第一篇:IC layout布局经验总结
IC layout布局经验总结
布局前的准备: 1 查看捕捉点(grid)设置是否正确.08工艺为0.1,06工艺为0.05,05工艺为0.025.2 Cell名称不能以数字开头.否则无法做DRACULA检查 3 布局前考虑好出PIN的方向和位置 布局前分析电路,完成同一功能的MOS管画在一起 对两层金属走向预先订好。一个图中栅的走向尽量一致,不要有横有竖。对pin分类,vdd,vddx注意不要混淆,不同电位(衬底接不同电压)的n井分开.混合信号的电路尤其注意这点.在正确的路径下(一般是进到~/opus)打开icfb.8 更改cell时查看路径,一定要在正确的library下更改,以防copy过来的cell是在其他的library下,被改错.9 将不同电位的N井找出来.布局时注意: 完成每个cell后要归原点 DEVICE的 个数 是否和原理图一至(有并联的管子时注意);各DEVICE的尺寸是否和原理图一至。一般在拿到原理图之后,会对布局有大概的规划,先画DEVICE,(DIVECE之间不必用最小间距,根据经验考虑连线空间留出空隙)再连线。画DEVICE后从EXTRACTED中看参数检验对错。对每个device器件的各端从什么方向,什么位置与其他物体连线 必须 先有考虑(与经验及floorplan的水平有关)如果一个cell调用其它cell,被调用的cell的vssx,vddx,vssb,vddb如果没有和外层cell连起来,要打上PIN,否则通不过diva检查.尽量在布局低层cell时就连起来 尽量用最上层金属接出PIN。接出去的线拉到cell边缘,布局时记得留出走线空间.16 金属连线不宜过长; pT/R7NU 17 电容一般最后画,在空档处拼凑。18 小尺寸的mos管孔可以少打一点.19 LABEL标识元件时不要用y0层,mapfile不认。管子的沟道上尽量不要走线;M2的影响比M1小.电容上下级板的电压注意要均匀分布;电容的长宽不宜相差过大。可以多个电阻并联.22 多晶硅栅不能两端都打孔连接金属。栅上的孔最好打在栅的中间位置.24 U形的mos管用整片方形的栅覆盖diff层,不要用layer generation的方法生成U形栅.25 一般打孔最少打两个 Contact面积允许的情况下,能打越多越好,尤其是input/output部分,因为电流较大.但如果contact阻值远大于diffusion则不适用.传导线越宽越好,因为可以减少电阻值,但也增加了电容值.27 薄氧化层是否有对应的植入层金属连接孔可以嵌 29 两段金属连接处重叠的地方注意金属线最小宽度 连线接头处一定要重叠,画的时候将该区域放大可避免此错误。T B I ]0R6e4} 31 摆放各个小CELL时注意不要挤得太近,没有留出走线空间。最后线只能从DEVICE上跨过去。
Text2,y0层只是用来做检查或标志用,不用于光刻制造33 芯片内部的电源线/地线和ESD上的电源线/地线分开接;数模信号的电源线/地线分开。34 Pad的pass窗口的尺寸画成整数90um.35 连接Esd电路的线不能断,如果改变走向不要换金属层 36 Esd电路中无VDDX,VSSX,是VDDB,VSSB.37 PAD和ESD最好使用M1连接,宽度不小于20um;使用M2连接时,pad上不用打VIA孔,在ESD电路上打。
PAD与芯片内部cell的连线要从ESD电路上接过去。39 Esd电路的SOURCE放两边,DRAIN放中间。
ESD的D端的孔到poly的间距为4,S端到poly的间距为^+0.2.防止大电流从D端进来时影响polyY
ESD的pmos管与其他ESD或POWER的nmos管至少相距70um以上。
大尺寸的pmos/nmos与其他nmos/pmos(非powermos和ESD)的间距不够70um时,但最好不要小于50um,中间加NWELL,打上NTAP.43 NWELL和PTAP的隔离效果有什么不同?NWELL较深,效果较好.44 只有esd电路中的管子才可以用2*2um的孔.怎么判断ESD电路?上拉P管的D/G均接VDD,S接PAD;下拉N管的G/S接VSS,D接PAD.P/N管起二极管的作用.45 摆放ESD时nmos摆在最外缘,pmos在内
关于匹配电路,放大电路不需要和下面的电流源匹配。什么是匹配?使需要匹配的管子所处的光刻环境一样。匹配分为横向,纵向,和中心匹配。1221为纵向匹配,12为中心匹配(把上方1转到下方1时,上方2也达到下方2位置)21中心匹配最佳。
尺寸非常小的匹配管子对匹配画法要求不严格.4个以上的匹配管子,局部和整体都匹配的匹配方式最佳.中国电子顶级开发网4O F
在匹配电路的mos管左右画上dummy,用poly,poly的尺寸与管子尺寸一样,dummy与相邻的第一个poly gate的间距等于poly gate之间的间距.49 电阻的匹配,例如1,2两电阻需要匹配,仍是1221等方法。电阻dummy两头接地
Via不要打在电阻体,电容(poly)边缘上面.51 05工艺中resistor层只是做检查用中国电子顶级开发网
电阻连线处孔越多,各个VIA孔的电阻是并联关系,孔形成的电阻变小.53 电阻的dummy是保证处于边缘的电阻与其他电阻蚀刻环境一样.54 电容的匹配,值,接线,位置的匹配。
电阻连接fuse的pad的连线要稍宽,因为通过的电流较大.fuse的容丝用最上层金属.56 关于powermos ① powermos一般接pin,要用足够宽的金属线接,G L,V y4@ {(N D ② 几种缩小面积的画法。
③ 栅的间距?无要求。栅的长度不能超过100um 57 Power mos要考虑瞬时大电流通过的情况,保证电流到达各处的路径的电阻相差不大.(适应所有存在大电流通过的情况).58 金属层dummy要和金属走向一致,即如果M2横走,M2的dummy也是横走向 59 低层cell的pin,label等要整齐,and不要删掉以备后用.60 匹配电路的栅如果横走,之间连接用的金属线会是竖走,用金属一层,和规定的金属走向一致。
不同宽度金属连接的影响?整个layout面积较大时影响可忽略.asicy*y 62 输出端节电容要小.多个管子并联,有一端是输出时注意做到这点.63 做DRACULA检查时,如果先运行drc,drc检查没有完毕时做了lvs检查,那么drc检查的每一步会比lvs检查的每一步快;反之,lvs会比drc快.64 最终DRACULA通过之后在layout图中空隙处加上ptap,先用thin-oxid将空隙处填满,再打上孔,金属宽度不要超过10,即一行最多8个孔(06工艺)65 为防止信号串扰,在两电路间加上PTAP,此PTAP单独连接VSS PAD.66 金属上走过的电压很大时,为避免尖角放电,拐角处用斜角,不能走90度度的直角.67 如果w=20,可画成两个w=10mos管并联
并联的管子共用端为S端,或D端;串联的管子共用端为s/d端.出错检查: 69 DEVICE的各端是否都有连线;连线是否正确;: 70 完成布局检查时要查看每个接线的地方是否都有连线,特别注意VSSX,VDDX 71 查线时用SHOTS将线高亮显示,便于找出可以合并或是缩短距离的金属线。
多个电阻(大于两根)打上DUMMY。保证每根电阻在光刻时所处的环境一样,最外面的电阻的NPIM层要超出EPOLY2 0.55 um,即两根电阻间距的一半。73 无关的MOS管的THIN要断开,不要连在一起
并联的管子注意漏源合并,不要连错线。一个管子的源端也是另一个管子的源端
做DRAC检查时最上层的pin的名称用text2标识。Text2的名称要和该pin的名称一样.76 大CELL不要做DIVA检查,用DRACULE.77 Text2层要打在最顶层cell里.如果打在pad上,于最顶层调用此PAD,Dracula无法认出此pin.78 消除电阻dummy的lvs报错,把nimp和RPdummy层移出最边缘的电阻,不要覆盖dummy 79 06工艺中M1最小宽度0.8,如果用0.8的M1拐线,虽然diva的drc不报错,但DRACULE的drc会在拐角处报错.要在拐角处加宽金属线.80 最后DRACULA的lvs通过,但是drc没有过,每次改正drc错误前可把layout图存成layout1,再改正.以免改错影响lvs不通过,旧版图也被保存下来了.81 Cell中间的连线尽量在低层cell中连完,不要放在高层cell中连,特别不要在最高层cell中连,因为最高层cell的布局经常会改动,走线容易因为cell的移动变得混乱.82 DRACULA的drc无法检查出pad必须满足pad到与pad无关的物体间距为10这一规则.83 做DRACULA检查时开两个窗口,一个用于lvs,一个用于drc.可同时进行,节省时间.84 电阻忘记加dummy;85 使用NS功能后没有复原(选取AS),之后又进行整图移动操作,结果被NS的元件没有移动,图形被破坏.86 使用strech功能时错选.每次操作时注意看图左下角提示.87 Op电路中输入放大端的管子的衬底不接vddb/vddx.;88 是否按下capslock键后没有还原就操作
节省面积的途径
电源线下面可以画有器件.节省面积.90 电阻上面可以走线,画电阻的区域可以充分利用。91 电阻的长度画越长越省面积。
走线时金属线宽走最小可以节省面积.并不需要走孔的宽度.93 做新版本的layout图时,旧图保存,不要改动或删除。减小面积时如果低层CELL的线有与外层CELL相连,可以从更改连线入手,减小走线面积。
版图中面积被device,device的间隔和走线空间分割。减小面积一般从走线空间入手,更改FLOORPLAN。
有自己总结的,也有很多同事从调试记录中摘抄出来的经典,更有自己从网上资源中与不认识的好友交流中得知并验证的,在这里希望也能够和大家讨论!也希望这个板块不要办成单纯的资源板块,希望多一点技术流上的讨论。因为ASIC的很多知识其实来源于实际工作中的经验和无数次的失败!
第二篇:手机PCB Layout 与布局经验总结
手机PCB Layout 与布局经验总结
1.sirf reference典型的四,六层板,标准FR4材质 2.所有的元件尽可能的表贴
3.连接器的放置时,应尽量避免将噪音引入RF电路,尽量使用小的连接器,适当的接地
4.所有的RF器件应放置紧密,使连线最短和交叉最小(关键)5.所有的pin有应严格按照reference schematic.所有IC电源脚应当有0.01uf的退藕电容,尽可能的离管脚近,而且必须要经过孔到地和电源层
6.预留屏蔽罩空间给RF电路和基带部分,屏蔽罩应当连续的在板子上连接,而且应每
隔100mil(最小)过孔到地层
7.RF部分电路与数字部分应在板子上分开
8.RF的地应直接的接到地层,用专门的过孔和和最短的线 9.TCXO晶振和晶振相关电路应与高slew-rate数字信号严格的隔离 10.开发板要加适当的测试点
11.使用相同的器件,针对开发过程中的版本
12.使RTC部分同数字,RF电路部分隔离,RTC电路要尽可能放在地层之上走线
RF产品设计过程中降低信号耦合的PCB布线技巧
新一轮蓝牙设备、无绳电话和蜂窝电话需求高潮正促使中国电子工程师越来越关注RF电路设计技巧。RF电路板的设计是最令设计工程
师感到头疼的部分,如想一次获得成功,仔细规划和注重细节是必须加以高度重视的两大关键设计规则。
射频(RF)电路板设计由于在理论上还有很多不确定性,因此常被形容为一种“黑色艺术”,但这个观点只有部分正确,RF电路板设计也有许多可以遵循的准则和不应该被忽视的法则。不过,在实际设计时,真正实用的技巧是当这些准则和法则因各种设计约束而无法准确地实施时如何对它们进行折衷处理。
当然,有许多重要的RF设计课题值得讨论,包括阻抗和阻抗匹配、绝缘层材料和层叠板以及波长和驻波,不过,本文将集中探讨与RF电路板分区设计有关的各种问题。
今天的蜂窝电话设计以各种方式将所有的东西集成在一起,这对RF电路板设计来说很不利。现在业界竞争非常激烈,人人都在找办法用最小的尺寸和最小的成本集成最多的功能。模拟、数字和RF电路都紧密地挤在一起,用来隔开各自问题区域的空间非常小,而且考虑到成本因素,电路板层数往往又减到最小。令人感到不可思议的是,多用途芯片可将多种功能集成在一个非常小的裸片上,而且连接外界的引脚之间排列得又非常紧密,因此RF、IF、模拟和数字信号非常靠近,但它们通常在电气上是不相干的。电源分配可能对设计者来说是一个噩梦,为了延长电池寿命,电路的不同部分是根据需要而分时工作的,并由软件来控制转换。这意味着你可能需要为你的蜂窝电话提供5到6种工作电源。
RF布局概念
在设计RF布局时,有几个总的原则必须优先加以满足:
尽可能地把高功率RF放大器(HPA)和低噪音放大器(LNA)隔离开来,简单地说,就是让高功率RF发射电路远离低功率RF接收电路。如果你的PCB板上有很多物理空间,那么你可以很容易地做到这一点,但通常元器件很多,PCB空间较小,因而这通常是不可能的。你可以把他们放在PCB板的两面,或者让它们交替工作,而不是同时工作。高功率电路有时还可包括RF缓冲器和压控制振荡器(VCO)。
确保PCB板上高功率区至少有一整块地,最好上面没有过孔,当然,铜皮越多越好。稍后,我们将讨论如何根据需要打破这个设计原则,以及如何避免由此而可能引起的问题。
芯片和电源去耦同样也极为重要,稍后将讨论实现这个原则的几种方法。
RF输出通常需要远离RF输入,稍后我们将进行详细讨论。
敏感的模拟信号应该尽可能远离高速数字信号和RF信号。
如何进行分区?
设计分区可以分解为物理分区和电气分区。物理分区主要涉及元器件布局、朝向和屏蔽等问题;电气分区可以继续分解为电源分配、RF走线、敏感电路和信号以及接地等的分区。
首先我们讨论物理分区问题。元器件布局是实现一个优秀RF设计的关键,最有效的技术是首先固定位于RF路径上的元器件,并调整其朝向以将RF路径的长度减到最小,使输入远离输出,并尽可能远地
分离高功率电路和低功率电路。
最有效的电路板堆叠方法是将主接地面(主地)安排在表层下的第二层,并尽可能将RF线走在表层上。将RF路径上的过孔尺寸减到最小不仅可以减少路径电感,而且还可以减少主地上的虚焊点,并可减少RF能量泄漏到层叠板内其他区域的机会。
在物理空间上,像多级放大器这样的线性电路通常足以将多个RF区之间相互隔离开来,但是双工器、混频器和中频放大器/混频器总是有多个RF/IF信号相互干扰,因此必须小心地将这一影响减到最小。RF与IF走线应尽可能走十字交*,并尽可能在它们之间隔一块地。正确的RF路径对整块PCB板的性能而言非常重要,这也就是为什么元器件布局通常在蜂窝电话PCB板设计中占大部分时间的原因。
在蜂窝电话PCB板上,通常可以将低噪音放大器电路放在PCB板的某一面,而高功率放大器放在另一面,并最终通过双工器把它们在同一面上连接到RF端和基带处理器端的天线上。需要一些技巧来确保直通过孔不会把RF能量从板的一面传递到另一面,常用的技术是在两面都使用盲孔。可以通过将直通过孔安排在PCB板两面都不受RF干扰的区域来将直通过孔的不利影响减到最小。
有时不太可能在多个电路块之间保证足够的隔离,在这种情况下就必须考虑采用金属屏蔽罩将射频能量屏蔽在RF区域内,但金属屏蔽罩也存在问题,例如:自身成本和装配成本都很贵;
外形不规则的金属屏蔽罩在制造时很难保证高精度,长方形或正方形金属屏蔽罩又使元器件布局受到一些限制;金属屏蔽罩不利于元器件
更换和故障定位;由于金属屏蔽罩必须焊在地上,必须与元器件保持一个适当距离,因此需要占用宝贵的PCB板空间。
尽可能保证屏蔽罩的完整非常重要,进入金属屏蔽罩的数字信号线应该尽可能走内层,而且最好走线层的下面一层PCB是地层。RF信号线可以从金属屏蔽罩底部的小缺口和地缺口处的布线层上走出去,不过缺口处周围要尽可能地多布一些地,不同层上的地可通过多个过孔连在一起。
尽管有以上的问题,但是金属屏蔽罩非常有效,而且常常还是隔离关键电路的唯一解决方案。
此外,恰当和有效的芯片电源去耦也非常重要。许多集成了线性线路的RF芯片对电源的噪音非常敏感,通常每个芯片都需要采用高达四个电容和一个隔离电感来确保滤除所有的电源噪音(见图1)。
最小电容值通常取决于其自谐振频率和低引脚电感,C4的值就是据此选择的。C3和C2的值由于其自身引脚电感的关系而相对较大一些,从而RF去耦效果要差一些,不过它们较适合于滤除较低频率的噪声信号。电感L1使RF信号无法从电源线耦合到芯片中。记住:所有的走线都是一条潜在的既可接收也可发射RF信号的天线,另外将感应的射频信号与关键线路隔离开也很必要。
这些去耦元件的物理位置通常也很关键,一块集成电路或放大器常常带有一个开漏极输出,因此需要一个上拉电感来提供一个高阻抗RF负载和一个低阻抗直流电源,同样的原则也适用于对这一电感端的电源进行去耦。有些芯片需要多个电源才能
工作,因此你可能需要两到三套电容和电感来分别对它们进行去耦处理,如果该芯片周围没有足够空间的话,那么可能会遇到一些麻烦。
记住电感极少并行靠在一起,因为这将形成一个空芯变压器并相互感应产生干扰信号,因此它们之间的距离至少要相当于其中一个器件的高度,或者成直角排列以将其互感减到最小。
电气分区原则大体上与物理分区相同,但还包含一些其它因素。现代蜂窝电话的某些部分采用不同工作电压,并借助软件对其进行控制,以延长电池工作寿命。这意味着蜂窝电话需要运行多种电源,而这给隔离带来了更多的问题。电源通常从连接器引入,并立即进行去耦处理以滤除任何来自线路板外部的噪声,然后再经过一组开关或稳压器之后对其进行分配。
蜂窝电话里大多数电路的直流电流都相当小,因此走线宽度通常不是问题,不过,必须为高功率放大器的电源单独走一条尽可能宽的大电流线,以将传输压降减到最低。为了避免太多电流损耗,需要采用多个过孔来将电流从某一层传递到另一层。此外,如果不能在高功率放大器的电源引脚端对它进行充分的去耦,那么高功率噪声将会辐射到整块板上,并带来各种各样的问题。高功率放大器的接地相当关键,并经常需要为其设计一个金属屏蔽罩。
在大多数情况下,同样关键的是确保RF输出远离RF输入。这也适用于放大器、缓冲器和滤波器。在最坏情况下,如果放大器和缓冲器的输出以适当的相位和振幅反馈到它们的输入端,那么它们就有可能产生自激振荡。在最好情况下,它们将能在任何温度和电压条件下稳
定地工作。实际上,它们可能会变得不稳定,并将噪音和互调信号添加到RF信号上。
如果射频信号线不得不从滤波器的输入端绕回输出端,这可能会严重损害滤波器的带通特性。
有时可以选择走单端或平衡RF信号线,有关交*干扰和EMC/EMI的原则在这里同样适用。平衡RF信号线如果走线正确的话,可以减少噪声和交*干扰,但是它们的阻抗通常比较高,而且要保持一个合理的线宽以得到一个匹配信号源、走线和负载的阻抗,实际布线可能会有一些困难。
缓冲器可以用来提高隔离效果,因为它可把同一个信号分为两个部分,并用于驱动不同的电路,特别是本振可能需要缓冲器来驱动多个混频器。当混频器在RF频率处到达共模隔离状态时,它将无法正常工作。缓冲器可以很好地隔离不同频率处的阻抗变化,从而电路之间不会相互干扰。
缓冲器对设计的帮助很大,它们可以紧跟在需要被驱动电路的后面,从而使高功率输出走线非常短,由于缓冲器的输入信号电平比较低,因此它们不易对板上的其它电路造成干扰。
还有许多非常敏感的信号和控制线需要特别注意,但它们超出了本文探讨的范围,因此本文仅略作论述,不再进行详细说明。
谐振电路(一个用于发射机,另一个用于接收机)与VCO有关,但也有它自己的特点。简单地讲,谐振电路是一个带有容性二极管的并行谐振电路,它有助于设置VCO工作频率和将语音或数据调制到RF
信号上。
所有VCO的设计原则同样适用于谐振电路。由于谐振电路含有数量相当多的元器件、板上分布区域较宽以及通常运行在一个很高的RF频率下,因此谐振电路通常对噪声非常敏感。信号通常排列在芯片的相邻脚上,但这些信号引脚又需要与相对较大的电感和电容配合才能工作,这反过来要求这些电感和电容的位置必须靠得很近,并连回到一个对噪声很敏感的控制环路上。要做到这点是不容易的。
自动增益控制(AGC)放大器同样是一个容易出问题的地方,不管是发射还是接收电路都会有AGC放大器。AGC放大器通常能有效地滤掉噪声,不过由于蜂窝电话具备处理发射和接收信号强度快速变化的能力,因此要求AGC电路有一个相当宽的带宽,而这使某些关键电路上的AGC放大器很容易引入噪声。
设计AGC线路必须遵守良好的模拟电路设计技术,而这跟很短的运放输入引脚和很短的反馈路径有关,这两处都必须远离RF、IF或高速数字信号走线。同样,良好的接地也必不可少,而且芯片的电源必须得到良好的去耦。如果必须要在输入或输出端走一根长线,那么最好是在输出端,通常输出端的阻抗要低得多,而且也不容易感应噪声。通常信号电平越高,就越容易把噪声引入到其它电路。
在所有PCB设计中,尽可能将数字电路远离模拟电路是一条总的原则,它同样也适用于RF PCB设计。公共模拟地和用于屏蔽和隔开信号线的地通常是同等重要的,问题在于如果没有预见和事先仔细的计划,每次你能在这方面所做的事都很少。因此在设计早期阶段,仔细 的计划、考虑周全的元器件布局和彻底的布局评估都非常重要,由于疏忽而引起的设计更改将可能导致一个即将完成的设计又必须推倒重来。这一因疏忽而导致的严重后果,无论如何对你的个人事业发展来说不是一件好事。
同样应使RF线路远离模拟线路和一些很关键的数字信号,所有的RF走线、焊盘和元件周围应尽可能多填接地铜皮,并尽可能与主地相连。类似面包板的微型过孔构造板在RF线路开发阶段很有用,如果你选用了构造板,那么你毋须花费任何开销就可随意使用很多过孔,否则在普通PCB板上钻孔将会增加开发成本,而这在大批量生产时会增加成本。
如果RF走线必须穿过信号线,那么尽量在它们之间沿着RF走线布一层与主地相连的地。如果不可能的话,一定要保证它们是十字交*的,这可将容性耦合减到最小,同时尽可能在每根RF走线周围多布一些地,并把它们连到主地。此外,将并行RF走线之间的距离减到最小可以将感性耦合减到最小。
在PCB板的每一层,应布上尽可能多的地,并把它们连到主地面。尽可能把走线靠在一起以增加内部信号层和电源分配层的地块数量,并适当调整走线以便你能将地连接过孔布置到表层上的隔离地块。应当避免在PCB各层上生成游离地,因为它们会像一个小天线那样拾取或注入噪音。在大多数情况下,如果你不能把它们连到主地,那么你最好把它们去掉。
符合要求的PCB,其布局与布线兼顾性能、外观、工艺、EMC等方面。所以,PCB LAYOUT也是一个非常重要的技能。
第三篇:手机RF射频PCB板布局布线经验总结
手机RF射频PCB板布局布线经验总结
随着手机功能的增加,对PCB板的设计要求日益曾高,伴随着一轮蓝牙设备、蜂窝电话和3G时代来临,使得工程师越来越关注RF电路的设计技巧。射频(RF)电路板设计由于在理论上还有很多不确定性,因此常被形容为一种“黑色艺术”,但这个观点只有部分正确,RF电路板设计也有许多可以遵循的准则和不应该被忽视的法则。不过,在实际设计时,真正实用的技巧是当这些准则和法则因各种设计约束而无法准确地实施时如何对它们进行折衷处理。当然,有许多重要的RF设计课题值得讨论,包括阻抗和阻抗匹配、绝缘层材料和层叠板以及波长和驻波,所以这些对手机的EMC、EMI影响都很大,下面就对手机PCB板的在设计RF布局时必须满足的条件加以总结:
3.1 尽可能地把高功率RF放大器(HPA)和低噪音放大器(LNA)隔离开来,简单地说,就是让高功率RF发射电路远离低功率RF接收电路。手机功能比较多、元器件很多,但是PCB空间较小,同时考虑到布线的设计过程限定最高,所有的这一些对设计技巧的要求就比较高。这时候可能需要设计四层到六层PCB了,让它们交替工作,而不是同时工作。高功率电路有时还可包括RF缓冲器和压控制振荡器(VCO)。确保PCB板上高功率区至少有一整块地,最好上面没有过孔,当然,铜皮越多越好。敏感的模拟信号应该尽可能远离高速数字信号和RF信号。
3.2 设计分区可以分解为物理分区和电气分区。物理分区主要涉及元器件布局、朝向和屏蔽等问题;电气分区可以继续分解为电源分配、RF走线、敏感电路和信号以及接地等的分区。
3.2.1 我们讨论物理分区问题。元器件布局是实现一个优秀RF设计的关键,最有效的技术是首先固定位于RF路径上的元器件,并调整其朝向以将RF路径的长度减到最小,使输入远离输出,并尽可能远地分离高功率电路和低功率电路。
最有效的电路板堆叠方法是将主接地面(主地)安排在表层下的第二层,并尽可能将RF线走在表层上。将RF路径上的过孔尺寸减到最小不仅可以减少路径电感,而且还可以减少主地上的虚焊点,并可减少RF能量泄漏到层叠板内其他区域的机会。在物理空间上,像多级放大器这样的线性电路通常足以将多个RF区之间相互隔离开来,但是双工器、混频器和中频放大器/混频器总是有多个RF/IF信号相互干扰,因此必须小心地将这一影响减到最小。
3.2.2 RF与IF走线应尽可能走十字交叉,并尽可能在它们之间隔一块地。正确的RF路径对整块PCB板的性能而言非常重要,这也就是为什么元器件布局通常在手机PCB板设计中占大部分时间的原因。在手机PCB板设计上,通常可以将低噪音放大器电路放在PCB板的某一面,而高功率放大器放在另一面,并最终通过双工器把它们在同一面上连接到RF端和基带处理器端的天线上。需要一些技巧来确保直通过孔不会把RF能量从板的一面传递到另一面,常用的技术是在两面都使用盲孔。可以通过将直通过孔安排在PCB板两面都不受RF干扰的区域来将直通过孔的不利影响减到最小。有时不太可能在多个电路块之间保证足够的隔离,在这种情况下就必须考虑采用金属屏蔽罩将射频能量屏蔽在RF区域内,金属屏蔽罩必须焊在地上,必须与元器件保持一个适当距离,因此需要占用宝贵的PCB板空间。尽可能保证屏蔽罩的完整非常重要,进入金属屏蔽罩的数字信号线应该尽可能走内层,而且最好走线层的下面一层PCB是地层。RF信号线可以从金属屏蔽罩底部的小缺口和地缺口处的布线层上走出去,不过缺口处周围要尽可能地多布一些地,不同层上的地可通过多个过孔连在一起。
3.2.3 恰当和有效的芯片电源去耦也非常重要。许多集成了线性线路的RF芯片对电源的噪音非常敏感,通常每个芯片都需要采用高达四个电容和一个隔离电感来确保滤除所有的电源噪音。一块集成电路或放大器常常带有一个开漏极输出,因此需要一个上拉电感来提供一个高阻抗RF负载和一个低阻抗直流电源,同样的原则也适用于对这一电感端的电源进行去耦。有些芯片需要多个电源才能工作,因此你可能需要两到三套电容和电感来分别对它们进行去耦处理,电感极少并行靠在一起,因为这将形成一个空芯变压器并相互感应产生干扰信号,因此它们之间的距离至少要相当于其中一个器件的高度,或者成直角排列以将其互感减到最小。
3.2.4 电气分区原则大体上与物理分区相同,但还包含一些其它因素。手机的某些部分采用不同工作电压,并借助软件对其进行控制,以延长电池工作寿命。这意味着手机需要运行多种电源,而这给隔离带来了更多的问题。电源通常从连接器引入,并立即进行去耦处理以滤除任何来自线路板外部的噪声,然后再经过一组开关或稳压器之后对其进行分配。手机PCB板上大多数电路的直流电流都相当小,因此走线宽度通常不是问题,不过,必须为高功率放大器的电源单独走一条尽可能宽的大电流线,以将传输压降减到最低。为了避免太多电流损耗,需要采用多个过孔来将电流从某一层传递到另一层。此外,如果不能在高功率放大器的电源引脚端对它进行充分的去耦,那么高功率噪声将会辐射到整块板上,并带来各种各样的问题。高功率放大器的接地相当关键,并经常需要为其设计一个金属屏蔽罩。在大多数情况下,同样关键的是确保RF输出远离RF输入。这也适用于放大器、缓冲器和滤波器。在最坏情况下,如果放大器和缓冲器的输出以适当的相位和振幅反馈到它们的输入端,那么它们就有可能产生自激振荡。在最好情况下,它们将能在任何温度和电压条件下稳定地工作。实际上,它们可能会变得不稳定,并将噪音和互调信号添加到RF信号上。如果射频信号线不得不从滤波器的输入端绕回输出端,这可能会严重损害滤波器的带通特性。为了使输入和输出得到良好的隔离,首先必须在滤波器周围布一圈地,其次滤波器下层区域也要布一块地,并与围绕滤波器的主地连接起来。把需要穿过滤波器的信号线尽可能远离滤波器引脚也是个好方法。
此外,整块板上各个地方的接地都要十分小心,否则会在引入一条耦合通道。有时可以选择走单端或平衡RF信号线,有关交叉干扰和EMC/EMI的原则在这里同样适用。平衡RF信号线如果走线正确的话,可以减少噪声和交叉干扰,但是它们的阻抗通常比较高,而且要保持一个合理的线宽以得到一个匹配信号源、走线和负载的阻抗,实际布线可能会有一些困难。缓冲器可以用来提高隔离效果,因为它可把同一个信号分为两个部分,并用于驱动不同的电路,特别是本振可能需要缓冲器来驱动多个混频器。当混频器在RF频率处到达共模隔离状态时,它将无法正常工作。缓冲器可以很好地隔离不同频率处的阻抗变化,从而电路之间不会相互干扰。缓冲器对设计的帮助很大,它们可以紧跟在需要被驱动电路的后面,从而使高功率输出走线非常短,由于缓冲器的输入信号电平比较低,因此它们不易对板上的其它电路造成干扰。压控振荡器(VCO)可将变化的电压转换为变化的频率,这一特性被用于高速频道切换,但它们同样也将控制电压上的微量噪声转换为微小的频率变化,而这就给RF信号增加了噪声。
3.2.5 要保证不增加噪声必须从以下几个方面考虑:首先,控制线的期望频宽范围可能从DC直到2MHz,而通过滤波来去掉这么宽频带的噪声几乎是不可能的;其次,VCO控制线通常是一个控制频率的反馈回路的一部分,它在很多地方都有可能引入噪声,因此必须非常小心处理VCO控制线。要确保RF走线下层的地是实心的,而且所有的元器件都牢固地连到主地上,并与其它可能带来噪声的走线隔离开来。此外,要确保VCO的电源已得到充分去耦,由于VCO的RF输出往往是一个相对较高的电平,VCO输出信号很容易干扰其它电路,因此必须对VCO加以特别注意。事实上,VCO往往布放在RF区域的末端,有时它还需要一个金属屏蔽罩。谐振电路(一个用于发射机,另一个用于接收机)与VCO有关,但也有它自己的特点。简单地讲,谐振电路是一个带有容性二极管的并行谐振电路,它有助于设置VCO工作频率和将语音或数据调制到RF信号上。所有VCO的设计原则同样适用于谐振电路。由于谐振电路含有数量相当多的元器件、板上分布区域较宽以及通常运行在一个很高的RF频率下,因此谐振电路通常对噪声非常敏感。信号通常排列在芯片的相邻脚上,但这些信号引脚又需要与相对较大的电感和电容配合才能工作,这反过来要求这些电感和电容的位置必须靠得很近,并连回到一个对噪声很敏感的控制环路上。要做到这点是不容易的。
自动增益控制(AGC)放大器同样是一个容易出问题的地方,不管是发射还是接收电路都会有AGC放大器。AGC放大器通常能有效地滤掉噪声,不过由于手机具备处理发射和接收信号强度快速变化的能力,因此要求AGC电路有一个相当宽的带宽,而这使某些关键电路上的AGC放大器很容易引入噪声。设计AGC线路必须遵守良好的模拟电路设计技术,而这跟很短的运放输入引脚和很短的反馈路径有关,这两处都必须远离RF、IF或高速数字信号走线。同样,良好的接地也必不可少,而且芯片的电源必须得到良好的去耦。如果必须要在输入或输出端走一根长线,那么最好是在输出端,通常输出端的阻抗要低得多,而且也不容易感应噪声。通常信号电平越高,就越容易把噪声引入到其它电路。在所有PCB设计中,尽可能将数字电路远离模拟电路是一条总的原则,它同样也适用于RF PCB设计。公共模拟地和用于屏蔽和隔开信号线的地通常是同等重要的,因此在设计早期阶段,仔细的计划、考虑周全的元器件布局和彻底的布局评估都非常重要,同样应使RF线路远离模拟线路和一些很关键的数字信号,所有的RF走线、焊盘和元件周围应尽可能多填接地铜皮,并尽可能与主地相连。如果RF走线必须穿过信号线,那么尽量在它们之间沿着RF走线布一层与主地相连的地。如果不可能的话,一定要保证它们是十字交叉的,这可将容性耦合减到最小,同时尽可能在每根RF走线周围多布一些地,并把它们连到主地。此外,将并行RF走线之间的距离减到最小可以将感性耦合减到最小。一个实心的整块接地面直接放在表层下第一层时,隔离效果最好,尽管小心一点设计时其它的做法也管用。在PCB板的每一层,应布上尽可能多的地,并把它们连到主地面。尽可能把走线靠在一起以增加内部信号层和电源分配层的地块数量,并适当调整走线以便你能将地连接过孔布置到表层上的隔离地块。应当避免在PCB各层上生成游离地,因为它们会像一个小天线那样拾取或注入噪音。在大多数情况下,如果你不能把它们连到主地,那么你最好把它们去掉。
3.3 在手机PCB板设计时,应对以下几个方面给予极大的重视 3.3.1 电源、地线的处理
既使在整个PCB板中的布线完成得都很好,但由于电源、地线的考虑不周到而引起的干扰,会使产品的性能下降,有时甚至影响到产品的成功率。所以对电、地线的布线要认真对待,把电、地线所产生的噪音干扰降到最低限度,以保证产品的质量。对每个从事电子产品设计的工程人员来说都明白地线与电源线之间噪音所产生的原因,现只对降低式抑制噪音作以表述:
(1)、众所周知的是在电源、地线之间加上去耦电容。
(2)、尽量加宽电源、地线宽度,最好是地线比电源线宽,它们的关系是:地线>电源线>信号线,通常信号线宽为:0.2~0.3mm,最经细宽度可达0.05~0.07mm,电源线为1.2~2.5 mm。对数字电路的PCB可用宽的地导线组成一个回路, 即构成一个地网来使用(模拟电路的地不能这样使用)
(3)、用大面积铜层作地线用,在印制板上把没被用上的地方都与地相连接作为地线用。或是做成多层板,电源,地线各占用一层。
3.3.2 数字电路与模拟电路的共地处理
现在有许多PCB不再是单一功能电路(数字或模拟电路),而是由数字电路和模拟电路混合构成的。因此在布线时就需要考虑它们之间互相干扰问题,特别是地线上的噪音干扰。数字电路的频率高,模拟电路的敏感度强,对信号线来说,高频的信号线尽可能远离敏感的模拟电路器件,对地线来说,整人PCB对外界只有一个结点,所以必须在PCB内部进行处理数、模共地的问题,而在板内部数字地和模拟地实际上是分开的它们之间互不相连,只是在PCB与外界连接的接口处(如插头等)。数字地与模拟地有一点短接,请注意,只有一个连接点。也有在PCB上不共地的,这由系统设计来决定。
3.3.3 信号线布在电(地)层上
在多层印制板布线时,由于在信号线层没有布完的线剩下已经不多,再多加层数就会造成浪费也会给生产增加一定的工作量,成本也相应增加了,为解决这个矛盾,可以考虑在电(地)层上进行布线。首先应考虑用电源层,其次才是地层。因为最好是保留地层的完整性。
3.3.4 大面积导体中连接腿的处理
在大面积的接地(电)中,常用元器件的腿与其连接,对连接腿的处理需要进行综合的考虑,就电气性能而言,元件腿的焊盘与铜面满接为好,但对元件的焊接装配就存在一些不良隐患如:①焊接需要大功率加热器。②容易造成虚焊点。所以兼顾电气性能与工艺需要,做成十字花焊盘,称之为热隔离(heat shield)俗称热焊盘(Thermal),这样,可使在焊接时因截面过分散热而产生虚焊点的可能性大大减少。多层板的接电(地)层腿的处理相同。
3.3.5 布线中网络系统的作用
在许多CAD系统中,布线是依据网络系统决定的。网格过密,通路虽然有所增加,但步进太小,图场的数据量过大,这必然对设备的存贮空间有更高的要求,同时也对象计算机类电子产品的运算速度有极大的影响。而有些通路是无效的,如被元件腿的焊盘占用的或被安装孔、定们孔所占用的等。网格过疏,通路太少对布通率的影响极大。所以要有一个疏密合理的网格系统来支持布线的进行。标准元器件两腿之间的距离为0.1英寸(2.54mm),所以网格系统的基础一般就定为0.1英寸(2.54 mm)或小于0.1英寸的整倍数,如:0.05英寸、0.025英寸、0.02英寸等。
3.4 进行高频PCB设计的技巧和方法如下: 3.4.1 传输线拐角要采用45°角,以降低回损
3.4.2 要采用绝缘常数值按层次严格受控的高性能绝缘电路板。这种方法有利于对绝缘材料与邻近布线之间的电磁场进行有效管理。
3.4.3 要完善有关高精度蚀刻的PCB设计规范。要考虑规定线宽总误差为+/-0.0007英寸、对布线形状的下切(undercut)和横断面进行管理并指定布线侧壁电镀条件。对布线(导线)几何形状和涂层表面进行总体管理,对解决与微波频率相关的趋肤效应问题及实现这些规范相当重要。
3.4.4 突出引线存在抽头电感,要避免使用有引线的组件。高频环境下,最好使用表面安装组件。
3.4.5 对信号过孔而言,要避免在敏感板上使用过孔加工(pth)工艺,因为该工艺会导致过孔处产生引线电感。
3.4.6 要提供丰富的接地层。要采用模压孔将这些接地层连接起来防止3维电磁场对电路板的影响。
3.4.7 要选择非电解镀镍或浸镀金工艺,不要采用HASL法进行电镀。这种电镀表面能为高频电流提供更好的趋肤效应(图2)。此外,这种高可焊涂层所需引线较少,有助于减少环境污染。
3.4.8 阻焊层可防止焊锡膏的流动。但是,由于厚度不确定性和绝缘性能的未知性,整个板表面都覆盖阻焊材料将会导致微带设计中的电磁能量的较大变化。一般采用焊坝(solder dam)来作阻焊层。的电磁场。这种情况下,我们管理着微带到同轴电缆之间的转换。在同轴电缆中,地线层是环形交织的,并且间隔均匀。在微带中,接地层在有源线之下。这就引入了某些边缘效应,需在设计时了解、预测并加以考虑。当然,这种不匹配也会导致回损,必须最大程度减小这种不匹配以避免产生噪音和信号干扰。
3.5 电磁兼容性设计
电磁兼容性是指电子设备在各种电磁环境中仍能够协调、有效地进行工作的能力。电磁兼容性设计的目的是使电子设备既能抑制各种外来的干扰,使电子设备在特定的电磁环境中能够正常工作,同时又能减少电子设备本身对其它电子设备的电磁干扰。
3.5.1 选择合理的导线宽度
由于瞬变电流在印制线条上所产生的冲击干扰主要是由印制导线的电感成分造成的,因此应尽量减小印制导线的电感量。印制导线的电感量与其长度成正比,与其宽度成反比,因而短而精的导线对抑制干扰是有利的。时钟引线、行驱动器或总线驱动器的信号线常常载有大的瞬变电流,印制导线要尽可能地短。对于分立元件电路,印制导线宽度在1.5mm左右时,即可完全满足要求;对于集成电路,印制导线宽度可在0.2~1.0mm之间选择。
3.5.2 采用正确的布线策略
采用平等走线可以减少导线电感,但导线之间的互感和分布电容增加,如果布局允许,最好采用井字形网状布线结构,具体做法是印制板的一面横向布线,另一面纵向布线,然后在交叉孔处用金属化孔相连。
3.5.3 为了抑制印制板导线之间的串扰,在设计布线时应尽量避免长距离的平等走线,尽可能拉开线与线之间的距离,信号线与地线及电源线尽可能不交叉。在一些对干扰十分敏感的信号线之间设置一根接地的印制线,可以有效地抑制串扰。
3.5.4 为了避免高频信号通过印制导线时产生的电磁辐射,在印制电路板布线时,还应注意以下几点:
(1)尽量减少印制导线的不连续性,例如导线宽度不要突变,导线的拐角应大于90度禁止环状走线等。
(2)时钟信号引线最容易产生电磁辐射干扰,走线时应与地线回路相靠近,驱动器应紧挨着连接器。
(3)总线驱动器应紧挨其欲驱动的总线。对于那些离开印制电路板的引线,驱动器应紧紧挨着连接器。
(4)数据总线的布线应每两根信号线之间夹一根信号地线。最好是紧紧挨着最不重要的地址引线放置地回路,因为后者常载有高频电流。
(5)在印制板布置高速、中速和低速逻辑电路时,应按照图1的方式排列器件。
3.5.5 抑制反射干扰
为了抑制出现在印制线条终端的反射干扰,除了特殊需要之外,应尽可能缩短印制线的长度和采用慢速电路。必要时可加终端匹配,即在传输线的末端对地和电源端各加接一个相同阻值的匹配电阻。根据经验,对一般速度较快的TTL电路,其印制线条长于10cm以上时就应采用终端匹配措施。匹配电阻的阻值应根据集成电路的输出驱动电流及吸收电流的最大值来决定。
3.5.6 电路板设计过程中采用差分信号线布线策略
布线非常靠近的差分信号对相互之间也会互相紧密耦合,这种互相之间的耦合会减小EMI发射,通常(当然也有一些例外)差分信号也是高速信号,所以高速设计规则通常也都适用于差分信号的布线,特别是设计传输线的信号线时更是如此。这就意味着我们必须非常谨慎地设计信号线的布线,以确保信号线的特征阻抗沿信号线各处连续并且保持一个常数。在差分线对的布局布线过程中,我们希望差分线对中的两个PCB线完全一致。这就意味着,在实际应用中应该尽最大的努力来确保差分线对中的PCB线具有完全一样的阻抗并且布线的长度也完全一致。差分PCB线通常总是成对布线,而且它们之间的距离沿线对的方向在任意位置都保持为一个常数不变。通常情况下,差分线对的布局布线总是尽可能地靠近。
本文来自: DZ3W.COM 原http://
文网址:
第四篇:实验室布局
前言
之前为一家企业做的检测实验室规划方案,删减了部分信息,发出来与大家分享、交流。实验室的职能
1.1 负责策划、建立、实施和保持实验室质量管理体系与技术管理规程,确保实验室符合ISO17025标准的要求,通过并维持CNAS实验室认可; 1.2 参与原材料质量评审、设计质量评审、客户合同评审,组织制定公司原材料、产品(包括半成品、成品和研发的新产品,下同)的理化性能标准、功能性标准和产品检验计划,并监督实施;
1.3 负责引进、开发与改进公司原材料、产品理化性能、功能性检测方法标准; 1.4 负责公司原材料、产品理化性能的评审、检测与验证,及时准确的出具检测报告或统计分析报告;
1.5 负责供应商实验室的辅导、审核与技术支持,提高供应商的质量管理水平; 1.6 负责客户检测资源、第三方检测资源的建立与维护,相关质量信息的收集与分析;
1.7 负责组织竞争品牌产品质量水平的比对、分析。实验室关键工作流程
2.1 公司主流程及关键的质量控制点(CTQ)
2.2 实验室检测流程 检测中心组织架构
3.1 组织架构图
3.2关键岗位人员 序号 关键岗位 1 检测中心主任 2 技术主管 3 质量主管 4 授权签字人 5 报告审核人
关键岗位人员 代理人 XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX 6 报告意见和解释人 XXX XXX
4.3 检测中心岗位职责
4.3.1检测中心主任(实验室最高管理者)
a)贯彻执行国家有关的政策、法规和方针,确保实验室质量体系的有效运行,确保将客户、国家法律法规的要求传达到实验室;
b)保证实验室的检测工作不受生产、财务、经营的压力和干扰,为检测的公正性和独立性创造环境;
c)负责组织制定实验室长期发展规划和工作计划;
d)为实验室的检测活动提供资源保障的支持,包括人力、设施、设备、环境、信息等;
e)负责实验室组织机构的设置,质量方针、质量目标的制定与调整,实验室质量手册、程序文件、规程文件、记录表单的批准发布;
f)负责检测中心重大工作的决定及相关文件的签批,包括培训申请、设备消耗品采购、样品处置等;
g)主持检测中心日常管理工作,指导实验室按时、准确完成各类检测任务,为相关部门提供有效质量信息,适时与内外部单位沟通协调,解决工作中存在的问题;
h)负责组织实验室质量管理体系的建立,确保管理体系的有效实施和持续改进,持续符合CNAS—CL01:2006、CNAS—CL18:2006的要求; i)负责确定检测中心人员的职责、权限和相互关系,任命实验室关键岗位人员,赋予其相应的职责和权限;确保实验室人员理解他们活动的相互关系和重要性,以及如何为管理体系质量目标的实现做出贡献;
j)负责宣贯质量方针与质量目标,确保在实验室内部建立适宜的沟通机制,并就与管理体系有效性的事宜进行沟通;当策划和实施管理体系的变更时,确保维持管理体系的完整性;
k)负责服务和供应品(包括设备、消耗品等)采购申请、设备报废申请、过期样品处置方案的审核;
l)负责重大投诉与重大不符合工作处理方案的审批,必要时上报总经理; m)负责按预定的日程表和程序,对实验室的管理体系和检测活动进行评审,提出并确定各种改进机会和变化需求,确保管理体系的适宜性、充分性和有效性。
4.3.2技术主管
a)履行技术管理职能,全面负责实验室的技术运作,维护实验室的检测技术水平,保持与客户或其代表的技术沟通与合作;
b)积极参与质量管理活动,确保实验室管理体系运作所需的资源,及时、准确完成公司产品的检测任务,为相关部门提供有效检测数据;
c)负责组织编写和审核检测技术相关的检测方法、技术要求、使用保养规程、作业指导书等规程文件及相关记录表单;
d)负责检测方法、产品标准、技术要求等文件在实验室的传递与宣贯,确保实验室使用标准最新有效版本; e)负责组织对新的、复杂的或先进的特殊测试项目进行合同评审; f)负责组织分包实验室资质、能力的评审和监督;
g)负责组织评审服务与供应品供应商的资质;负责组织编制和审核服务与供应品的采购计划,负责组织服务与供应品的验收、评价和审批;
h)负责实验室检测能力的公示;促进实验室人员服务客户意识的形成; i)负责组织处理和审核检测工作的偏离;
j)负责组织处理技术方面的不符合工作(客户反馈、客户投诉、检测质量问题、检测事故),组织制定纠正/预防措施,对纠正/预防措施的实施效果进行验证; k)负责建立实验室人员档案;负责组织人员技术培训计划、人员考核计划的制定、审批和实施,负责人员检测项目的授权;
l)负责组织实验室5S、安全、环境管理的实施和监督检查工作,确保实验室的安全、卫生、环境符合公司相关规章制度和实验室相关检测规范的要求; m)负责组织实验室检测方法的选择、确认,新开方法的验证及方法的查新,测量不确定度的评定;负责组织自行开发(设计)检测方法;
n)负责实验室设备检定/校准计划、设备期间核查计划、标准物质(耗材)期间核查、重大设备维护保养计划的审批;
o)确保检测样品在实验室检测流转过程中的完整性与样品标识的唯一性,负责实验室过期样品处置方案的审核;
p)负责收集、评估技术方面的改进建议或创新提案,负责组织实施并跟进验收。
4.3.3 质量主管
a)履行质量管理职能,确保实验室质量管理体系在受控状态下运行,组织对体系的运行情况进行监督和审核;
b)负责组织实验室质量管理体系的培训与考核,确保人员理解他们在质量管理体系活动的相互关系和重要性,不断提高全体人员的质量意识; c)负责组织质量手册、程序文件的编制、维护、修订;
d)负责组织客户满意度调查的计划、策划、实施、改进、验证等工作。
e)负责质量记录表单的审核,确保表单的设计符合体系运行的要求,负责组织对质量记录表单进行定期评审;
f)负责组织实验室质量管理体系方面投诉处理与验收;
g)负责不符合工作中有关质量体系的纠正措施、预防措施的审核与验证; h)负责编制实验室内部审核计划,组织内审员实施审核,编制内审报告,并负责跟踪不符合项的整改工作;
i)负责制定管理评审计划,组织相关人员准备管理评审汇报材料,组织管理评审会议;负责编制管理评审报告,跟踪验证管理评审决议的实施情况; t)负责制定质量控制计划(实验室内/间比对计划、测量审核、能力验证计划等),并组织实施;
u)负责制定检测工作质量监督计划,并组织实施,定期提交监督报告;
j)负责收集、评估质量管理体系方面的改进建议或创新提案,负责组织实施并跟进验收;
k)有权直接向决定实验室政策和资源的实验室经理或总监报告管理体系存在的问题。4.4 人员需求
……
4.5 培训需求
…… 2013实验室关键计划
……
总结
企业建设检测实验室的目的主要在于产品的质量控制,因此在做企业实验室规划时要确保能让实验室发挥应有的价值(见实验室的职能部分),起到企业产品质量把控、质量分析、质量改进的作用,而不是让企业实验室成为一个宣传、参观平台。这样子企业实验室才能与企业共同成长。
第五篇:办公室布局
办公室风水---东南方
2013年,四绿星飞到东南方,文昌星归位,主聪明,利文职。在这个方位,适宜安床、饮食、工作、开门、建灶等,同时,在这个方位要营造好的办公室风水,可以摆放属旺金的风水用品,如放一个铜制的文昌塔来生旺,提升运势。
办公室风水---南方
2013年,九紫右弼星飞临南方,主财运、事业等,这个方位有益于读书、房地产、置业等等。办公室风水布局认为,在这里不可摆放属克火的风水用品,可在这里摆放红色装饰品如红色中国结,可以旺运势。
办公室风水---西南方
2013年,二黑病符星飞临西南方,主家人患病、妻夺夫权等等,所以办公室风水布局知识认为,不宜在此方位摆放属土的风水用品,可以摆放属金风水物,使土生金,金生水,如挂五帝铜钱等来减少二黑凶星之煞气。
办公室风水---东方
2013年,三碧星飞往东方震宫,禄存星归位,主官灾是非、争执,好斗勇之狠。办公室风水布局知识认为,不宜在此方位摆放属木的风水用品,应以火泄之,如挂一个红色的中国结,可以减少三碧凶星来的煞气。
办公室风水---中央
2013年,五黄廉贞大煞星飞临中宫,廉贞星归位,主血光之灾、疮瘤。办公室风水布局知识认为,不宜在这里摆放属土风水物,可以在此摆放金属铜钟或五帝铜钱来减少五黄带来的煞气。
办公室风水---西方
2013年,七赤星飞临西方兑官,主血光之灾。办公室风水布局知识认为,不宜在这里摆放属金的风水用品,可以在这里摆放鱼缸,或放置有水的容器,水生植物等,目的是以水泄金气,来减少七赤破军星带来的煞气,助招财纳气,提升偏财运。
办公室风水---东北方
2013年,八白左辅星飞临东北方,主大财,尤其利于房地产。办公室风水布局知识认为,不可在这里摆放属克土的风水用品,可以在这里摆放红色的装饰品,易动不易静,易在动中生财旺运,可摆放铜质风铃,提升财运。
办公室风水---北方
2013年,一白贪狼星飞临北方坎宫,一白为官星之位,主读书聪明,利文职。办公室风水布局知识认为,在这里可摆放属金的风水用品,使金生水,五行顺生,催财旺运,促进个人事业发展,搞好人际关系。
办公室风水---西北方
2013年,六白星飞入北方乾宫,驿马动,主远行,主官非,或者交通意外。办公室风水布局知识认为,在这个方位可以摆放开光五帝铜钱或铜像等吉祥镇宅之物,起到趋吉避凶的效果。