第一篇:机井水泵电机烧坏的原因及对策
机井水泵电机烧坏的原因及对策
赵国忠
一、机井水泵电机烧坏的原因
1、水泵靠电动机旋转才能提水,电动机旋转又靠电。三根相线(三相电)正常时,线电压为380V,电流也有一定数值。当发生下列情况时,电流会增大:
(1)地下水位下降,使水泵扬程超过规定值;(2)水泵、电动机又故障;(3)电压偏低。
当电流过大时间长了,电动机就会发热,直到烧坏线圈。特别是当三相中的一相断线(又叫缺相)时,更容易将电动机烧毁。
2、灌溉季节,往往电力紧张,供不应求,电压明显偏低,有时农村用电电压在300V以下,影响更大的是,若这时高压线中断了一相,两相供电,若不及时拉闸,往往引起该线路电动机同时烧坏。
3、有的人缺乏安全保护知识或图省事,将刀闸上的保险丝换成大号的,或干脆换成铜线,有的则用绳子把磁力开关绑住,强制不让跳闸。
4、有的农户对变压器容量理解不透,简单的计算变压器和电机数量的关系,如50KVA变压器,用户则认为能带5.5KW电动机9个共49.5KW和50KVA差不多,应该没问题,实际变压器标注的是容量,单位是千伏安。而电机标注的是千瓦,一般变压器所带千瓦数为容量的80%,也就时说50KVA变压器最大能带总计40KW的电机,因此造成用户变压器电机数增多过负荷,加之低压线路线径小,线路过长,电压损失严重,不但容易烧毁变压器,同时造成电压偏低,电动机容易烧损。
5、电动机已经明显发热,但还是不断地使用,特别是电灌期,谁也不想把自己家的电机停下,更容易烧坏电机、水泵。
二、对策
1、合理的计算变压器器容量与所带电机的关系,避免变压器过负荷,造成电压偏低和烧毁设备。
2、加大低压线路线径,缩小供电半径,减少电压降,提高电压质量。
3、灌溉提水前,应认真检查电动机、水泵并保持正常油位。仪表(电压表、电流表等)应指示正确,检查调整安全保护装置,要备有合适的备件(如保险丝),并保证接线良好。
4、开机使用时,用户除必须了解操作规程、安全要求外,还应了解当时的机泵情况(杂音或其它毛病)以及电压和开机后的电流变化,当电压明显偏低(如340V以下),电流升高时,要在机旁加强巡视。电动机过热时,要注意停机 “休息”,不能连续开机。
5、发现电动机有杂音或其它毛病,要及时通知电工或修理工检查处理,不得让设备带病运行,当发现声音突然变化,突然自动停机又有嗡嗡响声时,应马上拉闸断电,然后检查配电变压器的高、低压保险及刀闸是否断相,若是电网缺相,应立即与供电所联系解决。
6、严禁使用不合格的保险丝,严禁限制自动跳闸的做法。
7、保持机房内的卫生清洁,不乱放东西,若没有机房的,应采取临时措施,避免电动机直接曝晒、雨淋、风吹等。
作者系延寿县电业局生产部 电力工程师
第二篇:电机烧坏原因及判断方法、防范措施
电机烧坏原因及判断方法、防范措施 缺相运行
造成电机缺相的原因很多,如控制回路的热继电器或磁力启动器的触头由于温度高而氧 化,导致接触不良缺相;电机引线或电缆一相断开;电源动力保险一相烧融断开;电机绕组 接头焊接不好,过热后融化断开等。
1.2 长期过电流运行
最为常见的是机械装置与电动机的不匹配,就是平时所说的小马拉大车现象;机械部分 瞥压、堵转或卡涩后过负荷运行;机械与电机连接处同心度不好;电机本身轴承严重卡涩或 损坏;电机绕组选择不合理或接线错误,空载电流就偏大;定子绕组匝间有短路;电源电压 过高;电动机在检修过程中取过定子铁芯,造成容量不足等。1.3 电机冷却系统故障
常见的低压电动机一般采用风冷。如果周围环境条件太差、灰尘太大、油污严重,就会 导致电动机的表面通风散热槽堵塞;电动机的冷却风叶太小、与转轴存在相对运动或有叶片 损坏;电动机冷却风叶安装错误,正向吹风变成反向吸风,冷却效果明显下降等。 1.4 电机绕组接线错误
绕组接线错误常见的原因有三个:①星形接法接成了三角形接法,造成单相绕组承担高 电压而过流运行;②电机引出线的首尾搞反,不满足三相交流电互差120电角度的要求,造 成启动瞬间定子绕组冒烟;③定子绕组一路接法误接成两路或两路接法误接成四路,造成空 载电流偏大或烧损。
1.5 定子绕组制作工艺及绝缘强度不符合要求
低压电动机在烧损后,在定子绕组修复的过程中,存在造成工艺和强度不符合要求的原 因。①没有专用的电机绕线、嵌线、划线、接线和焊接的专用工具;②没有按照绕组绕线、嵌线、划线、接线和焊接的标准执行,造成匝间短路;③电机绕组浸漆没有严格按照“三烘 两浸”的程序和标准进行;④绕组层间、相间绝缘没垫好;五是电机绕组端部整形不好,端 部太大碰触端盖造成接地。 1.6 运行人员操作不当
连续工作制的电动机频繁启动,由于启动电流过大,加速电机绕组绝缘老化而烧损,尤其是 电机热态情况下频繁启动;运行人员在不关闭泵或风机出入口门的情况下带负荷启动电机; 对长期停运的电机,未进行绝缘测试和盘车,启动电动机。 2 技术防范措施
针对归纳总结出来的电动机定子绕组烧损原因,结合从事电机检修与维护的工作经验,并参 照相关规程,提出如下一些防止低压电动机烧损的技术措施。 2.1 加装缺相保护 依据《电力工程电气设计手册》电气二次部分规定:应装设两相保护,条件是:当电动机由 熔断器作为短路保护时,应装设本保护,保护装置用热继电器作为断相保护,容量>3kW的 电动机应尽量使用带专用断相保护的热继电器,如RJ16-/D。依据《电力工程电工手册》 第二部分关于热继电器的选用条件:长期或间断长期工作电动机保护用热继电器的选用中强 调,对三角形接线的电动机应选用带断相保护装置的热继电器,其电流整定值应于电动机额 定电流相等。
2.2 强化运行使用的规范性
在启动电机前,必须测试电机的绝缘电阻合格,并盘车灵活;确定电机是在冷态下还是热态 下启动,做到冷态启动不超过两次,间隔时间>5min;热态启动不超过两次,间隔时间>30 min;检查电机接线及附件完好、测量绝缘合格、电机周围干净清洁没有杂物时送电,送电 后必须检查电源电压波动在额定值的5%之内;检查控制回路连接良好,断路器、磁力启动器 与热继电器的触头无过热或烧熔情况,信号指示正常;电机启动后,运行人员在电机的转动 正常情况下,开启泵或风机的出入口门进行带负荷运行,并测试电机三相负荷电流,开启 泵或风机的出入口门进行带负荷运行三相负荷电流的不平衡值不超过10%;运行中监视滚动 轴承不超过85°、滑动轴承不超过75°,并监视轴承是否有漏油或渗油现象。 2.3 严密监视电机运行参数及状态
电动机在运行过程中,运行人员必须在线监视其负荷电流。定期测试三相负荷电流,并计算 其不平衡值不超过10%。定期检查电机的振动、温度、冷却、声音和气味。检修人员必须定 期监听轴承声音,采用脂润滑滚动轴承一般寿命5 000h,约工作1 500h需更换润滑油脂。对 于多灰或潮湿的环境,在做好防潮措施的同时更应经常更换润滑油脂。
2.4 严格电机绕组修复工艺
2.4.1 检修人员在拆除烧损定子绕组时,一定要做好原始数据的测量和记录,并与相关手 册比较。
2.4.2 选用合适的绕线模具,在绕制过程中做好保护漆包线的措施。2.4.3 在绕组嵌线的过程中,正确使用划线板和压角,将漆包线缕顺后用划线板划入槽内 再用压角,不得死挤硬压,确保不损坏漆包线和绝缘纸。
2.4.4 在绕组接线和焊接过程中,使用专用工具刮掉漆皮,不能刮的太多又不能刮不干净,否则影响其载流量或增加其接触电阻,均对运行不利;采用锡焊必须焊透焊牢但接头不要 太大,影响绝缘套管穿过。在确保电机接线正确的前提下,最好进行三相直阻测试,不平衡 值不应超过2%,并进行绕组端部良好整形捆绑工作。
2.4.5 电机浸漆,如果不具备电机整体浸漆烘干设备时,最好严格执行“三烘两浸”程序。第一次将绕组烘干到70~80℃时进行第一次浸漆,待绝缘漆浸透后放入烘箱进行第二次烘 干,温度控制在60~70℃,持续约30min后再进行第二次浸漆,同样待绝缘漆浸透后放入烘 箱进行第三次烘干,温度控制在50~60℃,持续约60min即可。
2.4.6 在保证绕组修复完好的情况下,按工艺要求组装电机,做好电机的空载试运工作,测试电机三相空载电流不平衡值不超过10%。2.5 维护好启动装置
启动装置的好坏,对电动机的正常启动和运行起着决定性的作用。实践证明,绝大多数烧毁 的电动机,其原因大都是启动设备工作不正常造成的。如启动设备出现缺相启动,接触器触 头拉弧、打火等。而启动设备的维护主要是清洁、紧固。如接触器触点不清洁或高温氧化使 接触电阻增大,引起发热烧毁触点,造成缺相而烧毁电动机;接触器吸合线圈的铁芯锈蚀和 积尘,会使线圈吸合不严,并发生强烈噪声,增大线圈电流,烧毁线圈而引发故障。因此,电气控制柜应设在干燥、通风和便于操作的位置,并定期除尘。经常检查接触器触点、线圈 铁芯、各接线螺丝等是否可靠,机械部位动作是否灵活,使其保持良好的技术状态,从而保 证启动工作顺利而不烧毁电动机。
2.6 改善工作环境
电动机的工作环境要努力做到干净、清洁、干燥,并根据现场工作环境选择合适防护等级的 电动机;电动机的工作环境要有良好的通风条件,环境温度一般不允许超过40度。如果环境 温度无法降低,选择冷却方式更好的电动机也是一种有效的方法;电动机的工作场所应做好 防寒、防潮、防尘和防腐措施,以防凝露、吸潮和腐蚀;电动机的基础必须是刚性的,以便 在运行时电机的振动及轴线的不对准程度减至最小;电动机的被拖动机械灵活好用、无卡涩、无堵转、无渗漏;找好电动机与机械连接中心,做到两个半连轴器同心度不超过0.02~0.03mm,端面平行度不超过0.04~0.05mm,间距>3mm
交流电机烧坏的原因有哪些?怎样判断电动机烧
电机烧坏的原因有很多,大多我们都可以预防。主要是缺相和长期过载运行两种情况造 成的,还有可能是因为轴承损坏,受潮,.堵转,使用寿命终结,电压不稳定过高或过低等。
首先来看看机械故障问题。电机转子是由两头的轴承来承担固定和灵活运转的,那么就得首 先保证它的运转正常,最基本的就是不能缺少润滑,所以要经常加注黄油,无注油孔的小型 电机要时常进行检查黄油和轴承。一旦轴承损坏,就会导致转子扫堂现象,端盖磨损,异响,卡死,造成线包损伤烧毁等问题。此时及时停机检查更换,兴许还能挽回损失。其次再来看看有关电的烧毁原因。缺相。缺相是个三相异步电机的杀手,质量一般的电机最多十几分钟就完蛋了。最可怕的是 整个供电系统的缺相,再加上很多设备的开关是自锁的或自动开启的(如水泵、风机),一 次停电后的再送电缺相事故,可能一下烧十几个电机。对于单台电机最好的解决办法是加装 电子的缺相保护器(对重要电机)。还有就是三相回路中的保险也是个造成缺相的原因。所 以现在,很少有人再在三相电机的主回路中加装保险管之类的,较好的方法加装一个合适的 断路器。
过载。过载是产生高温的重要原因。如果是保护功能正常(加装合适的热继电器),一般不 会发生。但是,要注意的是,因热继电器无法校验,并且保护数值也不十分精确,选型不合 适等等加上人为设置成自动复位,所以需要保护的时候,往往起不到作用,也可能多次保护 以后,没有找到真正原因,人为调高保护数值。至使保护失效。一般情况下,过载烧坏的电机是整个绕组线圈全黑的; 缺相烧毁的电机分为三角形接法 和星形接法两种,三角形接法缺相烧毁的电机,线圈只烧一相(1/3),星形接法的电机是烧 两相(2/3)。过载烧毁的电机颜色全部变色发黑,缺相烧坏的是(星形接法)或(三角形接法)绕组 烧黑;剩下的则会是匝间短路、绝缘破损、进水或外物击伤导致。
受潮。因为进水或受潮造成的绝缘性能降低,也是常见的损坏原因,但是没有办法作防 护。只能使用中注意和定期摇绝缘。在没有烧毁前,烘干、重新浸漆可解决。尤其是用变频 器驱动的电机,更要小心此项,不然可能连变频器一块烧毁。
堵转: 电动机轴承完全损坏不能转动将电机轴抱死,或电动机拖动的机械设备卡死导致 电动机堵转,从而造成电动机出现很大的堵转电流,使电动机绕组温升急剧升高而 烧坏电 动机。打开烧坏的电动机检查定子绕组,全部绕组变成黑色.高温。长时间持续工作,造成轴承干涩烧毁,尤其是夏天,本身空气温度就高,再加上电机 自身产生的温度,在操作人员的稍微疏忽下,极易烧毁电机。有的电机质量不是很过硬,在 白胚检测是,可能不过关,修不好,寖好漆后检测,就没问题了。一旦温度升高,或稍微受 潮,绝缘降低,就会烧毁电机。高温的原因很多,过载,缺相,电流过大等等。在这种情况 下,电机温度升高后,它的自身绝缘程度降低,是导致电机烧毁的又一大原因。
使用寿命的终结。所有机械设备都有使用寿命,尤其是电器设备,在使用过程中,它会发热,在不使用的时候它又冷却,一冷一热是导致绝缘老化的主要原因,绝缘老化后就可能会出现,相间短路,砸间短路,对地击穿等问题,在不经意间就导致电机烧坏。最主要的就是勤保养,常检查。其它。还有的都不是很常见的原因,如:电压过低或过高,震动造成接线柱松脱相间短路,虫鼠危害、进口电机电压与国内电压不配合(如日本电机)。各种减压起动回路故障造成不 转换,电机长时间低压工作等
第三篇:XX1#空压机电机烧坏原因分析
XX1#空压机电机烧坏原因分析
及改进方案
XX空压机1#机电机烧坏,经现场对电机控制系统、控制方式、电缆配置进行检查,分析如下:
一、电机损坏原因分析:
1、了解相关维护情况,控制接触器曾因触头烧蚀更换过,有接触器粘连现象,电机启动控制采用星三角降压启动,所配三角形接触器为施耐德410A接触器,星形运行为300A接触器,电机启动及切换瞬间,最大冲击电流将达1750A左右,对接触器触头有烧蚀,致使接触不良或熔接粘连,致使电机缺相运行,进而使电机烧坏。
2、空压机配电机型号为:YSVP2-355M-2 ,380V,250KW,D/Y,额定电流433/250A,经现场实际测量,电机负荷大时线电流460A,相电流256A左右,电机过载运行,电机发热,温度升高,操作工检查不到位,未采取措施,致使电机烧坏。
3、环境温度高,空压机运行过程产生的热量无法及时排除室外,致使环境温度升高,电机散热不良,进而烧坏电机。
整改方案
1、电机引出线采用90mm2单芯软电缆,正常运行能满足要求,但经现场检查,空压机负荷波动较大,电缆有发热现象,建议更换为单芯150 mm2电缆。
2、因还带有3台冷却风机,电机运行时电源进线线电流达470A左右(带),电源线采用两根120电缆,经现场检查电缆有发热现象,建议将其中一根更换为3*185+1*95 mm2的铜芯动力电缆,减少电缆发热,已确保运行安全。
3、电机启动控制采用星三角降压启动,所配三角形接触器为施耐德410A接触器,星形运行的为300A接触器,电机启动及切换瞬间,最大冲击电流将达1750A左右,对接触器触头烧蚀较快,易引起触头烧毛、接触不良、发热,最终导致电机缺相烧坏。建议将现有接触器更换为630A接触器。
4、操作运行工需定时对电机本体、接触器触头、电缆接线头进行温度测量,对空压机、电机运转声音进行分析判断,对异常情况及时进行汇报或停机处理;
5、每次启动前,停电对三台接触器进行检查,主要检查接触器触头烧蚀情况,合闸同期度,分合有无卡涩现场,若有,处理好后在开机。
6、经现场落实2#机电机为变频电机,并未配置变频器,电机风扇未带专用电机。需联系厂家确认电机冷却风扇叶片设置能满足电机发热冷却要求,风扇跟电机同轴安装旋转。
7、对空压机散热安装散热通道,使空压机运行产生的热量能及时排出,降低周围环境温度。
第四篇:变压器烧坏七大常见原因
变压器烧坏七大常见原因
变压器(Transformer)是利用电磁感应的原理来改变交流电压的装置,主要构件是初级线圈、次级线圈和铁芯(磁芯)。主要功能有:电压变换、电流变换、阻抗变换、隔离、稳压(磁饱和变压器)等。按用途可以分为:电力变压器和特殊变压器(电炉变、整流变、工频试验变压器、调压器、矿用变、音频变压器、中频变压器、高频变压器、冲击变压器、仪用变压器、电子变压器、电抗器、互感器等)。电路符号常用T当作编号的开头.例: T01, T201等。
过载
这就是我们说到的小马拉大车的现象;当然也有可能季节及天气原因导致部分季节用电增加导致过载。
变压器油的不合理使用
如变压器油与箱体油不一样,变压器油的混用;二是对变压器加油时没按正常程序等等。
无功补偿不当引起谐振过电压
为了降低线损,提高设备的利用率。而如果补偿不发在线路上总容抗和总感抗相等,则会在运行的该线路及设备内产生铁磁谐振,引起电压和过电流,就会导致变压器损坏。
因雷电等天气原因导致过电压 分接开关接不良
这其实跟变压器的质量有关,如结构不合理,弹簧压力不够,动静触头不完全接触等等导致分接开关压接不良。当然也有可能是人为原因等造成。
呼吸器孔堵死 二次短路
当配电变压器二次短路时,在二次侧产生高于额定电流几倍甚至几十倍的短路电流,而在一次侧也要同时产生很大的电流来抵消二次侧短路电流的去磁作用,如此大的短路电流,一方面使变压器,线圈内部将产生巨大机械应力,致使线圈压缩,主副绝缘松动脱落、线圈变形。另一方面由于短路电流的存在,导致一、二次线圈温度急剧升高,此时如果一、二次
保险选择不当或使用铝铜丝代替,可能很快使变压器线圈烧毁。
第五篇:水泵振动原因及其消除措施
水泵振动原因及其消除措施
水泵振动原因及其消除措施
2011-01-13 暖通设备
振动是评价水泵机组运行可靠性的一个重要指标。振动超标的危害主要有:振动造成泵机组不能正常运行;引发电机和管路的振动,造成机毁人伤;造成轴承等零部件的损坏;造成连接部件松动,基础裂纹或电机损坏;造成与水泵连接的管件或阀门松动、损坏;形成振动噪声。
引起泵振动的原因是多方面的。泵的转轴一般与驱动电机轴直接相连,使得泵的动态性能和电机的动态性能相互干涉;高速旋转部件多,动、静平衡沐能满足要求;与流体作用的部件受水流状况影响较大;流体运动本身的复杂性,也是限制泵动态性能稳定性的一个因素。
一、对引起泵振动原因的分析电机电机结构件松动,轴承定位装置松动,铁芯硅钢片过松,轴承因磨损而导致支撑刚度下降,会引起振动。质量偏心,转子弯曲或质量分布问题导致的转子质量分布不 均,造成静、动平衡量超标川。另外,鼠笼式电动机转子的鼠笼笼条有断裂,造成转子所受的磁场力和转子的旋转惯性力不平衡而引起振动,电机缺相,各相电源不平衡等原因也能引起振动。电机定子绕组,由于安装工序的操作质量问题,造成各相绕组之间的电阻不平衡,因而导致产生的磁场不均匀,产生了不平衡的电磁力,这种电磁力成为激振力引发振动。
基础及泵支架驱动装置架与基础之间采用的接触固定形式不好,基础和电机系统吸收、传递、隔离振动能力差,导致基础和电机的振动都超标。水泵基础松动,或者水泵机组在安 装过程中形成弹性基础,或者由于油浸水泡造成基础刚度减弱,水泵就会产生与振动相位差1800的另一个临界转速,从而使水泵振动频率增加,如果增加的频率 与某一外在因素频率接近或相等,就会使水泵的振幅加大。另外,基础地脚螺栓松动,导致约束刚度降低,会使电机的振动加剧。
联轴器联轴器连接螺栓的周向间距不良,对称性被破坏;联轴器加长节偏心,将会产生偏心力;联轴器锥面度超差;联轴器静平衡或动平衡不好;弹性销和联轴器的配合过 紧,使弹性柱销失去弹性调节功能造成联轴器不能很好地对中;联轴器与轴的配合间隙太大;联轴器胶圈的机械磨损导致的联轴器胶圈配合性能下降;联轴器上使用 的传动螺栓质量互相不等。这些原因都会造成振动。
叶轮①叶轮质量偏心。叶轮制造过程中质量控制不好,比如,铸造质量、加工精度不合格;或者输送的液体带有腐蚀性,叶轮流道受到冲刷腐蚀,导致叶轮产生偏心。
②叶轮的叶片数、出口角、包角、喉部隔舌与叶轮出口边的径向距离是否合适等。
③使用中叶轮口环与泵体口环之间、级间衬套与隔板衬套之间,由最初的碰摩,逐渐变成机械摩擦磨损,这些将会加剧泵的振动。
传动轴及其辅助件轴很长的泵,易发生轴刚度不足,挠度太大,轴系直线度差的情况,造成动件(传动轴)与静件(滑动轴承或口环)之间碰摩,形成振动。另外,泵轴太长,受水池 中流动水冲击的影响较大,使泵水下部分的振动加大。轴端的平衡盘间隙过大,或者轴向的工作窜动量调整不当,会造成轴低频窜动,导致轴瓦振动。旋转轴的偏 心,会导致轴的弯曲振动。
泵的选型和变工况运行每台泵都有自己的额定工况点,实际的运行工况与设计工况是否符合,对泵的动力学稳定性有重要的影响。水泵在设计工况下运行比较稳定,但在变工况下运行时,由于叶轮中产生径向力的作用,振动有所加大;单泵选型不当,或是两种型号不匹配的泵并联。这些都会造成泵的振动。
轴承及润滑轴承的刚度太低,会造成第一临界转速降低,引起振动。另外,导轴承性能闭不良导致耐磨性差,固定不好,轴瓦间隙过大,也容易造成振动;而推力轴承和其他的 滚动轴承的磨损,则会使轴的纵向窜动振动以及弯曲振动同时加剧。润滑油选型不当、变质、杂质含量超标及润滑管道不畅而导致的润滑故障,都会造成轴承工况恶 化,引发振动。电动机滑动轴承油膜的自激也会产生振动。
管道及其安装固定泵的出口管道支架刚度不够,变形太大,造成管道下压在泵体上,使得泵体和电机的对中性破坏;管道在安装过程中较劲太大,进出口管路与泵连接时内应力大; 进、出口管线松动,约束刚度下降甚至失效;出口流道部分全部断裂,碎片卡人叶轮;管路不畅,如出水口有气囊;出水阀门掉板,或没有开启;进水口有进气,流 场不均,压力波动。这些原因都会直接或者间接地导致泵和管路的振动。
零部件间的配合电机轴和泵轴同心度超差;电机和传动轴的连接处使用了联轴器,联轴器同心度超差;动、静零部件之间(如叶轮毅和口环之间)的设计间隙的磨损变大;中间轴承 支架与泵筒体间隙超标;密封圈间隙不合适,造成了不平衡;密封环周围的间隙不均匀,比如口环未人槽或者隔板未人槽,就会发生这种情况。这些不利因素都能造 成振动。
水泵自身的因素叶轮旋转时产生的非对称压力场;吸水池和进水管涡流;叶轮内部以及涡壳、导流叶片漩涡的发生及消失;阀门半开造成漩涡而产生的振动;由于叶轮叶片数有限而 导致的出口压力分布不均;叶轮内的脱流;喘振;流道内的脉动压力;汽蚀;水在泵体中流动,对泵体会有摩擦和冲击,比如水流撞击隔舌和导流叶片的前缘,造成 振动;输送高温水的锅炉给水泵易发生汽蚀振动;泵体内压力脉动,主要是泵叶轮密封环,泵体密封环的间隙过大,造成泵体内泄漏损失大,回流严重,进而造成转 子轴向力的不平衡和压力脉动,会增强振动。另外,对于输送热水的泵,如果启动前泵的预热不均,或者水泵滑动销轴系统的工作不正常,造成泵组的热膨胀,会诱 发启动阶段的剧烈振动;泵体来自热膨胀等方面的内应力不能释放,则会引起转轴支撑系统刚度的变化,当变化后的刚度与系统角频率成整倍数关系时,就发生共 振。
二、减轻振动的措施从设计制造环节消除振动机械结构设计方面注意的问题轴的设计。增加传动轴支撑轴承的数目,减小支撑间距,在适当范围内减小轴长,适当加大轴的直径,增加轴的刚度;当泵轴转速逐渐增加并接近或整数倍于泵 转子的固有振动频率时,泵就会猛烈振动起来,所以在设计时,应使传动轴的固有频率避开电机转子角频率;提高轴的制造质量,防止质量偏心和过大的形位公差。
滑动轴承的选择。采用无须润滑的滑动轴承;在液态烃等化工泵中,滑动轴承材料应采用具有良好自润滑性能的材料,比如聚四氟乙烯;在深井热水泵中,导流 衬套选择填充聚四氟乙烯、石墨和铜粉的材质,并合理设计其结构,使滑动轴承的固定可靠;叶轮密封环和泵体密封环处采用摩擦因数小的摩擦副,比如M20lK 石墨材料一钢;限制最高转速;提高轴瓦承载能力及轴承座的刚度。
使用应力释放系统。对于输送热水的泵,设计时,应使由泵体变形而引起的连接件之间的结构应力得以释放,比如在泵体地脚螺栓上面增加螺栓套,避免泵体直接和刚度很大的基础接触。
水泵的水力设计注意事项合理地设计水泵叶轮及流道,使叶轮内少发生汽蚀和脱流;合理选择叶片数、叶片出口角、叶片宽度、叶片出口排挤系数等参数,消除扬程曲线驼峰;泵叶轮出 口与蜗壳隔舌的距离,有资料认为该值为叶轮外径的十分之一时,脉动压力最小;把叶片的出口边缘做出倾角(比如做成20。左右),来减小冲击;保证叶轮与蜗 壳之间的间隙;提高泵的工作效率。同时,对泵的出水流道等相关流道进行优化设计,减少水力损失引起的振动。合理设计各种泵的进水段处的吸入室,以及压缩级 的机械结构,减少压力脉冲,可以保证流场稳定,提高泵的工作效率,减小能量损失,也可以提高泵的振动动态性能的稳定性。
汽蚀振动是泵振动的很重要的一部分。当泵的人口压力低于相应水温下的和压力时,会发生伴随剧烈振动的汽蚀。减小汽蚀的措施包括:确定水泵的安装高度 时,使装置的有效汽蚀余量大于泵的最小装置汽蚀余量;适当加大进水管直径,缩短进水管长度,减少管路附件,通流部分断面变化率力求最小,提高管壁的粗糙 度;减少弯头数目和加大管道转弯角度;降低水泵的工作转速;采用抗空化汽蚀的材料,比如不锈钢,或在容易发生汽蚀的部位涂环氧树脂;进水流道设计要合理,力求平滑,使进人叶轮的水流速度和压力分布均匀,避免局部低压区;提高制造加工质量,避免因为叶片型线不准确造成局部流速过大,压降过多;提高泵装置的抗 汽蚀性能,包括在泵的进口处设置水力增能器,增能器的结构,提高泵的吸人压头,从而提高泵装置汽蚀余量;增加几何倒灌高度;尽量减少进水管路水头损失;采 用双吸式泵。
为了保证吸水管或压水管内无空气积存,吸水管的任何部分都不能高过水泵的进口。为了减小人水口处的压力脉动,吸水管路直径应比泵人口直径大一个尺寸数量 级,以便水流在泵人口处有一定的收缩,使流速分布比较均匀,同时还应当在泵人口前有一段直管,直管长度不小于管路直径的10倍。
注意创造良好进水条件,进水池内水流要平稳均匀,以消除伴随卡门涡旋的振动。
基础的设计。基础的重量应为泵和电机等机械重量总合的三倍以上;盛水池的基础应具有相当的强度;电机支架与基础最好做成一体或做成面接触;在泵和支架 之间设置隔振垫或隔振器。另外,在管路之间采用减振材料连接,减少管路布置,可以消除弹性接触和水力损失带来的振动。
从安装和维护过程消除振动轴和轴系。安装前检查水泵轴、电机轴、传动轴有没有弯曲变形、质量偏心的情况,若有,则必须矫正或者进一步加工;检查与导轴承接触的传动轴,是否因弯 曲而摩擦轴瓦或衬套而使自己受激力。如果监测表明,轴实际上已经弯曲了,则矫正泵轴。同时,检查轴的端间隙值,若该值过大,则表明轴承已磨损,需更换轴 承。
叶轮。动、静平衡是否合格。
联轴器。螺栓间距是否良好;弹性柱销和弹性套圈结合不能过紧;联轴器内孔与轴的配合是否过松,若太松,可采用诸如喷涂的方法来减小联轴器内径直至其达到过渡配合所要求的尺寸,而后将联轴器固定在轴上。
滑动轴承。间隙值是否符合标准;各处润滑是否良好;提高泵的轴瓦检修工艺水平,严格遵循先刮瓦、后研磨、再刮瓦的循环程序,保证轴瓦与轴颈的接触面积达到规定的标准①泵轴颈与轴承间隙值,通过更换前后轴承、研磨、刮瓦、调整等手段达到合格。
②泵轴承体与轴承箱球面顶间隙值合格。③泵轴轴承下瓦和泵轴轴颈接触点及接触角度:标准规定下瓦背与轴承座接触面积应在60%以上,轴颈处滑动接触面上的接触点密度保持在每平方厘米2一4个点,接触角度保持在60“一90”。
支架和底板。及时发现有振动的支撑件的疲劳情况,防止因为强度和刚度降低造成固有频率下降。
间隙和易损件。保证电机轴承间隙合适;适当调整叶轮与涡壳之间的间隙;定期检查、更换叶轮口环、泵体口环、级间衬套、隔板衬套等易磨损零件。
消除由于泵的选型和操作不当引起的振动两泵并联应保证泵性能相同。泵性能曲线应为缓降型为好,不能有驼峰。使用时要注意:消除导致水泵超载的因素,比如流道堵塞;适当延长泵的启时间,减小对传 动轴的扰动,减小转动部件和静止零件之间的碰撞和摩擦,以及由此引起的热变形;对于水润滑的滑动轴承,启动过程中应加足预润滑水,避免干启动,直至水泵出 水后再停止注水;定期向需要注油的轴承适量注油;对于长轴液下离心泵,因为轴系存在着扭转振动,若使用的有推力瓦,则受损伤的主要是推力瓦,这时可以适当 提高润滑油的粘度,防止液体动压润滑膜的破坏。最后,为了防止泵的振幅过大,还可以使用测量分析振动状况来确定水泵的最佳工作参数。
三、结论泵振动的诱因包括机械的、水力的和电力的原因。
振动控制综合反映了机械加工工艺、机械安装人员的操作水平、水泵操作人员的素质、水力设计软件的功能、各部分材料性能状况、监测仪器的性能。实际工作中,排除振动要结合经验和理论分析,将振动机理分析和实际检测仪器得到的数据结合起来。很多振动可以通过提高设计和安装质量,提高操作水平,加强日常维护予以 消除。伴随着新材料技术的发展和新工艺的出现,以及电子计算机技术与数值方法和流体力学基础理论的进步,加上振动噪声诊断技术的兴起和发展,水泵的设计、使用、维护水平必将蒸蒸日上,性能也一定会日趋优化,动态性能也会日趋稳定。