农村配电变压器无功补偿电容器的合理配置(共五则范文)

时间:2019-05-14 07:50:50下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《农村配电变压器无功补偿电容器的合理配置》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《农村配电变压器无功补偿电容器的合理配置》。

第一篇:农村配电变压器无功补偿电容器的合理配置

www.xiexiebang.com

运行中的配电网,不仅有功要平衡,无功也要平衡。通常对有功的平衡都知道要平衡,但对无功却远没有像有功一样引起重视,而当电网的无功平衡失调,功率因数降低时,电力设备得不到合理应用,线路损失增大,用户末端电压下降。因此,无功补偿问题越来越引起人们的重视。在经过近几年大规模的农网建设和改造,农村电网的健康水平有了明显提高的同时,也安装了大量的无功补偿。这些大都采用自动投切,但往往由于电容器配置不合理,电容器只数太少,单只容量太大,投一级达不到要求的功率因数,再投一级又会因超过功率因数定值而投不上。这样提高功率因数就达不到预期的目的。

1农村负荷特点及无功补偿

配电变压器无功补偿装置的作用就是使该台变压器的无功能就地平衡,一是平衡变压器的励磁所需的无功功率,二是满足负荷无功的需求。尽量不向系统吸收无功或少吸收无功。农村除专用变外,一般是自然村的综合变,它的负荷主要农村生活用电,副业生产以及少量的粮食加工等,这些负荷的特点是“二低一高”,即负荷率低,功率因数低,同时率高。一般情况配电变压器容量处于半载或轻载情况下运行,晚间灯峰负荷可能出现最高负荷。负载端一般没有无功补偿装置,自然功率因数cosф在0.7以下,极少数甚至在0.5左右。无功补偿装置就要针对负荷的特点有的放矢。

1.1变压器运行时自身所需的无功功率

变压器空载运行所需的无功功率:Q0=I0%Se/100

变压器满载运行所需的无功功率:Qe=Q0+Ud%Se/100

变压器正常运行时所需的无功功率:Q=Q0+Ud%Se(S/Se)2/100

式中:Ud%短路电压百分比值

I0%空载电流百分比值

Se变压器额定容量

S变压器实际运行容量

根据以上的方程式可计算出变压器所需的无功功率。

1.2负载所需的无功功率

考虑负载侧所有的无功功率作集中补偿。其计算方法如下:

Qc=P(tgQ1-tgQ2)

Qc:补偿电容器容量(KVAR)

www.xiexiebang.com

式中:ΔPxs-降低线损百分数

cosф1-原有功率因数

cosф2-提高后的功率因数

由上式可计算出功率因数提高与线路损失减少的关系。(以cosф=0.6为参考点)

当功率因数由0.60提高到0.90,线路损失将减少80%,可见功率因数对线损影响极大。

3无功补偿电容器的合理配置

电容器的合理配置包括选择的电容器容量和只数两个方面。

3.1功率因数的目标值

提高功率因数需要增加电容器,但提高功率因数后带来的是视在电流下降和线路损耗降低,为方便比较,列出下列关系表。

功率增加与每千瓦有功功率所需增加的无功容量,视在电流降低和线损未下降的关系

从表中我们可以看出,当功率因数提高时所需的电容器和视在电流下降的百分比呈线型关系,唯有线路损耗下降的百分数不是线型关系,功率因数愈高,经济效益就越差。当功率因数cosф由0.6提高到0.7时,线路损失下降近50%;而由0.7提高到0.8时,线路损失只下降了20%;当由0.8提升到0.9时,线路损耗仅下降10%,功率因数愈高,效果愈差,因此

第二篇:农村配电变压器加油注意事项

农村配电变压器加油注意事项

在对农村运行的配电变压器进行日常巡视检查中,常会发现一些变压器内变压器油油位不在规定范围内,为保证变压器能够正常安全运行,需要及时查找原因后给变压器加油,加油时需要注意以下几点:

一、要了解变压器缺油的危害性

当变压器内的油下降到变压器外壳以下时,油和空气的接触面增大,油极易吸收水分,氧化变质,使油的耐压强度降低,破坏线圈的绝缘性能。缺油严重时,使变压器导电部位对地或相与相之间的绝缘降低,造成相间或对地击穿放电,继续使用会使油温急剧上升,缩短变压器的寿命甚至烧毁变压器。

二、查找缺油原因和处理办法

在没有外力的作用下,缺油一般是因变压器渗漏油造成的:

1.上端盖箱渗油,应紧固上端盖大螺丝。

2.从档位开关渗出的,应拧开档位开关盖,紧固里面的固定螺丝。

3.绝缘垫老化的,应尽快更换。

三、加油前

1.先看变压器里是哪个型号的油,然后到正规商店购买相同型号的变压器油。

2.加油应选在干燥的晴天中午进行,要用清洁、干燥的容器。

3.加油前应先打开变压器底部取样阀,取出少量变压器油样,现场进行简单质量鉴定,如果油样颜色较重,含有杂质,应先送去化验,油样合格后再给变压器加油。

4.加油前要把油枕底部螺母拧开,放掉油枕内少量的存油。

四、加油时

1.拧开油枕上部加油口的密封盖,并把周围的灰尘和杂质擦掉。

2.把加油容器口对准加油口,然后缓慢加入,油加到油标的1/4到3/4之间。

3.把油枕上部加油口的密封盖拧上,注意拧得不能太紧,以保证通气孔能与大气畅通。

以上工作必须在变压器停止运行后,采取必要的安全措施,两人共同进行。

五、加油后

1.如果加的油较少,为了能使在加油时进入的空气尽快排出,最好在2小时后使变压器投入运行;如果加油超过变压器内总油的1/4,应在6~8小时后投入运行。

2.对没有用完的油,会在存放过程中逐渐受潮而不合格,所以不能长期存放,应尽快使用。

第三篇:城区供电公司关于规范柱上配电变压器无功补偿箱施工安装的实施细则

附件

城区供电公司关于规范柱上配电变压器

无功补偿箱施工安装的实施细则

第一章 总则

第一条 为进一步规范城区供电公司低压无功补偿箱的施工工艺,确保新投运无功补偿箱的施工质量,全面降低无功补偿箱及其接线的故障率,特制定本实施细则。

第二条 本实施细则适用于城区公司范围内的所有工程,有关无功补偿箱及其连接线缆的施工应严格执行本规定。

第二章 无功补偿箱箱体安装

第三条 10kV柱上变压器低压无功自动补偿装置的设备规范、主要元部件、组装应满足《低压无功补偿装置及运行监测系统通用订货技术条件》(Q/GDW 02 1 2343—2010)。

第四条 补偿箱安装托架宜紧贴变台槽担上端、担头向上翘起20mm,角铁背板固定应牢固。无安装托架的补偿箱应使用115横担以及124角戗作为补偿箱托架,115横担安装位置应高于变压器槽钢200mm。

第五条 补偿箱接地引线应采用截面不小于16mm的黑色绝缘线,接地引线与补偿箱连接用螺栓应紧固,接地引线与变台接地引线连接采用绑扎法,绑扎应整齐紧密,绑扎长

2度不应小于100mm;

第三章 补偿箱用CT及二次线施工

第六条 补偿箱用电流互感器(以下简称补偿箱CT)应配套选用户外穿芯式电流互感器。

第七条 补偿箱CT应安装于变台低压刀闸负荷侧的CT担上,CT变比应根据变压器二次额定电流确定,CT二次侧接线端子应向下且必须采取防水措施。

第八条 补偿箱CT二次线应选用6芯2.5mm铜芯内层聚氯乙稀绝缘、黑色外护套具有耐气候耐日光性能的电缆,接线前线芯两端应做好相别、极性标记,连接牢固,经检查无误后,装好CT接线端子防水盖;

第九条 补偿箱CT二次电缆应沿CT担引至电杆,再沿电杆向下引入补偿箱内。电缆缆身端头处、转弯处及直线段每隔1m应采用直径2mm铁线与电杆绑扎一圈,缆身应横平竖直,不应沿杆扭斜,电缆与端子连接处应预留返水弯。

第十条 伸入补偿箱内的CT二次电缆应加以固定,芯线接于端子排对应的接线端子上,接线前应进行核相,确保接线正确。

第四章 补偿箱电源电缆施工

第十一条 补偿箱电源电缆应选用铜芯内层聚氯乙稀绝缘、黑色外护套具有耐气候耐日光性能的四芯统包电缆,电缆长期允许电流不应小于补偿箱全部电容器额定电流的21.3倍;

第十二条 补偿箱电源电缆首端芯线应采用铜接线端子经环压后接于补偿箱内总开关的上口,连接应正确牢固。

第十三条 补偿箱电源电缆从无功补偿箱引出后应紧贴电杆向上安装至高于CT担400mm处再制作终端接头,终端接头分叉处应朝下,A、B、C三相线芯应沿CT担分别与变压器低压侧各相导线一起接入变压器低压侧刀闸。

第十四条 电源电缆从补偿箱引出后,在接入变压器低压刀闸前,必须穿过低压侧CT,电源电缆不得未穿CT而直接与变压器低压刀闸连接。

第十五条 电源电缆A、B、C三相末端应接于低压刀闸的负荷侧,电缆末端应使用铜接线端子采取压接的方式与变压器低压刀闸负荷侧进行连接。

第十六条 电源电缆零线应沿电杆向下经变压器腰栏引至低压侧零相瓷头处,零线与瓷头应使用铜接线端子采取压接的方式进行连接。

第十七条 电源电缆终端在接线施工中必须进行密封防潮处理,应选择与电缆截面匹配的合格热缩终端接头料对电缆终端接头进行热缩处理,热缩作业时应严格遵照接头料厂家提供的制作工艺流程进行施工。电源电缆终端严禁未经任何处理直接与变压器连接。

第十八条 电源电缆端头折弯及直线段每隔1m均应固定,固定时应采用直径2mm铁线与电杆绑扎一圈,缆身应横平竖直,不应沿杆扭斜。

第五章 附则

第十九条 本实施细则解释权属城区供电公司运维检修部。

第二十条 本实施细则自印发之日起执行。

第四篇:农村配电变压器防雷措施的应用

农村配电变压器防雷措施的应用

[摘要] 目前我国农村地区共有配电变压器约124万台,由于大多位于低洼荒野之地,容易遭受雷击受到损坏,每年雷击变压器占变压器损坏的50%以上,不仅造成国家财产的损失,而且给广大人民群众的生产生活带来极大的不便。文章结合实际情况,分析雷击变压器的原因,提出配电变压器防雷的措施,在实际应用中收到良好效果。

[关键词]配电变压器;防雷措施

[作者简介]王海彬,广东电网公司茂名高州供电局助理工程师,研究方向:10kV及以下配电网,广东 高州,525200

[中图分类号]TM727.1 [文献标识码]A [文章编号]1007-7723(2008)12-0149-0002

高州市农村乡镇面积约3200平方公里,用电户数130万,目前共有2700多台配电变压器。由于高州为山区地形,土地辽阔,根据气象台的统计,全市年平均雷暴日数为90天,配电变压器受雷击损坏较为严重。这不仅给供电企业带来极大的经济损失,而且严重影响供电可靠性,给广大人民群众的生活生产带来极大的不便。因此,为了防止雷电对配电变压器的侵害,保证配电变压器安全运行,有必要对配电变压器防雷保护措施进行分析,从而有选择性地采取适当的防雷保护措施,确保电力设施的安全可靠运行。

一、雷击变压器的分析

雷电是指一部分带电的云层与另一部分带异种电荷的云层,或者是带电的云层对大地之间迅猛放电的自然现象。这种迅猛的放电过程产生强烈的闪电并伴随巨大的声音。这就是我们常看到的闪电和雷鸣,自然界每年都有几百万次闪电,全球每年因雷击造成人员伤亡、财产损失不计其数。最新统计资料表明,雷电造成的损失已经上升到自然灾害的第三位。雷电电流平均约为20000A(甚至更大),雷电电压大约是10的lO次方伏(人体安全电压为36伏),一次雷电的时候大约为千分之一秒,平均一次雷电发出的功率达200亿千瓦。雷电破坏主要有三种基本形式:直击雷、感应雷和雷电波。每年5至9月都是雷击的高发期,由此导致的变压器损坏事故比例也是较大的。雷击变压器的绕组损坏是通过很高的电压幅值,数十倍甚至数百倍的电压,使绕组发生严重的损坏而变形。从烧坏的故障点可以明显看出,痕迹较新,同时由于温度过高,使油急剧膨胀,甚至喷出,油色呈黑色,有气味。

雷击损坏变压器过去单纯认为是雷电波进入高压绕组引起,但理论分析和实际试验表明:配变雷害事故的主要原因是由于配电系统遭受雷害时的“正反变换”的过电压引起的,而反变换过电压损坏事故尤甚。现就正反变换过电压发展过程进行分析,讨论配变的防雷保护。正变换过电压。当低压侧线路遭受雷击时,雷击电流侵入低压绕组经中性点接地装置入地,接地电流Ijd在接地电阻Rjd上产生压降。这个压降使得低压侧中性点电位急剧升高。它叠加在低压绕组出现过电压,危及低压绕组。同时,这个电压通过高低压绕组的电磁感应按变比升高至高压侧,与高压绕组的相电压叠加,致使高压绕组出现危险的过电压。这种由于低压绕组遭受雷击过电压,通过电磁感应变换到高压侧,引起高压绕组过电压的现象叫“正变换”过电压。反变换过电压。当高压侧线路遭受雷击时。雷电流通过高压侧避雷器放电入地,接地电流Ijd在接地电阻Rjd上产生压降。这个压降作用在低压侧中性点上,而低压侧出线此时相当于经电阻接地,因此,电压绝大部分加在低压绕组上了。又经电磁感应,这个压降以变比升高至高压侧,并叠加于高压绕组的相电压上,致使高压绕组出现过电压而导致击穿事故。这种由于高压侧遭受雷击,作用于低压侧,通过电磁感应又变换到高压侧,引起高压绕组过电压的现象叫“反变换过电压”。变压器不同接线对正反变换过电压的影响。(1)Yzn11接线。当低压侧线路落雷时,雷电流进入低压侧的两个“半绕组”中,大小相等、方向相反,在每个铁心柱上的磁通正好互相抵消,因而也就不会在高压绕组中产生正变换过电压。在高压侧线路落雷时,实际上由于变压器结构和漏磁等原因引起磁路不对称,因而磁通不可能完全抵消,正反变换过电压仍然存在,但是较小,可认为有较好的防雷作用。(2)Yyn0接线。这种接法的变压器是我国的一种标准接线。它有很多优点:1)正常时能保持各相电压不变,同时能提供380/220V两种不同的电压以满足用户要求;2)发生单相接地短路时,可避免另两相电压的升高;3)可避免高压窜入低压侧的危险。因此,配电网中几乎所有配变均采用此种接法。

二、配电变压器防雷保护措施的应用在配电变压器高压侧装设避雷器。根据DLtT620-1997《交流电气装置的过电压保护和绝缘配合》规定:配电变压器的高压侧一般应采用避雷器保护,避雷器应安装在高压熔断器与变压器间。避雷器的接地线和变压器低压侧的中性点以及变压器的金属外壳三点应连接在一起接地,以充分发挥避雷器限压作用和防止逆闪络。这也是部颁推荐的防雷措施。在配电变压器低压侧加装普通阀型避雷器或金属氧化物避雷器。用正反变换过电压理论分析可得知产生正反变换过电压是由于低压绕组过电压引起。因此,只要设法限制低压绕组过电压的幅值,正反变换过电压就可得到限制。低压侧装设避雷器就是用来限制低压绕组过电压的幅值,有了低压避雷器,正反变换过电压也就得到有效的抑制,从而也就可以保护高压绕组。这种保护方式的接线为:变压器高、低避雷器的接地线、低压侧中性点及变压器金属外壳四点连接在一起接地(或称三点共一体)。对100kVA及以上的变压器其电阻值应不大于4D,,对100kVA以下的变压器其接地电阻应不大于10。低压侧所装避雷器与变压器的电气距离应不超过5m,越近效果越好,一般可装于变压器低压出线总开关或总保险丝的外侧,与变压器共用接地装置。这样,即使避雷器内部有问题造成接地短路,熔丝或连接引线也会熔断将故障切除。高、低压侧接地分开的保护方式。这种保护方式的接线为高压侧避雷器单独接地,低压侧不装避雷器,低压侧中性点及变压器金属外壳连接在一起,并与高压侧接地分开接地。研究表明,这种保护方式利用大地对雷电波的衰减作用可基本上消除逆变换过电压;而对正变换过电压,计算表明,低压侧接地电阻从10降至2.5时,高压侧的正变换过电压可降低约40%。若对低压侧接地体进行适当的处理,就可以消除正变换过电压。该保护方式简单、经济,但对低压侧接地电阻要求较高,有一定的推广价值。若某些地点雷电活动较剧烈,低压线路较长,雷击变压器事故较多时,除在变压器低压倒出口安装一级低压避雷器以外,尚可在低压倒出线20~40m左右(一档)的地方再加装一组避雷器,或将低压绝缘子铁脚接地,以提高保护的可靠性。只要避雷器与被保护设备的电气距离不超

过5m,装于变压器低压倒出线的一组避雷器不但能够保护变压器,尚可以同时保护一路或几路低压出线的总电度表及其他电气设备。若变压器低压侧中性点不接地,为了防止中性点电位升高时威胁人身和设备安全,尚必须在中性点加装一低压击穿保险器接地。它主要有两方面的作用:一是雷电波作用下,中性点出现危险的正、逆变换过电压时,保险器击穿,等于将中性点直接接地;二是当运行中变压器绝缘击穿,高压窜入低压系统时,保险器即自动放电,将低压系统接地,保证低压倒出用电安全。避雷器接地引下线越短越好。因为接地线越长,其电感值越大,在不大的雷电波陡度di/dt=10kA/US时,接地线上的压降将会达到一个较大的数值。它和避雷器残压叠加作用在配变绝缘上,会大大加剧破坏性。所以对于高压侧,避雷器应装于高压跌落式熔断器的下端。这样不仅能减少接地引线的长度,也给避雷器安装预试带来方便(取下跌落式熔断器,做好安全措施即可进行,不会影响高压线路运行);其次,当避雷器质量不良,放电不能熄弧时,工频续流使高压跌落式熔断器熔断,熔管自动跌落,可避免因此造成对高压线路供电的影响,减少线路的跳闸率。接地的作用主要是防止人身遭受电击、设备和线路遭受损坏、预防火灾、防止雷击、防止静电损害和保障电力系统正常运行。近年来,国内许多地区连续发生多起因接地网不满足要求而引起的设备损坏事故。同时雷击是导致电网事故的主要自然灾害之一,雷击引发的电网事故占总事故的50%以上。因此,良好的接地装置应是防雷的重要技术措施。接地电阻实际是两部分电阻之和,一部分是接地体金属物的电阻,另一部分是整个大地的电阻也称流散电阻。由于金属接地体的电阻很小,因此接地电阻主要决定于流散电阻的大小。流散电阻主要由接地装置的结构和土壤电阻率决定,土壤的电阻率越低,流散电阻也就越低。一些地区土壤电阻率较大,致使接地电阻值超出规程要求。因此,要采取多项措施降低接地电阻,常用的方法有更换土壤、采取深井式垂直埋地极、利用接地电阻降阻剂、采取伸长水平接地体等方法降低接地电阻。

配电变压器的防雷措施多种多样,各地配电变压器运行方式、安装地点等实际情况又不尽相同。搞好农村配变的防雷保护不仅有直接的经济效益,还有很大的社会效益。因此,合理地选择防雷保护措施,因地制宜,重视和加强配电变压器的运行管理,定能收到提高配电变压器防雷保护的效果。

第五篇:农村配电变压器运行方式的探讨

农村配电变压器运行方式的探讨

摘要:本文对农村配电变压器低压电力网的三种运行方式作了分析和探讨,提出了在农网改造后,由于绝缘水平的提高,建议在采取一些补充措施后,将TT系统改为IT系统,以利提高供电可靠性等。关键词:配电变压器低压电力网运行方式探讨

根据农村低压电力技术规程规定,农村配电变压器低压电力网的运行方式有IT系统、IN-C系统及TT系统三种。IT系统是指农村对安全有特殊要求或排灌专用配电变压器低压电力网,并宜采用中性点不接地,电气设备外露可导电部分保护接地方式;IN-C系统是指农村城镇、工矿企业配电变压器低压电力网宜,并采用中性点直接接地,电气设备外露可导电部分接零方式;TT系统是指农村居民用电及其他用电的配电变压器低压电力网并宜采用中性点直接接地,电气设备外露可导电部分保护接地方式,且TT系统应安装漏电保护器。三种运行方式的优缺点

采用工厂系统的部分,因其低压电力网范围小,绝缘容易得到保证,供电安全性,供电可靠性和经济性都比较好。采用TN-C系统的部分,其供电可靠性方面相对要差一些,因任何一个电气设备发生外露可导电部分漏电,应由过流保护切断电流,若越级则会造成较大范围停电。线路末端用户电气设备对外露可导电部分漏电,可能会因线路导线阻抗较大,过流保护不能切断故障,造成人身碰能已带电的电气设备外露可导电部分造成电击危险,也存在人身直接碰能带电部分产生电击危险。为解决这一问题,该运行方式的用户,有的已改变接零方式,装设了末端漏电断路器。采用TT系统,安装漏电保护方式的部分,从安全方面讲,对避免产生电击伤害是十分优越的,但它的投资相对大,供电可靠性是很差的,其中特别是漏电总保护,一有风吹草动,漏电总保护动作跳闸,造成大片用户停电,影响连续供电,影响生产。大量的统计分析表明,漏电总保护动作跳闸1000次中,有999次以上是各种原因的漏电造成的。更有甚者,农村个别居民邻里矛盾,也用单相接地造成漏电总保护器跳闸停电来发浅。随着农村用电水平的提高,使农民生产生活对电的依赖程度的提高,因此漏电总保护动作跳闸停电的后果及影响将会越来越大。农村配电压器低压电力网至所以采用TT系统加装漏电保护器方式,特别是要求选装漏电总保护,是基于当初我国农村低压电力网设备健康状况差,范围大无法保证低压电力网相线、零线对地绝缘等原因,造成农村能电死亡事故多而采取的一种针对性措施。采用这措施后,农村因电击而伤亡的人数大大减少。目前农村已安装漏电保护的地区,因电击而死亡的事故中,除漏电保护不能起保护作用的两相电击,相零线电击外,绝大部分是由于漏电保护器损坏或人为撤出所致。综上所述,在这种运行方式下用电安全和供电可靠性这两者间,产生了极大的矛盾,所以若能到一种既能保证用电安全,又能保证供电可靠性,且投资不大的方案,应该是大家共同的心愿。建议将TT系统改为IT系统

笔者认为,农网建设与改造给找到这个方案创造了条件:其一是经过改造的农网低压线路部分,各项安全技术指标都已达到了标准要求,低压线路的拉线都装上了拉线绝缘子,所以在低压线路部分发生电击伤亡事故的可能性只乘下了断线落地,而断线对于合格线路来讲,其几率本身就很小。对于在低压线路上挂钩用电造成的电击伤害问题,是属于违章用电(窃电),是不应该也是不允许出现的;其二是如果低压电力网的用户和单机(临时用电,流动排灌、脱粒等)都装上了家用漏电断路器或末端漏电断路器,则低压用户范围内人们碰触电器等引起电击伤害可能性的地方,都会受到末端漏电断路器的保护。若农网改造后,达到上述两个条件,则可以说农村低压电力网不装漏电总保护,其防电击伤害问题也已得到初步解决。如果在具备上述条件的低压电力网中,将配电变压器低压侧中性点直接接地改为不接地,即改为IT系统,那么前面所说的低压线路断线落地的危险性将更小,也就是说,即使人身碰上落地断线的低压线,通过人体的电流一般只是电容电流而已。而在末端潜心电保护范围内,若发生人身直接碰触相线或已漏电的电气设备的外露可导电部分,情况也相似,通过人体的电流一般也只是电容电流。该电流若大于末端漏电保护器的动作电流,则漏电保护器将正常动作跳闸,避免由击事故,如该电流小于末端漏电保护器动作电流,漏电保护器不动作,这个电流对人身的危害也不大,这和配电变压器低压中性点直接接地方式时相似。如果考虑到低压电力网经过长期运行,某相线或零线对地绝缘有可能出现降低,这是低压电力网不能改为IT系统的主要原因,若某相线或零线对地交流阻抗下降到10kΩ以下,此时,如人碰触到另一相线或落地断线,则人身可能受到相线与零线间或相线与相线间的电击伤害。但在末端漏电保护完善的低压电力网中,在漏电保护范围内出现电击仍能得到保护,主要的危险是在低压线路部分。为了解决这个问题,笔者认为,可以在每一台配电变压器低压侧加装一个测量相线和零线对地交流阻抗的装置,进行定期测量和装设漏电总保护相比,漏电总保护动作断电检查故障点,而该方法是在能送电状态下找故障点,要相对简单些。人身碰触一相的电容电流

配电变压器低压侧中性点改为不接地后,如相线和零线对地绝缘良好的话,人身碰触一相的电容电流有多大。根据有关资料介绍,低压线路每千米对地电容约为0.005μF,目前农网改造后的配电变压器,低压供电半径一般在1km之内,每台配电变压器的低压出线为2~3条,所以一台配电变压器范围的低压线路包括支线大约在4km左右,每台配电变压器供电的用户为几十户至200户不等。假定配电变压器低压用户为200户,每户的接户线和室内配线平均按200m计算,则200户的接户线和室内配线约为40km,将单相用电户的接户线和室内配线平均分摊到三相上,则一台配电变压器的低压线路总共在20km左右,由此可计算出每相电容C=0.005μF/km×20km=0.,1μF,容抗xC=1/2πfC=106/314×0.1=32(kΩ),则每相对地电容电流只有7mA。根据理论分析,若一相接地,通过接地点的电流为一相对地电容电流的3倍。也就是说,人若碰触某相线,流过人体的最大电流也只有21mA。当然各地配电变压器低压电力网的线路总长度不尽相同,下面列出一台配电变压器低压线路(含支线、接户线、室内配线)在各种长度下,发生一相接地时通过接地点的电容电流。

笔者曾对一配电变压器低压线路的电容电流进行了实测,配电变压器容量为160kVA,低压主于线及支线长度约4km,用电户约250户,按每户接户线加室内配线平均长度为200m计算,合计50km,分摊到三相上,每相约17km,故该电变压器低压线路长度合计约21km。测试方法是将配电变压器低压侧中性点接地线拆开,直接用导线分别将各相接地,并用钳形毫安表测接地处通过的电流值。从上述理论分析和实测表明,配电变压器低压侧中性点改为不接地后,如相线和零线对地绝缘是良好的,当出现某处单相接地,或人身碰触某一相线,它产生的电容电流值,理论分析和实测是基本一致的。结论

综上所述,农村配电变压器低压电力网经过改造后,如线路干线和支线的各项安全技术指标都符合标准,且装有末端漏电保护器。此类配电变压器的低压侧运行方式就可以改变为工厂系统,即将配电变压器低压侧中性点直接接地改为不接地,拆除漏电总保护器,且在配电变压器低压测装设一个测量相线和零线对地交流阻抗的装置,并定期测试,及时处理接地故障。这样,既保证了供电安全,又确保了供电可靠性,利大弊小。为防止由于零线断线加三相负荷不平衡引起的某相过电压和接户线错接成380V,损坏家用电器,家用漏电断路器应选用带过电压功能的。另外为防止大气过电压和配电变压器高低压击穿等故障,配电变压器低压各相和中性点应按规程装设低压避雷器,低压线路按规程每年清扫一次,准备临时用电的接电箱等管理。配电变压器低压测运行方式如能按上述要求改为IT系统,可以提高用电安全性和供电可靠性并减轻农电管理人员处理漏电总保护器频繁跳闸的沉重负担,可提高电部门的服务水平。

下载农村配电变压器无功补偿电容器的合理配置(共五则范文)word格式文档
下载农村配电变压器无功补偿电容器的合理配置(共五则范文).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    农村配电变压器防雷技术(5篇范文)

    农村配电变压器的防雷技术 2011-05-10 09:16:30 作者: 来源:电子工程世界 【 文章转载请注明出处 】  雷击损坏配变过去单纯认为是雷电波进入高压绕组引起,实际上这种认识带......

    浅谈农村配电变压器的日常维护

    www.xiexiebang.com 农村配电变压器,大都安装在露天环境中,运行中的天气、温度、湿度和用电负荷变化都会直接影响到变压器的正常运行和使用寿命。为此,加强对台区配电变压器运......

    浅谈农村配电变压器的运行管理

    浅谈农村配电变压器的运行管理 摘要:通过对造成农村配电变压器故障的原因综合分类,针对农村配电变压器的运行特点,探讨如何加强对农村配电变压器的运行维护管理。 关键词:配变......

    国家电网公司电力系统无功补偿配置技术原则(本站推荐)

    《国家电网公司电力系统无功补偿配置技术原则》第一章 总则第一条 为保证电压质量和电网稳定运行,提高电网运行的经济效益,根据《中华人民共和国电力法》等国家有关法律法规、......

    合理开发与配置农村人力资源

    合理开发与配置农村人力资源 闫景铂 中国的问题是农民的问题。如果说科学技术是第一生产力,那么在科学技术日新月异的今天,人力资源将是科学技术中最核心的因素。作为一名来自......

    农村配电变压器的运行与监视5篇范文

    农村配电变压器的运行与监视 农村配电变压器,大都安装在露天环境中,运行中的天气、环境温度和用电负荷变化的影响,直接关系到变压器的正常运行和使用寿命。为此,加强对台区配电......

    论农村电网无功补偿技术的应用(合集五篇)

    论农村电网无功补偿技术的应用 摘要:近几年,我局对农村电网进行了全面改造,新建110KV变电站2座,35KV变电站2座,整改10KV线路900公里,配变798台,3.94万KVA,新增高压电容器8台,16200Kva......

    农村10kV配电变压器烧损原因分析与对策

    农村10kV配电变压器烧损原因分析与对策 1配电变压器烧损原因分析 1.1过电流烧损 1.1.1过负荷。负荷管理一直是基层供电所的一个薄弱环节,农电体制改革前基本上是自然发展状态......