第一篇:磁粉探伤工作的人员防止电磁辐射污染的措施(精选)
磁粉探伤工作的人员防止电磁辐射污染的措施
由于磁粉探伤的工作特点,操作人员不可能通过远离辐射源的方法来减少对人体的辐射。我们介绍过在磁粉探伤工作中的电磁辐射污染、常见的几种电磁辐射的危害,因此对于从事磁粉探伤工作的人员来说可以采取一些措施来防止电磁辐射的污染。
首先应当注意加强体育锻炼,增强自身抵抗力。同样能量的辐射,对不同的人产生的影响是不同的,抵抗力强的人其人体自我恢复能力要比抵抗力弱的人大很多。
多食用胡萝卜、豆芽、西红柿、油菜、海带、卷心菜、瘦肉、动物肝脏等富含维生素A、C和蛋白质的食物,加强机体抵抗电磁辐射的能力。
笔者的个人经验还包括睡眠时应该采取“头北脚南”的方向来顺应地磁场方向,有助于被扰乱的人体自身生物磁场的恢复。
在劳动生产安全方面,应当为磁粉探伤工作人员配备防电磁辐射的服装(内含有金属成分,可以对电磁辐射有一定阻挡作用)、电磁辐射防护眼镜等以有效防止电磁辐射。
对于从事磁粉探伤工作的人员应定期进行身体健康检查(在20世纪70年代,由于磁粉探伤机的通电夹头是铅板,大电流通电时有可能因为夹头与工件接触不良而发生“打火”(电弧),产生有毒害性的铅蒸汽,所以体检时只是通过验尿检查有没有因为吸入铅蒸汽导致的铅中毒,实际上电磁辐射污染可能造成的人体损伤方面并没有相应的检查项目),对于孕妇、装有心脏起搏器的人员应禁止其参与具体的磁粉探伤操作。
应当把从事磁粉探伤工作的人员列入“有害身体健康的职业”范畴,享受相应的劳动保护福利(例如保健津贴、工作时间、退休年限等)。
在安装运行磁粉探伤设备时,应当按照《电磁辐射环境保护管理办法》中的规定办理环境保护申报,应由环境监测部门或者自行使用测量仪器确认安全距离,采取设置有效屏蔽电磁辐射的防辐射屏,防辐射窗帘,防辐射玻璃,以及保证磁粉探伤设备的框架与外壳良好接地等措施,减少对磁粉探伤设备周围工作的非磁粉探伤人员(公众人员)造成的电磁辐射污染。
小编总结与建议:无损检测特别是磁粉检测中的电磁辐射污染问题,为保障无损检测人员以及磁粉探伤设备周围公众人员的身体健康,政府和企业各有关生产安全部门应当积极制定有关的安全防护规定和采取有效的防护措施,同时作为从事磁粉探伤工作的人员本身也应当正确认识到电磁辐射污染的危害并做好自身的安全防护。
第二篇:磁粉探伤小结
工件磁粉探伤:
原理,当工件被磁化后,如果
表面或近表面存在裂纹、冷隔等缺陷,表面或近表面存在裂纹、冷隔等缺陷,便会在 该处形成一漏磁场。施加磁粉后,该处形成一漏磁场。施加磁粉后,漏磁场将吸 引磁粉,而形成缺陷显示。引磁粉,而形成缺陷显示。
磁粉检测首先是对工件加外磁场进行磁化,外加磁场的获得一般有两种方法,外加磁场的获得一般有两种方法,一种是直接 给被检工件通电流产生磁场,另一种是把工件放在螺旋管线圈磁场中,或是放在电磁铁产生 的磁场中使工件磁化。工件被磁化后,在工件表面上均匀喷洒微颗粒的磁粉(磁粉平均粒度为 磁粉平均粒度为5~ 粒的磁粉 磁粉平均粒度为 ~10μm),一般用,四氧化三铁或三氧化二铁作为磁粉。四氧化三铁或三氧化二铁作为磁粉。
若工件没有缺陷则磁粉在表面均匀分布。如果 存在缺陷,由于缺陷(如裂纹、气孔、非金属夹 杂物等)内含有空气或非金属 内含有空气或非金属,杂物等 内含有空气或非金属,其磁导率远小于 工件,导致磁阻变化,工件表面或近表面缺陷 处产生漏磁场,形成小磁极,处产生漏磁场,形成小磁极。磁粉将被小磁极所吸引,磁粉将被小磁极所吸引,缺陷处由于堆积较 多的磁粉而被显示出来,多的磁粉而被显示出来,形成肉眼可以看到的缺陷图象。磁粉检测中能否发现缺陷,首先决定于工件 缺陷处漏磁场强度是否足够大。要提高磁粉检 测灵敏度,就必须提高漏磁场的强度。缺陷处漏磁场强度主要与被检工件中的磁感 应强度B有关 工件中磁感应强度越大,工件中磁感应强度越大,则缺陷 处的漏磁场强度越大。
第三篇:轮轴、轮对、车轴磁粉探伤技术规范
轮轴、轮对、车轴磁粉探伤 6.1 磁粉探伤机
6.1.1 磁粉探伤机应具备以下功能:
6.1.1.1 轮轴、轮对和车轴磁粉探伤机,应具有手动和自动两种操作方式,具备周向磁化、纵向磁化、复合磁化三种磁化功能和自动退磁功能。6.1.1.2 微机控制系统还应具备以下功能:
6.1.1.2.1 能有效地对探伤设备的工作电压、周向磁化电流、纵向磁化电流、紫外线辐照度等主要技术参数进行实时监控和自动记录,并设置有紧急停机 按钮。
6.1.1.2.2 具有磁悬液的高低液位、过载、欠流报警功能。6.1.1.2.3 能对探伤性能校验和探伤记录进行打印、存储、查询。6.1.1.2.4 具有探伤设备主要故障的自诊断功能和远程技术支持功能。6.1.1.2.5 具有 HMIS 及 USB 接口。6.1.2 磁粉探伤机应符合以下技术指标:
6.1.2.1 周向磁化电流 0 ~ 3 000 A 应连续可调纵向磁化电流 0 ~ 2 400 A 应连续可调。
6.1.2.2 通电磁化时间应为 1s ~ 3 s,停止喷淋磁悬液后应再磁化 2 次 ~ 3 次,每次 0.5 s ~ 1.0 s。
6.1.2.3 探测面的白光强度应不大于 20lx,紫外线辐照度应不小于 800 μ W/cm 2 紫外线波长范围
应在 320 nm ~ 400 nm 内,中心波长为 365 nm。6.1.2.4 整机绝缘电阻 ≥ 2M Ω。6.1.2.5 退磁效果 ≤ 0.3 mT(3 Gs)。6.2 工艺装备
6.2.1 轮轴、轮对、车轴磁粉探伤应配置除锈机。6.2.2 车轴探伤时,应配置起重吊运设备。
6.2.3 探伤工作间和探伤作业场地应配有必备的办公用品和工具,探伤人员还应配置紫外线防护眼镜。
6.2.4 应配置天平、长颈或梨形沉淀管、磁强计、白光照度计、紫外辐照度计、裂纹深度测试仪、铜网筛(320 目)、磁悬浮测定玻璃管、磁吸附仪、配比磁悬液所用的量杯、量桶等。
6.2.5 天平、磁强计、白 光照度计、紫外辐照度计裂纹深度测试仪应定期进行检定并有检定标识。6.3 标准试片
轮轴、轮对和车轴磁粉探伤,应使用 A1-15/50 型试片。使用前应将试片表面擦拭干净,试片须平整,无破损、折皱和锈蚀。6.4 磁粉及配制磁悬液 6.4.1 磁粉
6.4.1.1 磁粉检查应执行 TB/T 2047 — 2005 《铁路磁粉探伤用磁粉供货技术条件》 的有关项目。
6.4.1.2 轮轴、轮对、车轴探伤用荧光磁粉颗粒度为小于 320 目。磁粉颗粒度的测量方法见附件 14。
6.4.2 磁悬液探伤用磁悬液应由荧光磁粉和液体介质(水或油)配制而成。6.4.2.1 水剂磁悬液
6.4.2.1.1 液体介质“水”的 pH 值为 7 ~ 9。
6.4.2.1.2 配制轮轴、轮对、车轴探伤用荧光磁悬液,应按规定比例添加乳化剂、消泡剂、防腐剂和防锈剂。推荐配制比例为: 水 1 L 乳化剂(JFC)5 g/L 消泡剂(28 号)2 ~ 5 g/L 亚硝酸钠 15 g/L 三乙醇胺 15 g/L 荧光磁粉 1 ~ 3 g/L 6.4.2.1.3 除水以外的载液超过保质期应禁止使用。6.4.2.2 油剂磁悬液
6.4.2.2.1 配制车轴探伤用荧光磁悬液,应使用无味煤油与变压器油的混合液做载液;
6.4.2.1.2 变压器油与无味煤油的配制比例推荐为 1∶1 ~ 1∶3。6.4.2.3 采用水或油做载液的磁悬液应化学性能稳定、闪点(闭口)大于 94 ℃、渗透性强、易清洗和对零件无腐蚀、对人体无伤害等特点。6.4.2.4 悬浮性
用酒精沉淀法检验荧光磁粉的悬浮性能,磁粉柱的高度应不小于 200 mm,且应有明显的分界线。每批荧光磁粉购入后应检验磁粉的悬浮性,并做好 记录。磁粉悬浮性的测试方法见附件 14。6.4.2.5 磁吸附 经磁吸附操作后,磁粉应能被吸附和去除。在白光照度不小于 1 000lx 的白色衬底板上检查容器的底部不应有残留物。每批荧光磁粉购入后应检验磁粉的磁吸附性,并做好记录。磁吸附检验的测定方法见附件 14。6.4.2.6 磁悬液体积浓度
6.4.2.6.1 轮轴、轮对水剂荧光磁悬液体积浓度为(0.2 ~ 0.6)mL/100mL。
6.4.2.6.2 车轴油剂荧光磁悬液体积浓度为(0.1 ~ 0.7)mL/100mL。6.4.2.7 磁悬液定期更换根据探伤工作量、季节变化及磁悬液的清洁程度,由各单位自行确定更换周期,但水剂液体最长更换周期不应超过 1 个月,油剂液体最长更换周期不应超过 3 个月。6.5 磁化规范
6.5.1 周向磁化电流的选择采用交—直流全轴复合磁化法或直接通电法时,周向磁化电流按下列公式计算: Ι = H • D/ 320 =(8 ~ 10)D 式中 Ι ———电流强度(A);
H ———磁场强度(A/m),H 取 2.55 × 10 3 ~ 3.18 ×10 3 ; D ———车轴最大直径(mm)。6.5.2 纵向磁化电流的选择
6.5.2.1 纵向磁化电流的选择方法纵向磁化电流依据纵向磁场与周向磁场相匹配的原则进行选择,可按如下方法进行确定:使用单向磁化功能,将周向磁化电流从最小值逐步增大,直至能使 A 型试片刚能显示,此时的电 流值设为 Ι 1。按上述同样的方法确定能使 A 型试片刚能显示的纵向磁化电流值 Ι 2,Ι 1 和 Ι 2 的比值即为周向磁化电流与纵向磁化电流的匹配比例。确定周向磁化电流值后,再根据匹配比例确定纵向磁 化电流值,以粘贴在轮轴、轮对、车轴上的 A 型试片 的人工刻槽显示清晰、完整为准。
6.5.2.2 纵向磁化电流参数的选择
6.5.2.2.1 纵向磁化采用分散式线圈法时,磁化电流(有效值)为: Ι =(12 000 ~ 20 000)/N(A)
6.5.2.2.2 纵向磁化采用磁轭法时,磁化电流(有效值)为: 纵向磁化磁势: N Ι =0 ~ 24 000(安匝)
纵向磁化电流: Ι =3 ~ 6(A)(并与周向磁化电流相匹配)式中 N ———线圈匝数; Ι ———纵向磁化电流(A)。6.6 性能校验
探伤设备性能校验分为日常探伤系统灵敏度校验(简称日常性能校验)和季度全面性能检查(简称季度性能检查)。6.6.1 日 常性能校验
日常性能校验应每班开工前进行,由探伤工、探伤工长、质量检查员和验收员共同参加。设备故障检修后,应重新进行日常性能校验。日常性能校验要求如下: 6.6.1.1 常规检查
全面检查探伤设备各部技术状态; 电流、电压表检定不过期; 白光照度和紫外辐照度值符合标准要求; 设备各部动作性能良好,无故障。6.6.1.2 系统灵敏度校验 6.6.1.2.1 粘贴试片
a.将 A1-15/50 型标准试片粘贴在试验用的轮轴、轮对和车轴易发生裂纹或磁场强度较薄弱的部位(车轴中央部位、轴颈根部、车轮内侧辐板孔附近及轮座部位);
b.车轴被粘贴试片的部位,应擦拭干净,无锈蚀、油污及灰尘,露出金属面并保持干燥;
c.粘贴试片时,试片带沟槽面应与 试验用 轮轴、轮对、车轴的表面密贴,带有“ + ” 字沟槽的试片,应有一条刻线与车轴轴线平行,粘贴在辐板孔附近的试片应有一条沟槽沿车轮直径方向,胶带沿试片四周呈井字型将试片粘贴牢固。试片粘贴后应平整、牢固,胶带不应遮盖试片的沟槽部位。6.6.1.2.2 磁粉及磁悬液检验
a.磁粉应放置在带盖容器内保存,受潮结块或超过质保期禁止使用。b.探伤前,应检查磁悬液的体积浓度。取样前磁悬液应充分搅拌均匀后,用长颈或梨形沉淀管接取从喷嘴喷出的磁悬液 100 mL 做静止沉淀试验,水剂磁悬液沉淀时间为 30 min,油剂磁悬液沉淀时间为 40 min ~ 60 min,再观察长颈或梨形沉淀管底部的磁粉容积值。
c.体积浓度不符合规定时应重新调配,调配后的磁悬液,应按上述操作方法再次进行体积浓度测定。6.6.1.2.3 磁化检验
复合磁化时,应观察周向和纵向磁化电流是否符合磁化规范的要求,否则应调整周向或纵向磁化电流。
6.6.1.2.4 检查紫外辐照度和白光照度探测面的白光强度应不大于 20lx,紫外线辐照度应不小于 800 μ W/cm 2。紫外线波长范围应在 320 nm ~ 400 nm 内,中心波长为 365 nm。6.6.1.2.5 磁痕分析
试件在磁化的同时,应观察试片上磁痕显示情况,A 型试片沟槽应显示清晰、完整。6.6.1.2.6 退磁检查
轮轴、轮对、车轴退磁后,应使用磁强计检查其退磁效果。在距探伤机 4 m 以外,用磁强计在车轴两端的中心孔附近(轴承未开盖时在螺栓端头)测量,剩磁应符合如下规定:
a.车轴剩磁应不超过 0.5 mT(5 Gs)为合格。b.轮对剩磁应不超过 0.7 mT(7 Gs)为合格。c.轮轴剩磁应不超过 1.0 mT(10 Gs)为合格。
d.剩磁检查: 除日常性能校验时进行检查外,还应在探伤过程中随机进行抽查,抽查比例应不少于当日探伤工作量的 1/4。6.6.1.2.7 填写或打印日常校验记录
探伤设备日常系统灵敏度校验合格后,由探伤工负责填写或打印《磁粉探伤机(器)日 常性能校验记录》(辆货统— 424),参加校验的人员应在校验记录上签章。6.6.2 季度性能检查
季度性能检查每 3 个月 进行 1 次。由主管领导负责组织轮轴(探伤)专职、设备专职、验收员、质量检查员、探伤工长、探伤工和设备维修工共同参加。季度性能检查要求如下:
6.6.2.1 探伤机(器)及附属设备技术状态检查探伤机(器)及附属设备的各部外观技术状态良好,配件齐全; 全面试验探伤设备和附属设备的作 用性能应准确、可靠,无故障; 除锈设备运转正常,除锈效果符合探伤要求。
6.6.2.2 磁粉和磁悬液检验: 应符合日常性能校验规定的要求。6.6.2.3 系统灵敏度校验
应符合日常性能校验规定的要求。6.6.2.4 填写或打印季度性能检查记录
探伤设备季度性能检查合格后,应填写或打印《磁粉探伤机(器)季度性能检查记录》(辆货统— 428),凡参加季度性能检查的人员均应在季度性能检查记录上签章。
6.6.3 新购置或大、中、小修后的探伤设备,第一次投入使用前应按季度性能检查的要求进行检查。6.7 探伤作业要求
6.7.1 轮轴、轮对和车轴探伤作业时,探伤人员应严格按照探伤机使用说明书和设备操作规程的要求操作探伤设备。
6.7.2 轮轴探伤时,探伤部位的表面应露出基本金属面。6.8 探伤工艺
6.8.1 轮轴、轮对、车轴磁化前,喷淋装置应对探伤部位表面(不退轴承内圈时包括内圈表面)自 动喷淋磁悬液,磁悬液应做到缓流、均匀、全面覆盖探伤部位。
6.8.2 夹紧(周向磁轭)装置夹紧车轴时,两磁轭应与车轴的两端面(或轴承前盖螺栓、密封座)接触良好,防止打火现象。
6.8.3 磁化时,周向磁化电流和纵向磁化电流应符合磁化规范要求。6.8.4 探伤部位的紫外辐照度、白光照度应符合要求。
6.8.5 磁化结束后,应标出每个探伤部位转动检查的“起始”标识,保证转动检查 1 周 以上,所有探伤部位不漏检。
6.8.6 在检查过程中发现缺陷磁痕时,应使用标记笔在车轴或车轮上画出缺陷磁痕位置,并详细记录缺陷磁痕的位置、方向和尺寸大小。
6.8.7 缺陷磁痕定性不准时,应抹除缺陷磁痕,再重新磁化轮轴、轮对、车轴(应先退磁,后磁化),再次进行确认。当缺陷磁痕再次显示,且位置、方向和尺寸大小与第一次显示的磁痕基本相同时,方可判定为缺陷磁痕。6.8.8 车轮辐板孔处的周向裂纹不超限时,应按规定刻打样冲和做好标识。6.9 质量标准
6.9.1 有缺陷的轮轴、轮对、车轴磁痕定性时,应按附件 1 的要求进行判定和处理。
6.9.2 定性为缺陷的轮轴、轮对、车轴应由 有关人员共同参加鉴定并在《铁路货车轮轴(轮对、车轴、车轮)超声波(磁粉)探伤发现缺陷记录卡》(车统— 52A)上签章。6.10 探伤记录
6.10.1 每条轮轴、轮对、车轴探伤结束后,应使用标记笔在车轮辐板内侧面或轴身上画出明显的磁粉探伤检查标识; 确认有缺陷的轮轴、轮对、车轴应使用白铅油在缺陷处做出标识,并注明缺陷性质和位置。
6.10.2 每条轮轴、轮对、车轴探伤结束后,探伤人员应详细填写或打印下列探伤记录:
6.10.2.1 《轮轴卡片》(车统— 51): 每条轮轴、轮对、车轴探伤后,应按所探测部位分别在相应栏签章。
6.10.2.2 《铁路货车轮轴(轮对、车轴、车轮)超声波(磁粉)探伤发现缺陷记录卡》(车统— 52A): 探伤过程中凡发现有缺陷的车轴或车轮,均须详细填写或打印此卡片,注明轮轴缺陷的性质、缺陷深度、缺陷位置及发现手段,并做出分析。参加鉴定人员应在卡片上签章。
6.10.2.3 《铁路货车轮轴(轮对、车轴、车轮)超声波(磁粉)探伤记录》(车统— 53A): 每条轮轴、轮对、车轴探伤后,应详细填写或打印此记录,并在探伤者栏签章。
6.10.3 填写探伤记录及卡片时,应做到字迹清晰、干净整齐、不错不漏。6.6.1.2.3 磁化检验
复合磁化时,应观察周向和纵向磁化电流是否符合磁化规范的要求,否则应调整周向或纵向磁化电流。6.6.1.2.4 检查紫外辐照度和白光照度
探测面的白光强度应不大于 20lx,紫外线辐照度应不小于 800 μ W/cm 2。紫外线波长范围应在 320 nm ~ 400 nm 内,中心波长为 365 nm。6.6.1.2.5 磁痕分析
试件在磁化的同时,应观察试片上磁痕显示情况,A 型试片沟槽应显示清晰、完整。6.6.1.2.6 退磁检查轮轴、轮对、车轴退磁后,应使用磁强计检查其退磁效果。在距探伤机 4 m 以外,用磁强计在车轴两端的中心孔附近(轴承未开盖时在螺栓端头)测量,剩磁应符合如下规定: a.车轴剩磁应不超过 0.5 mT(5 Gs)为合格。b.轮对剩磁应不超过 0.7 mT(7 Gs)为合格。c.轮轴剩磁应不超过 1.0 mT(10 Gs)为合格。
d.剩磁检查: 除日常性能校验时进行检查外,还应在探伤过程中随机进行抽查,抽查比例应不少于当日探伤工作量的 1/4。6.6.1.2.7 填写或打印日常校验记录
探伤设备日常系统灵敏度校验合格后,由探伤工负责填写或打印《磁粉探伤机(器)日 常性能校验记录》(辆货统— 424),参加校验的人员应在校验记 录上签章。6.6.2 季度性能检查
季度性能检查每 3 个月 进行 1 次。由主管领导负责组织轮轴(探伤)专职、设备专职、验收员、质量检查员、探伤工长、探伤工和设备维修工共同参加。季度性能检查要求如下:
6.6.2.1 探伤机(器)及附属设备技术状态检查探伤机(器)及附属设备的各部外观技术状态良好,配件齐全; 全面试验探伤设备和附属设备的作 用性能应准确、可靠,无故障; 除锈设备运转正常,除锈效果符合探伤要求。
6.6.2.2 磁粉和磁悬液检验: 应符合日常性能校验规定的要求。6.6.2.3 系统灵敏度校验
应符合日常性能校验规定的要求。6.6.2.4 填写或打印季度性能检查记录
探伤设备季度性能检查合格后,应填写或打印《磁粉探伤机(器)季度性能检查记录》(辆货统— 428),凡参加季度性能检查的人员均应在季度性能检查记录上签章。
6.6.3 新购置或大、中、小修后的探伤设备,第一次投入使用前应按季度性能检查的要求进行检查。6.7 探伤作业要求
6.7.1 轮轴、轮对和车轴探伤作业时,探伤人员应严格按照探伤机使用说明书和设备操作规程的要求操作探伤设备。
6.7.2 轮轴探伤时,探伤部位的表面应露出基本金属面。6.8 探伤工艺
6.8.1 轮轴、轮对、车轴磁化前,喷淋装置应对探伤部位表面(不退轴承内圈时包括内圈表面)自 动喷淋磁悬液,磁悬液应做到缓流、均匀、全面覆盖探伤部位。
6.8.2 夹紧(周向磁轭)装置夹紧车轴时,两磁轭应与车轴的两端面(或轴承前盖螺栓、密封座)接触良好,防止打火现象。
6.8.3 磁化时,周向磁化电流和纵向磁化电流应符合磁化规范要求。6.8.4 探伤部位的紫外辐照度、白光照度应符合要求。
6.8.5 磁化结束后,应标出每个探伤部位转动检查的“起始”标识,保证转动检查 1 周 以上,所有探伤部位不漏检。6.8.6 在检查过程中发现缺陷磁痕时,应使用标记
笔在车轴或车轮上画出缺陷磁痕位置,并详细记录缺陷磁痕的位置、方向和尺寸大小。
6.8.7 缺陷磁痕定性不准时,应抹除缺陷磁痕,再重新磁化轮轴、轮对、车轴(应先退磁,后磁化),再次进行确认。当缺陷磁痕再次显示,且位置、方向和尺寸大小与第一次显示的磁痕基本相同时,方可判定为缺陷磁痕。6.8.8 车轮辐板孔处的周向裂纹不超限时,应按规定刻打样冲和做好标识。6.9 质量标准
6.9.1 有缺陷的轮轴、轮对、车轴磁痕定性时,应按附件 1 的要求进行判定和处理。
6.9.2 定性为缺陷的轮轴、轮对、车轴应由 有关人员共同参加鉴定并在《铁路货车轮轴(轮对、车轴、车轮)超声波(磁粉)探伤发现缺陷记录卡》(车统— 52A)上签章。6.10 探伤记录
6.10.1 每条轮轴、轮对、车轴探伤结束后,应使用标记笔在车轮辐板内侧面或轴身上画出明显的磁粉探伤检查标识; 确认有缺陷的轮轴、轮对、车轴应使用白铅油在缺陷处做出标识,并注明缺陷性质和位置。
6.10.2 每条轮轴、轮对、车轴探伤结束后,探伤人员应详细填写或打印下列探伤记录:
6.10.2.1 《轮轴卡片》(车统— 51): 每条轮轴、轮对、车轴探伤后,应按所探测部位分别在相应栏签 6.10.2.2 《铁路货车轮轴(轮对、车轴、车轮)超声波(磁粉)探伤发现缺陷记录卡》(车统— 52A): 探伤过程中凡发现有缺陷的车轴或车轮,均须详细填写或打印此卡片,注明轮轴缺陷的性质、缺陷深度、缺陷位置及发现手段,并做出分析。参加鉴定人员应在卡片上签章。6.10.2.3 《铁路货车轮轴(轮对、车轴、车轮)超声波(磁粉)探伤记录》(车统— 53A): 每条轮轴、轮对、车轴探伤后,应详细填写或打印此记录,并在探伤者栏签章。
6.10.3 填写探伤记录及卡片时,应做到字迹清晰、干净整齐、不错不漏。
第四篇:CJW-2000A型荧光磁粉探伤检测线
CJW-2000A型荧光磁粉探伤检测线
磁化原理及设备性能介绍:
CJW-2000A型荧光磁粉探伤检测线为机电分立式、多组合结构,主要用于湿法次分发检查轴类零件外表面、端面及其近表面任意方向的裂纹缺陷。该设备由电气控制系统、电源系统、辅助操作系统、步进机构、喷洒磁化系统、磁悬液循环系统、暗房荧光观察系统、退磁系统和清洗系统等几大部分组成。
设备的周向磁化采用中心导体通电磁化方法、纵向磁化采用双线圈外加磁化方法,一次性复合磁化,全方位检查工件表面及近表面的各种裂纹、细微缺陷。交流磁化电流均带断电相位控制,既适合连续法,又可以进行剩磁法探伤检测。
设备控制电路采用欧娒龙品牌可编程序控制器CPM1A系列产品集中控制。具有手动控制和自动控制功能。手动控制时可进行设备的每个功能动作的单步手动操作控制。自动控制时设备自动执行PLC内部自动程序,实现:上料-步进传送-气缸夹紧-磁悬液上喷洒-复合磁化-气缸返回-步进传送下料……荧光观察检查……退磁-清洗等一系列动作的半自动控制。自动程序连续执行,循环往复。如需要立即结束,按动复位按钮开关,自动程序立即结束,回到初试状态。
主电路采用可控硅无极调压技术,设备的周、纵向磁化电流实现无极可调。设备采用专用指针显示表,精确度高,全部模块化设计,安全可靠,操作维护及其方便。主要技术参数:
周向磁化电流:AC:0-2000A有效值,指针显示,带断电相位控制;
纵向磁化磁势:AC:0-2000A有效值,指针显示,带断电相位控制;
磁化方式:周向、纵向、复合磁化;
暂载率:≥45%,连续磁化时间最大3s;
磁化灵敏度:A型2#试片清洗显示;
控制方式:手动、自动;
工作节拍:2-6秒/3件;
电极间距:0-500mm;
芯棒运动方式:气动;
退磁方式:穿过线圈远离法;
退磁线圈中心磁场强度:≥28mT(280Gs);
地址:江苏射阳县合德创业园http://电话:0515-82027088(0)***传真:0515-82027598
紫外线强度:距光源381mm工件表面处强度≥1000μW/cm2;
电源:三相四线380V±10% 50Hz 瞬时最大60KVA;
重量:约3000kg。
CJW-2000型危机控制荧光磁粉探伤机
磁化原理及设备性能介绍:
该设备为微机控制半自动磁粉探伤机,它以小型工业可编程序控制器(PLC)为核心对系统的加紧、喷洒磁悬液、磁化、自动退磁等机械程序动作进行控制,能按规定程序完成探伤过程,既可自动操作,也可手动操作,打打减轻了操作人员的劳动强度。
磁化电流主电路采用可控硅无节调压电路,低电压、大电流输出。利用三相互成120°,相位差的交流电源,按如下图所示施加于被探工件上,周向采用电流穿过法、纵向采用直接电流通电法对工件进行复合磁化,使磁力线旋转。从而一次探伤可检查工件表面和近表面因锻压、研磨、疲劳而引起的裂痕等细微的缺陷。并可对工件分别进行单路和复合磁化,磁化电流分别可调,具有噪音小、性能可靠的优点,并带有断电相位控制功能、同时PLC工作程序还可根据探伤需要自行改变。
主要技术指标:
本机按照《中华人民共和国国家标准磁粉探伤机》(GB/T8290-1998)制造。输入电源:三相四线380V±10%,50Hz,60A
暂载率:20%
周向磁化电流:AC 0-2000A,连续可调(带断电相位控制)。
纵向磁化按电流:AC 0-15000AT,连续可调(带断电相位控制)
退磁方式:衰减式自动退磁
退磁时间:≤5秒。
退磁效果:剩磁≤2Gs
气动夹紧:夹紧行程0-50mm
电极间距:0-800mm
磁化方式:单周向磁化,单纵向磁化和复合磁化
紫外线强度:工件表面离紫外灯泡380mm处强度不低于1000uw/cm²
使用环境:温度-10℃~+40℃,相对湿度≤80%
灵敏度测试:按《中华人民共和国机械行业标准JB/T6065-92》磁粉探伤用标准试片规定,以30/100的A型试片测试,在工件的任意方位显示清晰。
CJW-6000型荧光磁粉探伤机
设备名称及用途
设备名称:CJW-6000型危机控制荧光磁粉探伤机
被测工件:气瓶
电极间距规格:长度0-2000mm
检测要求:检查工件表面和近表面因铸造、锻造、机加工和疲劳而引起的裂痕等细微缺陷。
磁化原理
在周向两电极和工件中通过交流电,工件表面和近表面就回产生沿圆周方向的磁场,用于检测沿工件轴向和径向的缺陷;在纵向磁轭和线圈中通过交流电,在工件中产生于线圈面垂直的磁场,可检测沿圆周方向的缺陷;当两种磁场同事施加于工件时,因周、纵向磁化电流具有一定的相位差,在工件表面可形成复合旋转磁场,可一次性发现表面近表面所有方向的缺陷。
本机因探伤工件达2000mm,为保证纵向较好的灵敏度,在磁化时纵向线圈可移动。主要技术指标
本机按照《中华人民共和国国家标准磁粉探伤机》(GB/T8290-1998)制造。输入电源:三相四线380V±10% 50Hz,小于50KVA(瞬时)暂载率:20% 周向磁化电流:AC 0-6000A,连续可调(带断电相位控制)纵向磁化电流:AC 0-12000AT,连续可调(带断电相位控制)退磁方式:衰减式自动退磁 退磁时间:≤5秒 夹紧方式:气动(气源用户自备≥0.4Mpa)电极间距:0-2000mm 磁化方式:单周向磁化,单纵向磁化和复合磁化 磁化线圈:线圈内径550mm
转动:由减速机实现以保证全方位观察,n=5-10rpm 紫外线强度:工件表面离紫外灯泡380mm处强度不低1000uw/cm²。使用环境:温度-10℃~+40℃,相对湿度≤80%
灵敏度测试:按《中华人民共和国机械行业标准JB/T6065-92》磁粉探伤用标准试片规定,以30/100的A型试片测试,在工件的任意方位显示清晰。
第五篇:浅谈防止水体污染的主要措施
浅谈防止水体污染的主要措施
摘要:水体污染是指排入水体的污染物在数量上超过了该物质在水体中的本底含量和自净能力即水体的环境容量,破坏了水中固有的生态系统,破坏了水体的功能及其在人类生活和生产中的作用。降低了水体的使用价值和功能的现象。
关键字:危害、水污染、防治措施 目录:
一、水体污染现状
1、地表水
多年来,我国水资源质量不断下降,水环境持续恶化,由于污染所导致的缺水和事故不断发生,不仅使工厂停产、农业减产甚至绝收,而且造成了不良的社会影响和较大的经济损失,严重地威胁了社会的可持续发展,威胁了人类的生存。我国七大水系的污染程度以污染程度大小进行排序,其结果为:辽河、海河、淮河、黄河、松花江、长江,其中,辽河、海河、淮河污染最重。综合考虑我国地表水资源质量现状,符合《地面水环境质量标准》的Ⅰ、Ⅱ类标准只占32.2%(河段统计),符合Ⅲ类标准的占28.9%,属于Ⅳ、Ⅴ类标准的占38.9%,如果将Ⅲ类标准也作为污染统计,则我国河流长度有67.8%被污染,约占监测河流长度的2/3,可见我国地表水资源污染非常严重。
2、地下水
我国北方五省区和海河流域地下水资源,无论是农村(包括牧区)还是城市,浅层水或深层水均遭到不同程度的污染,局部地区(主要是城市周围、排污河两侧及污水灌区)和部分城市的地下水污染比较严重,污染呈上升趋势(金传良等,1996)。
具体而言,根据北方五省区(新疆、甘肃、青海、宁夏、内蒙古)1995眼地下水监测井点的水质资料,按照《地下水质量标准》(GB/T14848-93)进行评价,结果表明,在69个城市中,Ⅰ类水质的城市不存在,Ⅱ类水质的城市只有10个,只占14.5%,Ⅲ类水质城市有22个,占31.9%,Ⅳ、Ⅵ类水质的城市有37个,占评价城市总数的53.6%,即1/2以上城市的城市地下水污染严重。至于海河流域,地下水污染更是令人触目惊心,2 015眼地下水监测井点的水质监测资料表明,符合Ⅰ-Ⅲ类水质标准仅有443眼,占评价总数的22.0%,符合Ⅳ和Ⅵ类水质标准有880和629眼,分别占评价总井数的43.7%和34.3%,即有78%的地下水遭到污染;如果用饮用水卫生标准进行评价,在评价的总井数中,仅有328眼井水质符合生活标准,只占评价总数的31.2%,另外2/3以上到监测的井水质不符合生活饮用卫生标准。
3、海洋水
全国近岸海域水质总体为轻度污染。与上年相比,水质无明显变化。
2009年,近岸海域监测面积共279940平方千米,其中一、二类海水面积213208平方千米,三类为18834平方千米,四类、劣四类为47898平方千米。
按照监测点位计算,一类和二类海水比例为72.9%,比上年上升2.5个百分点;三类海水占6.0%,比上年下降5.3个百分点;四类和劣四类海水占21.1%,比上年上升2.8个百分点。
二、水体污染物及其危害
水污染的危害归根结底是对人类的危害——郑伟
造成水体水质、水中生物群落以及水体底泥质量恶化的各种有害物质(或能量)都可叫做水体污染物。水体污染物从化学角度可分为无机有害物、无机有毒物、有机有害物、有机有毒物4类。从环境科学角度则可分为病原体、植物营养物质、需氧化质、石油、放射性物质、有毒化学品、酸碱盐类及热能8类。
1、无机有害物
无机有害物如砂、土等颗粒状的污染物,它们一般和有机颗粒性污染物混合在一起,统称为悬浮物(SS)或悬浮固体,使水变浑浊。还有酸、碱、无机盐类物质,氮、磷等营养物质。无机有毒物主要有:非金属无机毒性物质如氰化物(CN)、砷(As),金属毒性物质如汞(Hg)、铬(Cr)、镉(Cd)、铜(Cu)、镍(Ni)等。长期饮用被汞、铬、铅及非金属砷污染的水,会使人发生急、慢性中毒或导致机体癌变,危害严重。
2、有机有害物
有机有害物如生活及食品工业污水中所含的碳水化合物、蛋白质、脂肪等。有机有毒物,多属人工合成的有机物质如农药DDT、六六六等、有机含氯化合物、醛、酮、酚、多氯联苯(PCB)和芳香族氨基化合物、高分子聚合物(塑料、合成橡胶、人造纤维)、染料等。有机物污染物因须通过微生物的生化作用分解和氧化,所以要大量消耗水中的氧气,使水质变黑发臭,影响甚至窒息水中鱼类及其他水生生物。
3、病原体污染物
病原体污染物主要是指病毒,病菌,寄生虫等。危害主要表现为传播疾病:病菌可引起痢疾、伤寒、霍乱等;病毒可引起病毒性肝炎、小儿麻痹等;寄生虫可引起血吸虫病、钩端旋体病等。
4、含植物营养物质的废水
含植物营养物质的废水进入天然水体,造成水体富营养化,藻类大量繁殖,耗去水中溶解氧,造成水中鱼类窒息而无法生存、水产资源遭到破坏。水中氮化合物的增加,对人畜健康带来很大危害,亚硝酸根与人体内血红蛋白反应,生成高铁血红蛋白,使血红蛋白丧失输氧能力,使人中毒。硝酸盐和亚硝酸盐等是形成亚硝胺的物质,而亚硝胺是致癌物质,在人体消化系统中可诱发食道癌、胃癌等。
5、石油污染
石油污染,指在开发、炼制、储运和使用中,原油或石油制品因泄露、渗透而进入水体。它的危害在于原油或其他油类在水面形成油膜,隔绝氧气与水体的气体交换,在漫长的氧化分解过程中会消耗大量的水中溶解氧,堵塞鱼类等动物的呼吸器官,黏附在水生植物或浮游生物上导致大量水鸟和水生生物的死亡,甚至引发水面火灾等。
6、热电厂等的冷却水
热电厂等的冷却水是热污染的主要来源,直接排入天然水体,可引起水温上升。水温的上升,会造成水中溶解氧的减少,甚至使溶解氧降至零,还会使水体中某些毒物的毒性升高。水温的升高对鱼类的影响最大,甚至引起鱼的死亡或水生物种群的改变。
三、水质三大污染源
水污染主要由人类活动产生的污染物而造成的,它包括工业污染源,农业污染源和生活污染源三大部分。
1、工业废水
工业废水为水域的重要污染源,具有量大、面广、成分复杂、毒性大、不易净化、难处理等特点。据1998年中国水资源公报资料显示:这一年,全国废水排放总量共539亿吨(不包括火直电流冷却水),其中,工业废水排放量409亿吨,占69%。实际上,排污水量远远超过这个数,因为许多乡镇企业工业污水排放量难以统计。
2、农业污染源
农业污染源包括牲畜粪便、农药、化肥等。农药污水中,一是有机质、植物营养物及病原微生物含量高,二是农药、化肥含量高。我国目前没开展农业面上的监测,据有关资料显示,在1亿公顷耕地和220万公顷草原上,每年使用农药110.49万吨。我国是世界上水土流失最严惩的国家之一,每年表土流失量约50亿吨,致使大量农药、化肥随表土流入江、河、湖、库,随之流失的氮、磷、钾营养元素,使2/3的湖泊受到不同程度富营养化污染的危害,造成藻类以及其他生物异常繁殖,引起水体透明度和溶解氧的变化,从而致使水质恶化。
3、生活污染源
生活污染源主要是城市生活中使用的各种洗涤剂和污水、垃圾、粪便等,多为无毒的无机盐类,生活污水中含氮、磷、硫多,致病细菌多。据调查,1998年我国生活污水排放量184亿吨。
我国每年约有1/3的工业废水和90%以上的生活污水未经处理就排入水域,全国有监测的1200多条河流中,目前850多条受到污染,90%以上的城市水域也遭到污染,致使许多河段鱼虾绝迹,符合国家一级和二级水质标准的河流仅占32.2%。污染正由浅层向深层发展,地下水和近海域海水也正在受到污染,我们能够饮用和使用的水正在不知不觉地减少。
四、水体污染的主要防治措施
1、减少耗水量
1.1 减少消耗
当前我国的水资源的利用,一方面感到水资源紧张,另一方面浪费又很严重。同工业发达国家相比,我国许多单位产品耗水量要高得多。耗水量大,不仅造成了水资源的浪费,而且是造成水环境污染的重要原因。
1.2 循环利用
通过企业的技术改造,推行清洁生产,降低单位产品用水量,一水多用,提高水的重复利用率等,都是在实践中被证明了是行之有效的。
2、建立城市污水处理系统
为了控制水污染的发展,工业企业还必须积极治理水污染,尤其是有毒污染物的排放必须单独处理或预处理。随着工业布局、城市布局的调整和城市下水道管网的建设与完善,可逐步实现城市污水的集中处理,使城市污水处理与工业废水治理结合起来。
3、产业结构调整
水体的自然净化能力是有限的,合理的工业布局可以充分利用自然环境的自然能力,变恶性循环为良性循环,起到发展经济,控制污染的作用。关、停、并、转那些耗水量大、污染重、治污代价高的企业。也要对耗水大的农业结构进行调整,特别是干旱、半干旱地区要减少水稻种植面积,走节水农业与可持续发展之路。
4、控制农业面源污染
农业面源污染包括农村生活源、农业面源、畜禽养殖业、水产养殖的污染。要解决面源污染比工业污染和大中城市生活污水难度更大,需要通过综合防治和开展生态农业示范工程等措施进行控制。
5、开发新水源
我国的工农业和生活用水的节约潜力不小,需要抓好节水工作,减少浪费,达到降低单位国民生产总值的用水量。南水北调工程的实施,对于缓解山东华北地区严重缺水有重要作用。修建水库、开采地下水、净化海水等可缓解日益紧张的用水压力,但修建水库、开采地下水时要充分考虑对生态环境和社会环境的影响。
6、加强水资源的规划管理
水资源规划是区域规划、城市规划、工农业发展规划的主要组成部分,应与其他规划同时进行。
合理开发还必须根据水的供需状况,实行定额用水,并将地表水、地下水和污水资源统一开发利用,防止地表水源枯竭、地下水位下降,切实做到合理开发、综合利用、积极保护、科学管理。
利用市场机制和经济杠杆作用,促进水资源的节约化,促进污水管理及其资源化。为了有效地控制水污染,在管理上应从浓度管理逐步过渡到总量控制管理。