四部分关于故障电弧探测装置于 2015 年 6 月 1 日开始实施。

表明了故障电弧防护技术的研究及其相应的断路器装置的研发与应用已经引起有关科研院所以及消防部门的高度重视。

目前有关故障电弧检测的方法大致上可以分为两类:一类是利用故障电弧发生时所产生的一些物理现象如弧声、高温、弧光、电磁波等特性来识别故障电弧。

另一类故障电弧的检测方法是利用故障电弧发生时线路中的电流、电压等电气特性异常来检测故障电弧。

2、小波分析理论与模式识别算法

2.1小波分析与故障电弧检测中的应用

(1)小波滤波和降噪处理。由于所采集的信号难免受到外界噪声的干扰,运用小波分析的方法能有效去除信号中的干扰,提高采集信号的可信度。

(2)信号的奇异性检测。对信号进行小波分解,小波系数的模极大值对应着信号的奇异点,利用这一性质可以检测信号的奇异性。

(3)信号熵的提取。对采集信号进行小波包子空间分解,提取各个频带的能量熵。根据被测信号在不同的小波分解层次上表现为奇异点位置为对应整齐的性质。此外它还能实现在强噪声污染情况下微弱信号的提取,并反映信号的能量分布情况。

3、故障电弧实验与分析

3.1改进 BP 神经网络的设计(将小波变换的模极值作为输入)

BP 神经网络在网络训练的方面还存在几点不足,特别是一些处理时间要求比较短的场合还需要做出改进。

BP 神经网络的缺点主要表现在:某些特殊问题训练时间有可能过长,若在训练过程中权值改变的幅度过大会导致激活函数趋于饱和,进而无法调节神经网络的权值。使用 BP 神经网络算法时,神经网络的权值收敛到的最终值并不一定是所期望的最优解,而有可能是局部极小值。另外还有遗忘旧样本。

九、故障电弧模式识别算法的研究(2011)

摘要:采集典型家用电器正常工作、开关断开、开关闭合、产生故障电弧时的电流波形和数据,利用小波分析理论提取能够描述串联型故障电弧特性的特征量作为神经网络的输入量,再用神经网络训练和检验建立的网络模型,进而实现故障电弧的模式识别。

1、小波函数的选择(难点)

目前有几十种小波函数,而且人们还在不断构造新的小波函数和相应的小波滤波器来满足不同小波分析应用的需要。各种小波函数性质各异,有的适合理论推导,如小波、高斯函数小波类有的更适合计算有的时域上有一较长的支撑有的可以得到完全重构有的则不能实现原信号的恢复。

然而,由于小波函数针对不同的工程应用表现出的特性具有复杂性,小波函数的选择目前也是小波分析理论研究的难题,按什么样的原则能够选择最优的小波函数还没有有效的方法。

一般用枚举法来挑选合适的小波(进行比较),当然这种选择不一定是最优的。合理地挑选小波基函数主要应从以下几个方面来考虑:(1)紧支性;(2)消失矩;(3)正则性;(4)对称性。

2、小波变换的时频域特性分析

小波变换的高频部分有较高的时间分辨率和较低的频率分辨率,而它的低频部分有较低的时间辨率和较高的频率分辨率。

3、基于小波变换和神经网络的故障电弧模式识别

3.1特征提取

从实验所得到的电弧电流波形,我们可以看到电弧电流在过零点时有一个明显的“零体”区间,而且由于负载和电弧燃烧情况不同,电弧电弧电流信号波形有一明显的突变。

3.2提取特征量

本文用离散小波变换来处理数据。小波重构信号能精确地反决原始信号在时频域上的变化情况,而小波能量谱能反映各个频段能量在总能量中所占比例。

3.3小波函数类型选择

小波函数类型的选择。一般选择与输入波形最匹配的基木小波。提出如下选择方法对于给定输入信一号,首先使用不同基本小波进行小波分解然后对各尺度上的小波系数进行阈值处理,低于阈值的小波系数置零最后选取非零小波系数个数最少的基本小波作为分析用小波。本文用实验样本在不同的小波基函数和分解层数下分解并重构,通过比较它们重构信号和原始信号的偏差来确定最佳的小波基函数和分解层数。

十、光伏系统直流电弧故障特征及检测方法研究(2016)

思路介绍:串联电弧的能量大,对线路和设备危害极大,且易引发火灾事故;但目前的低压断路器、熔断器等装置仅能对过流、短路等故障进行检测和保护,不能对电弧故障起作用,由于串联电弧故障电流较小,难以被保护装置检测到,所以需设置额外的故障电弧检测装置。

在电弧故障发生时,电弧两端的电流会瞬间下降,而两端的电压会瞬间提高。电弧故障发生时,常伴随有某一特定的高频信号,在正常工作情况下该高频信号并不出现,一旦该信号出现,则表明存在电弧故障。不同负载及连接方式不同通常高频信号也会有很大差异,所以需要建立精度较高的模型。

十一、基于改进小波变换的故障电弧检测方法的研究(2016)

1、故障电弧检测方法

在故障电弧的研究和检测方面,国内外主要有三类研究方法:第一类,建立相应的故障电弧数学模型;第二类,利用故障电弧产生时的物理特性作为检测的依据;第三类,利用故障电弧的电压、电流特性作为检测的依据。

上述方法不足:第一类方法数学模型的建立可以使故障电弧检测更加精密,但是需要建立纯粹的数学模型,很多故障电弧的参数无法准确的获得;第二类方法简单易行,但是这类检测方法有一个弊端: 需要将检测的设备安装在故障点的附近,这样才能准确无误的进行检测;第三类方法就是对电力线路中的电流信号进行分析,用快速傅里叶变换、小波分析、小波熵等算法对电流信号进行分析。这类方法通过监测线路中的电流信号,利用不同的检测算法提取故障电弧特征,方法简单、实用,但是缺少故障辨识模型。

十二、基于小波变换的电弧故障检测技术研究(2012.12)

摘要:电弧故障检测是一项线路保护技术,其主要功能是当发生故障电弧时能及时准确地识别出故障电弧并采取一定的措施保护电路,采用这种技术的保护装置叫故障电弧断路器(AFCI)美国发展比较成熟,国内电弧故障检测技术的研究起步晚,AFCI产品在国内市场几乎一片空白。

国内低压配电环境与国外低压配电环境不同,电弧故障检测方法和检测标准不能生搬硬套。本论文针对电弧故障检测技术展开研究,根据研究故障电弧的特性,提出电弧故障检测技术方法,能对常见负载线路出现故障电弧时有比较准确的识别率,同时对线路正常工作时有较低的误判率。

十三、基于小波分析和神经网络的模拟电路故障诊断(2012.4)

1、小波包分解法

多分辨率分析和Mallat算法满足了在某些领域里的信号处理需求,但是其对信号的时频分析仅能在信号的低频段以尺度函数的二进制变换进行分解重构,忽略了高频段,使其不适合应用在有特殊需要的情况。而小波包分解对正交小波变换做了一些改进,是更为精细的一种频带分解与重构方法,能对信号低频和高频同时分解,并且能够给出最合理的小波分解树,自适应地呈现了信号在不同频段应有的合理时频分辨率。

2、多分辨率小波变换与小波包分解的比较

小波分析在高频段的频率分辨率较差,在低频段的时间分辨率较差,为了克服这个缺点,人们在小波分解的基础上提出了小波包分解。小波包分解能够对信号高频率做分解变换,信号的时频分辨率得以提高,符合故障诊断特定情况的信号处理需求。

正交小波分解的过程是原始信号分解成低频和高频成分,然后将低频成分再分解为两部分,分别对应于一个近似系数向量和一个细节系数向量,继续对低频成分分解到具体操作者规定的层数,连续两层的近似系数中缺失的信息由两层中的下层细节系数补充,但是每一层的细节系数向量都不做分解。假使特征频段在高频信号中,则找不到特征信息了。

小波包分解不仅对低频部分做分解变换,而且对每一层的细节系数向量也使用类似于近似系数向量分解的方式再一分为二,高频部分分解的层数与低频部分一样多,便于找到高频成分的有效特征。

3、基于多分辨率分析和小波包的特征量提取

多分辨分析:提取第一层到第N 层的高频小波分解系数,计算总能量。

小波包:提取2个低频到高频系数。进行重构再计算总能量。N十四、一种基于小波变换能量与神经网络结合的串联型故障电弧辨识方法

(2014.6)

摘要:针对交流串联型故障电弧发生时回路电流幅值较小、传统线路保护装置不能有效检测的问题,提出一种基于小波变换能量与神经网络结合且适用于多种典型负载的串联型低压交流故障电弧辨识方法。

利用自制的电弧发生装置模拟产生低压交流故障电弧,获取了 6 种典型家用负载情况下电路正常运行及产生串联型故障电弧时回路的电流信号。对采集的信号进行小波分解,将各层细节信号能量的平均值和标准差输入 BP 神经网络后构成小波神经网络,实现对不同负载测试样本的辨识。采用粒子群优化算法计算神经网络训练初始值,利用自适应学习率方法提高了训练速度。算法输出结果含义明确,输入层特征量选取合理。实验结果表明,采用该方法进行故障电弧辨识的准确率达到 95%以上。

正常工作电流波形、故障电流波形:线性负载(阻性)、非线性负载(开关电源、容性和感性)。

第三篇:月度故障总结分析

七、八、九月份故障分析与总结

三个月以来,预处理出现的故障较多,主要列举以下:

一、7月1日,出现钢丸清扫不干净。

随即厂家技术人员到厂调试,发现原因为吹丸管口的胶皮过长,阻止了钢沙的回吹,后经剪短胶皮帘子后问题得到解决。

二.7月7日,四号抛丸器堵沙。

此问题是到现在为止都一直存在,并且未得到解决。在此期间,多次堵沙,也多次寻找原因,现有以下分析:

1、由于操作工在停车时会比较容易出现堵沙,故怀疑是由于抛头电动机停止转动后抛头里仍存有钢沙,所以厂家人员决定更改程序,在停止下沙后15秒,电动机才停止。情况随即得到改善,但仍会堵沙。

2、故又怀疑为下沙管气动控制阀关闭不严,但打开抛头盖子没有沙子流下,故排除该原因;

3、最近察觉4#电流有所偏大,故猜想为下沙控制板的开口由于摩擦变大,故下沙量有所增大,此原因还在观察中。

三.7月中旬到8月初喷漆系统出现各种不同的故障,如喷漆不止、喷漆中间有间断等。

1、喷漆不止,其原因是电磁阀不回位,造成无法停止;

2、中间断喷,起初是怀疑为传感器出现故障,但更换传感器后仍然出现此现象,故又怀疑为线路问题,但检测的时候却是正常,经过讨论决定并线实验,结果情况好转。一段时间后,又会重新出现相同的问题,故决定换线,但由于第一次更换的线的质量问题,仍然断喷,在更换电缆线后问题得到解决。

四.8月2日起至8月19日,预处理出现了严重的故障:打板质量不合格。具体处理经过为:

第一阶段(2011年8月2日至4日)

1、问题:钢板处理的不干净,质量不合格。

2、处理情况:点检员和工程师分析后对抛丸器进行了微调。

3、处理结果:打板质量仍未好转,等待厂家到厂维修指导。

4、应对措施:联系厂家到厂维修指导。第二阶段(2011年8月4日至6日)

4日新加钢丸6吨(厂家生产:****金属制品有限公司的高耐磨合金钢丸)

1、问题:配合厂家解决钢板处理不干净的问题;提升电动机报警。

2、处理情况:对7、8、9号抛丸器角度进行调整,紧固提升电动机接近开关。

3、处理结果:提升电动机正常工作,打板质量不佳。

4、应对措施:厂家人员(丁师傅)分析废弃沙子过多所致,其打板效果会随着打板的不断进行越来越好。

第三阶段(2011年8月6日至8日)

1、问题:试验过程中发现横向收丸螺旋输送机轴发出异响。

2、处理情况:处理横向收丸螺旋输送机,调整链条松动及链盒摩擦现象。

3、处理结果:7日至8日受台风影响未能正常施工。

4、应对措施:组织检修拆卸电动机及连接轴。第四阶段(2011年8月9日至11日)

1、问题:9日发现2号抛丸器主轴过热,10日又发现收丸刮板运行不正常(连接轴)。

2、处理情况:

1)、9日联系焊工焊接吊鼻以便于安装主轴,更换2号抛丸器主轴。2)、10日下午电动机拆卸发现连接轴断裂,委托集配处机加工人员重新加工连接轴,重新加工连接轴,11日处理完。

3、处理结果:2号抛丸器主轴温度正常,收丸刮板电动机螺旋轴正常工作。第五阶段(2011年8月12日至16日)

12日新加钢丸2吨(厂家生产:****属制品有限公司的高耐磨合金钢丸)

1、问题:钢板处理出现带状明显未处理到,处理中发现抛丸器叶片磨损及分丸轮破裂;处理过的钢板表面灰尘较多。

2、处理情况:

12日下午厂家人员(3人)指导调试解决钢板处理质量问题。1)、叶片和分丸轮更换; 2)、增加“抛丸粗细二次分离器”功能; 3)、除尘器滤筒清理干净。

3、处理结果:钢板处理质量有很大改善,板面处理均匀、表面灰尘覆盖较少,少数区域仍然不合格。

4、应对措施:与厂家技术人员进一步调整。第六阶段(2011年8月17日至19日)

新加钢丸(品牌名)2吨。

1、问题:喷枪喷漆不止,喷漆时有断喷现象。

2、处理情况:拆卸喷枪,更换质量较好的电线。

3、处理结果:喷漆工作正常,预处理线处理钢板质量和喷漆效果符合质量标准。

五、比较多的人为故障:如上下料液压站被吊车撞坏、上料横移电动机被砸变形、刮板被撞毁、下料辊道挡板及侧滚多次被撞开焊、吹丸上风口被撞开焊等,均为可以避免的故障。

第四篇:《仪器分析》仿真实验

仪器分析实验仿真实验

紫外分光光度计仿真实验

一、实验概述:

在分之中,除了电子相对于原子核的运动之外,还有原子核之间振动和转动引起的相对位移。这三种运功能量都是量子化的,对应有一定的能级。分子的能量是这三种能量的总和。当用一定频率(波长)的电磁波(光)照射分子,其能量恰好等于分子的两个能级差时,则分子就会吸收光的能量而由较低的能级跃迁到较高的能级,同时光的强度(能量)变小。吸光度符合吸收定律:

A=lg(I0/I)=KcL 根据这一关系可以用工作曲线法来测定未知溶液中吸光物质的浓度。

二、实验装置:

仪器调节面板:

本实验仿真的设备是UV-754C紫外可见光风光光度计,它具有卤钨灯(30W)、氘灯(2.5A)两种光源,分别适用于360~850nm和200~360nm波段,采用平面光栅作色散元件,GD33光电管作接受器。

三、实验操作: 第一步:选取实验

点击主菜单上的“实验选取”,会出现如下的对话框:

用鼠标左键点中你要做的实验,此文件名会出现在对话框的“文件名”一栏的文本框中,在此实验文件上面双击左键或者点击“打开”按钮打开实验文件。

第二步:打开电源、预热

用鼠标点击紫外分光光度计上的暗箱盖,暗箱盖会自动打开,如下图所示:

然后用鼠标点击仪器右下角的红色电源开关接通电源,这是仪器调节面板会自动显示,并进入开机自检状态,此状态大约持续10秒左右,在这段时间里计算机出现停滞现象是正常的.随后计算机进入预热期, 时间大约为1分钟(真实仪器为20分钟)。预热结束时会听见蜂鸣声,并且会看见预热按钮上方的灯熄灭此时仪器就进入工作状态了。

关状态:

开状态:

第三步:配置试液

用鼠标点击主菜单中的“配置试液”按钮,出现配置试液窗口:

用鼠标点击下面5个容量瓶,选择每个容量瓶要加入的蒽醌标准溶液量,系统会自动稀释到刻度线:

5个容量瓶的溶液都配置好以后,点击窗口右下角的箭头进入下一步。

第四步:确定吸收波长

点击试液配置窗口右下角的箭头后,系统会显示如下窗口,自动测量完成了吸收光谱图: 3

点击文字中的“吸光度——波长曲线”到吸收光谱图窗口,再点击“绘制吸收光谱”按钮就可以看到蒽醌的紫外吸收光谱图:

记录下最大的吸收波长,关闭此窗口,然后进行下一步

第五步:调节吸收波长

用鼠标点击紫外分光光度计上的波长调节位置,出现波长调节窗口,用鼠标左键或者右键点击波长调节旋钮来增大或者减小波长到刚才记录的最大波长。

第六步:仪器调节面板

点击调出仪器调节面板

点击按钮打开氘灯,依次点击、、按钮关闭钨灯,点击到T,然后按下 按钮,等待数字显示平稳后,点击到A。

调节完成后的面板如下图:

第七步:将样品装入吸收池架

点击主界面上的吸收池架调出吸收池画面:

吸收池架有四个位置,在测量时分别对应仪器调节面板的上的“参考”、“1#”、“2#”、“3#”四个指示位置。把鼠标停留在上面6个容量瓶上,下面会显示相应的说明。点击每个位置选择要加入的溶液:

加入溶液后,窗口右下角会出现箭头提示放入暗箱,点击系统会将吸收池架自动放入。

第八步:测量

点击调出仪器调节面板以便读取吸光度数据,然后前后拉动拉杆将不同的溶液放进光路中,从仪器调节面板上读取吸光度数据,系统会自动记录。

按照以上方法把六组数据测试完毕。

第八步:实验数据处理

六组数据测试完毕后,点记主菜单上的“实验数据”按钮,调出数据处理窗口,在工作曲线页点击“绘制工作去先”按钮,系统会自动绘制工作曲线,并根据工作曲线给出待测溶液的浓度。

如果计算机安装了打印机,可以点击右上角“打印报表”按钮打印实验报告。

第十步:实验完毕

取出暗箱中的吸收池,关闭暗箱,关闭电源。然后清洗吸收池、整理现场。

原子吸收分光光度计仿真实验

一、实验概述:

原子吸收分光光度分析法又称原子吸收光谱分析法,是根据物质产生的原子蒸气对特定波长的光的吸收作用来进行定量分析的。

与原子发射光谱相反,元素的基态原子可以吸收与其发射波长相同的特征谱线。当光源发射的某一特征波长的光通过原子蒸气时,原子中的外层电子将选择性地吸收该元素所能发射的特征波长的谱线,这时,透过原子蒸气的入射光将减弱,其减弱的程度与蒸气中该元素的浓度成正比,吸光度符合吸收定律:

A=lg(I0/I)=KcL

根据这一关系可以用工作曲线法或标准加入法来测定未知溶液中某元素的含量。

在火焰原子吸收光谱分析中,分析方法的灵敏度、准确度、干扰情况和分析过程是否简便快速等,除与所用仪器有关外,在很大程度上取决于实验条件。因此最佳实验条件的选择是个重要的问题。本实验在对钠元素测定时,分别对灯电流、狭缝宽度、燃烧器高度、燃气和助燃气流量比(助燃比)等因素进行选择。

二、实验装置:

本实验仿真的设备是AA320型原子吸收分光光度计,主要设备参数如下: 波长范围:190.0~900.0 nm 光栅刻线:1200 条/mm 闪跃波长:250 nm 线色散倒数:2.38 nm/mm 狭缝宽度1~6档对应的nm数分别为:0.2,0.4,0.7,1.4,2.4,5.0 8

原子吸收分光光度计的放大图:

三、实验操作: 第一步:选取实验

点击主菜单上的“试验选取”,会出现如下的对话框:

用鼠标左键点中你要做的实验,此文件名会出现在对话框的“文件名”一栏的文本框 中,在此实验文件上面双击左键或者点击“打开”按钮打开实验文件。

选取实验后回到实验主界面,窗口上面的标题栏会显示实验名称+实验文件名称。第二步:打开电源

在主界面上用鼠标点击原子吸收分光光度计,会出现原子吸收分光放大图,用鼠标点击右下角的总电源开关打开电源。

第三步:打开空气压缩机电源开关

打开原子吸收分光光度计的总电源开关后,用鼠标点击窗口右下角的“返回”按钮回到主界面,然后点击空气压缩机,会出现空气压缩机窗口,如图所示:用鼠标点击空气压缩机电源开关打开电源,电源上面的指示灯会亮起来。

打开电源开关后,关闭空气压缩机的窗口回到主界面。

第四步:选择阴极灯 回到主界面后,点击原子吸收分光光度计出现原子吸收分光光度计放大图,用鼠标点击左上的阴极灯箱,会出现阴极灯窗口。

10

做实验时要根据待测元素的不同选择相应的元素灯。用鼠标左键点击左上角的阴极灯的种类,会出现阴极灯选择画面:

用鼠标左键点击要选的阴极灯,然后点击阴极灯电源开关接通电源,灯被点亮。关闭此窗口回到原子吸收分光光度计画面,然后进行下一步。

11

第五步:粗调节阴极的灯电流

点击原子吸收分光光度计上的阴极灯电流指示位置,会出现阴极灯电流调节窗口:

在调节旋钮上点击鼠标左键增大电流,点击右键减小电流。根据实验要求,调节电流再8~11mA之间。然后关闭电流表调节窗口,回到原子吸收分光光度计画面。

第六步:波长扫描

用鼠标点击原子吸收分光光度计右下的波长扫描按钮,左边白色的按钮是在一定范围内自动从大到小扫描,灰色按钮是在一定范围内自动从小到大扫描,系统会自动扫描找到最合适的波长。

第七步:调节多功能面板

用鼠标点击原子吸收分光光度计右上的多功能面板,出现多功能面板的放大图。

12

多功能面板上的调节旋钮用鼠标左键点击逆时针旋转,用鼠标右键点击顺时针旋转。调节“方式”到“调整”档,然后关闭多功能面板窗口回到原子吸收分光光度计画面。

第八步:调节阴极灯位置

用鼠标步左键点击原子吸收分光光度计右下的能量表,会出现能量表的放大图,用鼠标点中能量表窗口的蓝色标题栏,然后按住左键移动鼠标,窗口就会跟随鼠标的轨迹移动,按照此方法把能量表窗口移动到屏幕靠边上的位置。然后用鼠标点击原子吸收分光光度计的阴极灯箱,出现阴极灯调节窗口。此时应调节窗口的位置,使得在调节阴极灯位置的时候可以看到能量仪表。

13

分别在垂直和水平方向上调节阴极灯的位置,使得获得的能量最大,调节的时候一定要反复多试几次,如果在最大点位置附近移动一两下不好调准,可以先移动到最大点位置比较远的地方再向回调,如此反复几次,找准最大能量的位置。如果调整到最大能量后能量表指针偏出了红色区域,可以用增益旋钮调节使指针回到红色范围。调节好以后,关闭阴极灯窗口。不要关闭能量表窗口。

第九步:微调波长

用鼠标点击原子吸收分光光度计的波长微调旋钮,左键增加,右键减小,使获得最大的能量输出。如果调整到最大能量后能量表指针偏出了红色区域,可以用增益旋钮调节使指针回到红色范围。不要关闭能量仪表,进入下一步。

第十步:调节狭缝宽度

点击原子吸收分光光度计右上的多功能面板,调整多功能面板窗口和能量窗口的位置,使得再多功能面板上操作的时候能够看见能量窗口。

14

用鼠标点击狭缝调节旋钮,左键点击逆时针旋转,右键点击顺时针旋转,调节需要的狭缝宽度,一般情况下狭缝越小,能量越小,太小的能量不利于测定,狭缝越大,能量越大,但是可能会引起光谱通带的增加而产生其他共振线的吸收而影响实验结果,因此狭缝的宽度要根据具体实验来定。选择好狭缝宽度后,如果能量表的指针偏出红色区域,可以用增益旋钮调节使指针回到红色范围。调节好以后,关闭多功能面板和能量表,然后在原子吸收分光光度计画面上点击右下角的“返回”按钮返回到主界面。

第十一步:打开乙炔钢瓶

在主界面上点击乙炔钢瓶,会出现乙炔钢瓶的放大窗口。

先打开乙炔总阀,用鼠标左键点击乙炔总阀,总阀会自动打开,再次用鼠标左键点击后自动关闭。然后调节乙炔支阀,左键点击增加开度,右键点击减小开度,调节支压力表的压力到足够大。在真实实验中,如果支阀压力太小,可能造成火焰无法点燃,建议压力不小于0.15Mpa。调节完成后,关闭乙炔钢瓶窗口,回到主界面。

第十二步:接通气路、点火

在主界面上点击原子吸收分光光度计,出现原子吸收分光光度计放大图。用鼠标左键点击原子吸收分光光度计中间下部的气路开关部分,出现气路开关放大的窗口,从左到右依次点击打开各个开关,然后关闭窗口。

15

打开气路开关以后,关闭气路开关窗口回到原子吸收分光光度计画面,用鼠标左键点住点按钮几秒钟,火焰即被点燃。

注:真实实验中,点火前要先进行室内排风,本实验忽略了这一环节。

第十二步:调零

打开原子吸收分光光度计右上的多功能面板,点击“方式”旋钮使调整到“吸光度”位置后,关闭多功能面板。点击主窗体左边的菜单中的“溶液选取”按钮或者右下角的溶液烧杯选取溶液

点击“溶液选取”框内的下拉条,选取“空白样液”,然后点击窗口下部的“选取”按钮,系统会将所选的溶液自动喷入雾化器。

16

点击原子吸收分光光度计右下的调零按钮进行调零,左右两个键功能相同。

第十三步:调节燃烧器位置

任意选取一份在线性范围的标准对比样液

点击“选取”按钮自动喷入雾花器后,仪器会现实一定的吸光度值,此时点击原子分光光度计中下部的燃烧器位置调节旋钮,两个旋钮中上面的是调垂直位置,左键点击燃烧器向下移动,右键点击向上移动,下面的旋钮是调水平位置,左键点击向右移动,右键点击向左移动,调整的同时密切注意吸光度的变化,找到吸光度最大的位置。

17

第十四步:微调阴极灯电流

同时打开能量表和阴极灯电流表,调整两个窗口的位置,使得在调节电流表的时候可以看到能量表和吸光度值

微调阴极灯电流的原则是:在保证有足够且稳定的光强输出条件下,选择低的工作电流,没有特别的数量限制,根据实验要求而定,一般是先选定大致的测量条件,然后选定一个大致的灯电流的范围,然后喷入标准溶液,在选定的灯电流范围内每隔1~2mA测量一次,计算 18

平均值和标准偏差,并绘制吸光度与灯电流的关系曲线,选取灵敏度高、稳定性好的条件为工作条件。对于本实验,10mA为最佳值,省略了选择的过程。如果调整电流后能量表指针偏出了红色区域,可以用增益旋钮调节使指针回到红色范围。调节好以后,关闭能量表和阴极灯电流表。

注:在实验中调节阴极灯的电压、电流以及能量增益按钮都可以改变能量输出值的大小;实际上,在新式的阴极灯中,一般没有电压调节钮,它的能量增益钮能自动控制电压。

第十三步:调节空气和乙炔的流量

用鼠标点击原子吸收分光光度计左下的空气和乙炔流量调节位置出现空气和乙炔的流量调节窗口,调整窗口位置,使得在调节空气和乙炔流量的时候可以看到吸光度数值,左边的转子流量计指示空气的流量,右边的转子流量计指示乙炔的流量,左边的旋钮调节空气的流量,右边的旋钮调节乙炔的流量。首先固定空气流量(具体值由实验确定),改变乙炔流量,使当前液指示吸光度最大。接着固定乙炔流量,改变空气流量,使当前液指示吸光度最大。

第十四步:样品测试和数据记录

前面已经把仪器调节好,不要在改变实验条件,打开多功能面板,把“信号”旋钮转到“积分”位置(由于吸光度的值一直在变化,旋转“信号”旋钮到“信号积分”位置,这可使变化速率变慢)。点击左边菜单的“溶液选取”或者烧杯选择溶液,依次测量各标准溶液和未知溶液,且在每次测试前都要用空白样液校零。每测量一种溶液后,要记录数据,点击左边菜单的“试验数据”按钮打开数据记录窗口,按照所列的项目依次读取数据并写入数据,然 19

后点即“取消”按钮关闭记录窗口。

测量并记录完最后一组数据后,点击数据记录窗口上的“试验报告”按钮进入实验数据处理。

第十五步:数据处理

记录完最后一组数据后,点击“试验报告”按钮,出现实验报告界面:

20

此时就可以根据实验数据确定待测元素的浓度。如果计算机安装了打印机,可以点击右上角“打印报表”按钮打印实验报告。

第十六步:实验完毕

实验结束后,吸入去离子水2~3min,先关乙炔,再关空气。

关闭灯电源开关及总电源开关,将仪器上各旋钮转至零位,最后关闭通风装置电源。

21

气相色谱仿真实验

一、实验概述:

实现色谱分离的先决条件是必须具备固定相和流动相。固定相可以是一种固体吸附剂,或为涂渍于惰性载体表面上的液态薄膜,此液膜可称作固定液。流动相可以是具有惰性的气体、液体或超临界流体,其应与固定相和被分离的组分无特殊相互作用(若流动相为液体或超临界流体可与被分离的组分存在相互作用)。

色谱分离能够实现的内因是由于固定相与被分离的各组分发生的吸附(或分配)系数的差别,其微观解释就是分子间的相互作用力(取向力、诱导力、色散力、氢键力、络合作用力)的差别。

实现色谱分离的外因是由于流动相的不断流动。由于流动相的流动使被分离的组分与固定相发生反复多次(达几百、几千次)的吸附(或溶解)、解吸(或挥发)过程,这样就使那些在同一固定相上吸附(或分配)系数只有微小差别的组分,在固定相上的移动速度产生了很大的差别,从而达到了各个组分的完全分离。

二、实验装置:

本实验仿真的设备是GC102型气相色谱仪,该产品为实验室用的填充相气相色谱仪,具有热导、氢焰二种检测器,定温控制恒温槽及气流控制装置。主要设备参数如下: 检测器灵敏度:热导池:S≥1000mVml/mg;载气H2样品C6H6

-氢焰:Mt≤1×1010g/sec;载气N2样品C6H6

检测器稳定性:基线漂移:≤0.05mV/h 层析柱恒温室:室温+40℃-300℃ 恒温精度:±0.3℃

22

有效区最大温差:2℃ 气化室:最高400℃

气相色谱仪各部分介绍:

三、实验操作: 第一步:选取实验

点击主菜单上的“实验选取”,会出现如下的对话框:

用鼠标左键点中你要做的实验,此文件名会出现在对话框的“文件名”一栏的文本框 中,在此实验文件上面双击左键或者点击“打开”按钮打开实验文件。

选取实验后回到实验主界面,窗口上面的标题栏会显示实验名称+实验文件名称。

第二步:确认操作条件

点击主菜单上的“操作条件”,会出现如下的操作条件列表:

23

在实验调节过程中,请以此列表内的条件为准进行调节,否则不能正确输出色谱峰。

第三步:开载气

用鼠标点击实验主界面上三个气体钢瓶中的载气钢瓶,出现钢瓶的调节阀画面:

当阀关闭时,用鼠标左键点击打开,当阀打开时,用鼠标左键点击关闭。打开总阀和减压阀,注意开关阀门的顺序。

第四步:检查柱前压力

点击气相色谱仪上的柱前压力表,查看柱前压力是否符合操作条件。

24

注意:在仿真实验中,柱前压力都默认是正确值,在真实实验中,应该根据实验的具体要求用钢瓶的减压阀调节柱前压力。

第五步:调节载气流量

点击气相色谱仪上的流量调节部分,会出现流量调节器和皂膜流量计。

一般气相色谱仪的流量调节部分都有三个调节器,分别控制载气、氢气、空气(后两者用于FID检测气),但是转子流量计的指示都不是很准确,因此都要加一个皂膜流量计来进行精确的测定。界面上的三个流量调节旋钮,左键点击增加流量,右键点击减小流量,调节到一定开度后,转子流量计中的转子上升到了一定的高度,此时用鼠标左键点击皂膜流量计的橡皮头,产生一个皂膜,被载气推动由下向上运动,记录皂膜通过一定体积的时间就可以求出载气的流量,载气的精确流量在上面自动计算显示出来。在仿真实验中,为了简便,用皂膜流量计测量过一次以后,以后再调节流量调节旋钮时,精确流量就会自动显示,不用反复测量,在真实实验当中,是每次都重新测量的。

调节载气流量到实验操作条件要求的数值,然后进行下一步。

第六步:打开电源

用鼠标点击打开气相色谱仪上的电源开关。

关的状态:

开的状态:

第七步:调节温度

用鼠标点击气相色谱仪的温度调节步部分,出现温度调节详细画面。

25

调节温度时,用鼠标点击相应数字位上的“+”或者“—”,该数字位就会加1或者减1。按照实验操作条件要求分别调节柱室(柱温)、进样器(气化室温)、离子室(离子室温)的温度,注意:柱室的温度是X1的,而进样器和离子室的温度是X10的。

第八步:调节TCD参数(如果用FID检测器,此步应该调节FID参数)

用鼠标点击气相色谱仪上的TCD调节面版。

首先用鼠标点击电源开关接通电源,指示灯亮。然后根据实验的要求选择桥电流和衰减比。如果电流表指示的电流稍有偏差,可以用“电流微调”旋钮调节。“零调”旋钮可以用来调节记录笔在记录纸上的位置,粗调位置变化大,细调位置变化小。然后点击落笔开始走基线。

调节好各项参数,基线走平稳后,可以进行下一步——“进样”。

注意:对于使用FID检测器的实验,此步应该调节FID参数,如下图:

26

然后还要开氢气、压缩空气(助燃气),点火等步骤。

第九步:进样

所有的实验参数调节好之后,点击主界面上的注射进样器,出现如下对话框:

输入实验操作条件规定的进样量,然后点击“开始进样”按钮。系统会自动注射进样,记录仪开始画出色谱图。

当色谱峰输出完成后,会出现如下对话框:

点击“确定”按钮关闭对话框。

第十步:数据处理

27

点击主界面上的“实验数据”按钮,出现实验报告界面:

根据得出的保留时间、峰高、半峰宽等实验数据,可以计算分离度等相关参数。如果计算机安装了打印机,可以点击右上角“打印报表”按钮打印实验报告。

第十一步:实验完毕

在真实实样当中,实验完毕半小时后,按开机步骤反方向关机:

1、关闭记录仪电源,台起记录笔

2、将桥电流关至最小,关闭热导电源和氢火焰离子放大器电源

3、依次将柱室、进样器、离子室的温度调节至常温

4、关闭总电源

5、打开柱室,等柱温接近室温时,关闭载气。

6、最后清洗进样器。

28

高效液相色谱仿真实验

一、实验概述:

以液体做流动相的色谱称为液相色谱。人们把已经比较成熟的气相色谱理论应用于液相色谱,使液相色谱得到了迅速的发展。随着其他科学技术的发展,出现了新型的高压输液泵、高效的固定相和柱填充技术、高灵敏度的检测器,加上计算机的应用,使得液相色谱实现了高效率和高速度。这种分离效率高、分析速度快的液相色谱称为高效液相色谱(High performance liquid chromatography, HPLC)。

二、实验装置:

Agilent(安捷伦)1100系列液相色谱系统简介:

Agilent1100系列HPLC组件和系统,将Agilent长期的化学分析经验与领先的计算机技术结合,把网络技术引入了实验室。从1996年以来,在全球已经安装了超过130,000台1100组件和55,000多套化学工作站数据处理系统,成为目前单一型号市场占有率最高的液相色谱系统。

本仿真软件是模拟用Agilent化学工作站的数据处理系统进行样品分析和数据采集(色谱图)的过程。

注:本软件只是模拟分析的过程和内容,并不涉及其原理,所以实验中的参数调节对结果并没有影响,而真实实验结果是随参数的变化而变化的,这一点需要特别注意!

实验主界面:

29

化学工作站界面:

三、实验操作: 第一步:选取实验

点击主菜单上的“实验选取”,会出现如下的对话框:

用鼠标左键点中你要做的实验,此文件名会出现在对话框的“文件名”一栏的文本框 中,在此实验文件上面双击左键或者点击“打开”按钮打开实验文件。

30

第二步:确认操作条件

点击主菜单上的“操作条件”,会出现如下的操作条件列表:

第三步:加入试剂

点击仪器上的自动进样器部分(当鼠标移到仪器的各部分时会出现相应的说明),出现如下画面:

在实验调节过程中,请以此列表内的条件为准进行调节,否则不能正确输出色谱峰。

点击下面的试剂小瓶,会自动放置到自动进样器的托盘中。

完成后,点击主界面上的电脑启动化学工作站。

第四步:编辑方法

击主界面上的电脑启动化学工作站开始编辑方法。

所谓方法就是一个参数集,它包括分析一个样品所需要的所有的参数:数据采集参数、数据分析参数和命令行或者宏指令。

点击菜单“方法→编辑方法”开始编辑方法(注意:此时不可以改变方法的参数,可改变的参数将在下面特别说明):

31

然后会出现下面的窗口让你选择编辑方法的内容:

用鼠标点击复选框选择要编辑的方法的内容,然后点击“确定”按钮开始方法编辑,点击“取消”按钮终止方法编辑。

开始方法编辑后,系统会根据你选择的内容分别依次显示每一部分的具体内容,点击“确定”按钮进入下一部分,点击“取消”按钮终止方法编辑。

完成方法编辑后,系统会回到主操作界面,此时色谱柱已经开始升温,在图形界面中会有显示,如下图中红色圆圈标示区域所示:

32

特别说明:

对于本实验要改变的参数,可以点击化学工作站软件界面中央的图示的进样器、溶剂系统、色谱柱、检测器等部分,会弹出各部分参数窗口,此时可以按照实验要求的参数进行调节(实验参数可以点击主界面上左边菜单中的“实验数据”按钮察看)。进样器:

溶剂系统:

33

色谱柱:

检测器:

编辑方法完成后,在启动系统之前,请返回液相色谱仪,打开二元泵系统,调节Purge阀,观察使回路无汽泡。

第五步:调节Purge阀

点击仪器上的二元泵系统部分(当鼠标移到仪器的各部分时会出现相应的说明),出现如下画面:

34

图中蓝色方框部分就是Purge阀,此时是关闭的,用鼠标点击蓝色方框部分,会出现Purge阀的放大画面,然后点击Purge阀会自动逆时针方向旋转打开Purge阀。

打开Purge阀后,右边的试剂瓶的导管当中会有气泡流出,待没有气泡再流出之后,再次点击Purge阀会自动逆时针方向旋转关闭Purge阀。然后进行下一步“启动系统”。

第六步:启动系统

完成方法编辑后,点击菜单“设备→系统开”或者图中红色圆圈指示的按钮“开启系统”:

35

启动系统后,在图形界面中会有显示,如下图中红色圆圈标示区域所示:

同时在色谱峰显示区域开始走基线,开始的时候系统不稳定,基线变化很厉害,等到基线走平稳表示系统稳定后,可以开始进样运行方法。

第七步:进样、运行方法

等到状态指示栏显示“Ready”后,表明系统已经准备完毕。点击菜单“运行控制→运行方法”开始进样和分析,或者点击图中红色圆圈所指示的“Start”按钮或者按“F5”键:

36

开始进样后,在图形界面中会有显示,如下图中红色圆圈标示区域所示:

37

待色谱图出完后,样品分析完毕。

第八步:完成实验报告

样品分析完成后,点击化学工作站界面上的红色方框部分,或者点击主界面左边菜单中的“实验数据”调出实验报告:

38

根据得出的保留时间、峰高、半峰宽等实验数据,可以计算分离度等相关参数。如果计算机安装了打印机,可以点击右上角“打印报表”按钮打印实验报告。

39

第五篇:机电——变压器故障分析范文

变压器故障的统计分析及预防方法

摘要:

随着经济科技发展,当前世界上对于电能的需求与日俱增。保证不间断的为生活、生产、国防、军事、航天、通信供电已成为建设生产的重中之重。要连续不间断的供给用户高质量的电能,就要在发电,输电,分电,用电各个环节中有坚强的技术保障。而在这一系列的过程中,变压器始终起着很重要的作用。所以要保证变压器的故障尽可能的小。

通过近十几年对变压器故障的统计和维修经验,对引起变压器故障的原因进行讨论。给变压器的操作、维护、检查提出建议性的结论。涉及到:延长其使用寿命的维护方法,故障的起因、类型、频率等。关键词:变压器 故障统计 分析 预防

变压器故障不仅损坏当时运行的变压器,而且影响电力系统的正常运行,甚至损坏其它设备,引起火灾等严重事故。因此如何确保变压器的安全运行受到了世界各国的广泛关注。

在我国近现代话电力技术的展中,电力工业的安全运行是一个永久的重要主题。本文从介绍变压器故障的统计结论,为国内进一步的智能电网的建设提供参考及可借鉴的科学统计方法,以达到为电力部门,为国家服务的目的。

一、有关故障统计的结果

不同的部门有不同的变压器,故障不同。为了便于分析可将变压器分成以下类型:水泥与采矿业变电变压器;化工、石油与天然气业变压器;电力部门变压器,食品加工业变压器;医疗业变压器;制造业变压器;冶金工业变压器;印刷业业变压器;商业建筑业变压器;纸浆与造纸业业变压器。

经过长期监测统计得知,要同时考虑频率和程度时,电力部门变压器故障的风险是最高的,冶金工业变压器的故障及制造业变压器故障分别列在第二和第三位。

按照厂家给出的参数看,一般来说在“理想状态下”各种变压器的平均使用时间为30~40年。但是在实际中并非如此。时有故障发生的变压器平均寿命为10~15年,以X轴代表时间,以Y轴代表故障情况通常有盆形曲线显示使用初期寿命结果,用递减波形曲线显示后期衰老曲线。这些曲线所能给出的意义在于在以后的使用过程中确定对变压器进行周期检查维修的时间和深度。

应该指出的是电力工业中的变压器,他的使用寿命在关系到很多部门的设备的安全和正常使用。我国在改革开放后经历了一个工业飞速发展的阶段,而且现在还正在处于一个转型的阶段,这期间带来了基础工业快速发展,特别是电力工业大规模的扩大。这些自70年代到90年代安装的电力设备,按照它设计与运行的状况,到现在为止大部分都已到了老化更换的阶段。有关部门应对于这些时间已安装的变压器给予特别的关注。

二、变压器故障原因分析

经过多方面的研究和多年的经验,尽管变压器的用途种类不同、老化趋势不同,但故障的基本原因仍然相同。

1、雷击

对于雷击的研究比较少,因为很多时候不是直接的雷击事故就会把冲击故障归为“线路涌流”。防止雷击最好的方法当然是加装避雷装置,不仅可以保护变压器,还可以减少电力系统中的冲击电流,减少暂态波动。

2、线路涌流 线路涌流,是应该被列入首要的故障因素。线路涌流(或称线路干扰)包括:合闸过电压、电压峰值叠加、线路短路故障、闪络以及震荡方面的大电流、电压的不正常现象。这类故障对变压器的损害最为严重的原因是电流、电压过大,因此须在大电流冲击保护充分性的方面给与更多的关注。安装过流保护监视装置,可以对变压器进行实时的测量检测报告。并把这个结果送入电力系统自动化运行的整体系统中作为安全运行的指标。

3、质量疏漏问题 一般情况下,以前的变压器在这方面的问题并不是很大,只是偶尔的一些不可避免的。例如接线出线端松动或无支撑、垫块不紧、焊接不良、铁心绝缘度不高、抗大电流强度不足以及油箱中的油不纯净等。加强测试检测,在未安装时尽早的发现问题。

4、绝缘老化

在过去的很多变压器故障中,由于绝缘老化造成的故障在所有故障中位列第二,由于绝缘老化,大部分的变压器都严重的缩短了服役时间,使用寿命都早20年左右。制定一定的制度,确保老化的速度是达到额定的使用年限。

5、过载

由过负荷引起,变压器长期处于大于规定的额定功率运行。随着经济和科技的发展,用电负荷在增多,发电厂、用电部门在不断的持续缓慢提升负荷。直接导致越来越多的变压器超负荷运行,过高的温度导致了变压器的绝缘纸板过早的老化,使得整个绝缘强度下降。在这种状态下,若有一定的冲击电流,发生故障的可能性将会很高。确保负荷在变压器的额定运行条件下,不要长时间的过负荷运行,这样得不偿失。在油冷变压器中需要经常的仔细监视顶层油温。发现温度高是要及时的做处理。

6、受潮

受潮是不可避免的,由于种种外部自然原因,常常使管道渗漏、顶盖渗漏、水分沿套管或配件侵入油箱以及绝缘油中存在水分等。变压器的设计和建造的标准应与安装地点相配套。若置于户外,确定该变压器适于户外运行。变压器油的介电强度随着其中水分的增加而急剧下降。油中万分之一的水分就可使其介电强度降低近一半。所有变压器(除小型配电变压器)的油样应经常作击穿试验,以确保正确地检测水分并通过过滤将其去除。

7、不正当的维护 经过调查的结果是,不正当的维护引起变压器故障的概率排在引起变压器故障概率的第四位。主要是由于,保养不够、未装控制或控制装的装的不正确、冷却剂泄漏、污垢堆积和自然界的电气化学腐蚀。

8、破坏及故意损坏

这类主要是认为的外在破坏,常常发生在线路末端直接连接用户的变压器,不过这种破坏是很不常见的。

9、连接松动

这一类问题引起故障的可能性也是很小的,并且可以尽大限度的避免,但是在实际中却时有这方面的事故发生,与往的研究也有所不同。这一类事故包括了在电气连接方面的制造工艺以及保养情况,最为突出的问题就是不同性质金属之间不当的配合,但是这种情况在慢慢的减少,另一个问题就是螺栓连接间的紧固不恰当。

三、结语: 参考以上统计分析结果及提出的一些建议,在以后的建设运行中可制订一个整体的维护、检查和试验的规划。这样就能尽最大限度的减少变压器故障,从而减少由于变压器故障带来的一系列不良影响。还能节约因为故障检修而花费的巨大人力、财力、物力,变压器的使用寿命也会随之增加。

[1]国网运行有限公司 组编.高压直流输电岗位培训教材.中国电力出版社2009,(4)

[2]姚志松,姚磊.新型节能变压器选用、运行.中国电力出版社,2010(1)[3]赵家礼.图解变压器修理操作技能.化学工业出版社,2007(10)

下载电弧故障仿真分析讲稿word格式文档
下载电弧故障仿真分析讲稿.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    工程故障分析报告

    工程故障分析报告 一.背景: 某大型物流公司两栋仓库楼,一栋办公楼,及外围门口共安装监控123个点,其中有八个球机,由于传输距离较远,采用了光端机传输。 二.故障出现: 仓库楼2的摄像机......

    接地故障分析(推荐五篇)

    (1)复归音响。 (2)检查6KV系统接地微机选线装置,查明故障线路号,接地起始时间、接地累计时间。 (3)按下重判按键进行重判。如两次判断结果一致,则可确定故障线路。 (4)根据故障线路号确......

    塔吊故障原因分析

    塔吊故障原因分析 塔吊从组装以来,大小故障一直不断,从而直接影响到工程施工进度,使工程无法正常运转,工期一再顺延,造成甲方对项目部有一种负面影响。 1、塔吊从4月7号开始组装,8......

    变压器的故障分析

    声音异常 变压器在正常运行时,会发出连续均匀的“嗡嗡”声。如果产生的声音不均匀或有其他特殊的响声,就应视为变压器运行不正常,并可根据声音的不同查找出故障,进行及时处理......

    近期电缆故障分析

    **车间近期电缆故障分析近一个月以来,连续发生了五起电缆故障,对运输生产产生了很大的影响,为了避免类似故障的发生,减少对运输生产的影响,车间组织了相关人员对几起故障进行了......

    继电保护典型故障分析

    继电保护典型故障分析 摘 要 继电保护对电力系统的安全正常运行具有重要的作用,它能保证电力系统的安全性,还能针对电力系统中不正常的运行状况进行报警,监控整个电力系统。目......

    开关柜典型故障分析

    高压开关柜典型故障分析 电力系统广泛使用10kV(含6kV)—35kV开关柜,担负着发电厂用电、变电站和用户供电的任务,且用量大,分布广。由于1OkV-35kV开关柜的设计、制造、安装和运行......

    车削螺纹故障分析

    车削螺纹时常见故障及解决方法 姓名: 于建华 单位:江苏煤炭地质机械研制中心 完成时间:2012年3月26号 车削螺纹时常见故障及解决方法 摘要: 螺纹是在圆柱工件表面上,沿着......