潮流计算毕业论文

时间:2019-05-13 23:37:01下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《潮流计算毕业论文》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《潮流计算毕业论文》。

第一篇:潮流计算毕业论文

科学技术学院

毕业设计(论文)开题报告

目:

电力系统潮流分析计算机辅助设计

学 科 部:

信息学科部

业:

电气工程及其自动化

级:

电气082班

号:

7022808070

名:

黄义军

指导教师:

刘爱国

填表日期:

2011 年 月 日

一、选题的依据及意义:

电力系统潮流计算是研究电力系统稳态运行情况的一种基本电气计算。它的任务是根据给定的运行条件和网路结构确定整个系统的运行状态,如各母线上的电压(幅值及相角)、网络中的功率分布以及功率损耗等。电力系统潮流计算的结果是电力系统稳定计算和故障分析的基础。

潮流计算经历了一个由手工, 利用交、直流计算台到应用数字电子计算机的发展过程。现在的潮流算法都以计算机的应用为前提。

利用电子计算机进行潮流计算从20世纪50年代中期就已经开始。此后,潮流计算曾采用了各种不同的方法,这些方法的发展主要是围绕着对潮流计算的一些基本要求进行的。一般要满足四个基本要求: a)可靠收敛 b)计算速度快 c)使用方便灵活 d)内存占用量少

它们也是对潮流算法进行评价的主要依据。

在电力系统运行方式和规划方案的研究中,都需要进行潮流计算以比较运行方式或规划供电方案的可行性、可靠性和经济性。同时,为了实时监控电力系统的运行状态,也需要进行大量而快速的潮流计算。因此,潮流计算是电力系统中应用最广泛、最基本和最重要的一种电气运算。在系统规划设计和安排系统的运行方式时,采用离线潮流计算;在电力系统运行状态的实时监控中,则采用在线潮流计算。

二、国内外研究现状及发展趋势(含文献综述):

在用数字计算机求解电力系统潮流问题的开始阶段,人们普遍采用以节点导纳矩阵为基础的高斯-赛德尔迭代法(一下简称导纳法)。这个方法的原理比较简单,要求的数字计算机的内存量也比较小,适应当时的电子数字计算机制作水平和电力系统理论水平,于是电力系统计算人员转向以阻抗矩阵为主的逐次代入法(以下简称阻抗法)。

20世纪60年代初,数字计算机已经发展到第二代,计算机的内存和计算速度发生了很大的飞跃,从而为阻抗法的采用创造了条件。阻抗矩阵是满矩阵,阻抗法要求计算机储存表征系统接线和参数的阻抗矩阵。这就需要较大的内存量。而且阻抗法每迭代一次都要求顺次取阻抗矩阵中的每一个元素进行计算,因此,每次迭代的计算量很大。

阻抗法改善了电力系统潮流计算问题的收敛性,解决了导纳法无法解决的一些系统的潮流计算,在当时获得了广泛的应用,曾为我国电力系统设计、运行和研究作出了很大的贡献。但是,阻抗法的主要缺点就是占用计算机的内存很大,每次迭代的计算量很大。当系统不断扩大时,这些缺点就更加突出。为了克服阻抗法在内存和速度方面的缺点,后来发展了以阻抗矩阵为基础的分块阻抗法。这个方法把一个大系统分割为几个小的地区系统,在计算机内只需存储各个地区系统的阻抗矩阵及它们之间的联络线的阻抗,这样不仅大幅度的节省了内存容量,同时也提高了计算速度。

克服阻抗法缺点的另一途径是采用牛顿-拉夫逊法(以下简称牛顿法)。牛顿法是数学中求解非线性方程式的典型方法,有较好的收敛性。解决电力系统潮流计算问题是以导纳矩阵为基础的,因此,只要在迭代过程中尽可能保持方程式系数矩阵的稀疏性,就可以大大提高牛顿潮流程序的计算效率。自从20世纪60年代中期采用了最佳顺序消去法以后,牛顿法在收敛性、内存要求、计算速度方面都超过了阻抗法,成为直到目前仍被广泛采用的方法。

在牛顿法的基础上,根据电力系统的特点,抓住主要矛盾,对纯数学的牛顿法进行了改造,得到了P-Q分解法。P-Q分解法在计算速度方面有显著的提高,迅速得到了推广。

牛顿法的特点是将非线性方程线性化。20世纪70年代后期,有人提出采用更精确的模型,即将泰勒级数的高阶项也包括进来,希望以此提高算法的性能,这便产生了保留非线性的潮流算法。另外,为了解决病态潮流计算,出现了将潮流计算表示为一个无约束非线性规划问题的模型,即非线性规划潮流算法。

近20多年来,潮流算法的研究仍然非常活跃,但是大多数研究都是围绕改进牛顿法和P-Q分解法进行的。此外,随着人工智能理论的发展,遗传算法、人工神经网络、模糊算法也逐渐被引入潮流计算。但是,到目前为止这些新的模型和算法还不能取代牛顿法和P-Q分解法的地位。由于电力系统规模的不断扩大,对计算速度的要求不断提高,计算机的并行计算技术也将在潮流计算中得到广泛的应用,成为重要的研究领域。

三、本课题研究内容

1.熟悉电力系统潮流计算的相关理论。

2.在综合分析各种电力系统特点的基础上,运用所学专业知识,提出一种合理高效的潮流计算算法。

3.熟练运用程序设计语言如C语言。

4.通过软件编程实现所提出的算法,并通过典型系统进行验证。

四、本课题研究方案

1、确定一种计算方法,如牛顿-拉夫逊法。

2、结合C语言,编写一套适用的程序完成潮流计算。

3、选取一典型模型进行验证,试验程序是否可靠。

五、研究目标、主要特色及工作进度:

研究目标:提出一种合理高效的潮流计算算法,在保证电力系统供电可靠性和电能质量的前提下,尽可能提高潮流计算的效率,降低人力资源消耗。从而提高电力系统运行的经济性。进度安排:

第1周: 收集相关参考资料和相关文献。

第2周: 总结整理资料,熟习课题。

第3周: 提出初步设计方案。

第4周: 熟悉电力系统潮流计算的相关理论及计算机语言。

第5周: 实习

第6周: 写实习报告

第7周: 确定一种计算方法。

第8周: 提出一种合理的程序设计方法。

第9周: 画出设计程序整体流程图。

第10周: 将整体程序模块化,并定义出每个模块的功能。

六、参考文献:

[1] Tankut Yalcinoz, Onur Ko¨ ksoy.A multiobjective optimization

method to environmental economic diaspatch.2007,29(1):42-50 [2] X.S.Han,H.B.Gooi.Effective economic dispatch model and algorithm.Electrical Power and Energy Systems.2007, 29(1):113-120 [3] 何仰赞,温增银.电力系统分析.武汉:华中科技大学出版社,2002 [4] 王锡凡,方万良,杜正春.现代电力系统分析.北京:科学出版社,2003 [5] 宋文南,李树鸿,张尧.电力系统潮流计算.天津:天津大学出版社,1990 [6] 王晶,翁国庆,张有冰.电力系统的MATLAB6/SIMULINK仿真与应用.西安:西安电子科技大学出版社,2008.[7] 王祖佑.电力系统稳态运行计算机分析.北京:水利电力出版社,1987.[8] 周全仁,张清益.电网计算与程序设计.长沙:湖南科学技术出版社,1983.[9] 许主平,周少武,邹军安。电力系统计算机辅助设计。北京:中国电力出版社,2001。

第二篇:电力系统潮流计算

南 京 理 工 大 学

《电力系统稳态分析》

课程报告

姓名

XX

学 号: 5*** 自动化学院 电气工程

基于牛顿-拉夫逊法的潮流计算例题编程报学院(系): 专

业: 题

目: 任课教师 硕士导师 告

杨伟 XX

2015年6月10号

基于牛顿-拉夫逊法的潮流计算例题编程报告

摘要:电力系统潮流计算的目的在于:确定电力系统的运行方式、检查系统中各元件是否过压或者过载、为电力系统继电保护的整定提供依据、为电力系统的稳定计算提供初值、为电力系统规划和经济运行提供分析的基础。潮流计算的计算机算法包含高斯—赛德尔迭代法、牛顿-拉夫逊法和P—Q分解法等,其中牛拉法计算原理较简单、计算过程也不复杂,而且由于人们引入泰勒级数和非线性代数方程等在算法里从而进一步提高了算法的收敛性和计算速度。同时基于MATLAB的计算机算法以双精度类型进行数据的存储和运算, 数据精确度高,能进行潮流计算中的各种矩阵运算,使得传统潮流计算方法更加优化。

一 研究内容

通过一道例题来认真分析牛顿-拉夫逊法的原理和方法(采用极坐标形式的牛拉法),同时掌握潮流计算计算机算法的相关知识,能看懂并初步使用MATLAB软件进行编程,培养自己电力系统潮流计算机算法编程能力。

例题如下:用牛顿-拉夫逊法计算下图所示系统的潮流分布,其中系统中5为平衡节点,节点5电压保持U=1.05为定值,其他四个节点分别为PQ节点,给定的注入功率如图所示。计算精度要求各节点电压修正量不大于10-6。

二 牛顿-拉夫逊法潮流计算 1 基本原理

牛顿法是取近似解x(k)之后,在这个基础上,找到比x(k)更接近的方程的根,一步步地迭代,找到尽可能接近方程根的近似根。牛顿迭代法其最大优点是在方程f(x)=0的单根附近时误差将呈平方减少,而且该法还可以用来求方程的重根、复根。电力系统潮流计算,一般来说,各个母线所供负荷的功率是已知的,各个节点的电压是未知的(平衡节点外)可以根据网络结构形成节点导纳矩阵,然后由节点导纳矩阵列写功率方程,由于功率方程里功率是已知的,电压的幅值和相角是未知的,这样潮流计算的问题就转化为求解非线性方程组的问题了。为了便于用迭代法解方程组,需要将上述功率方程改写成功率平衡方程,并对功率平衡方程求偏导,得出对应的雅可比矩阵,给未知节点赋电压初值,将初值带入功率平衡方程,得到功率不平衡量,这样由功率不平衡量、雅可比矩阵、节点电压不平衡量(未知的)构成了误差方程,解误差方程,得到节点电压不平衡量,节点电压加上节点电压不平衡量构成节点电压新的初值,将新的初值带入原来的功率平衡方程,并重新形成雅可比矩阵,然后计算新的电压不平衡量,这样不断迭代,不断修正,一般迭代三到五次就能收敛。2 基本步骤和设计流程图

形成了雅克比矩阵并建立了修正方程式,运用牛顿-拉夫逊法计算潮流的核心问题已经解决,已有可能列出基本计算步骤并编制流程图。由课本总结基本步骤如下:

1)形成节点导纳矩阵Y;

2)设各节点电压的初值,如果是直角坐标的话设电压的实部e和虚部f;如果是极坐标的话则设电压的幅值U和相角a;

3)将各个节点电压的初值代入公式求修正方程中的不平衡量以及修正方程的系数矩阵的雅克比矩阵;

4)解修正方程式,求各节点电压的变化量,即修正量; 5)计算各个节点电压的新值,即修正后的值;

6)利用新值从第(3)步开始进入下一次迭代,直至达到精度退出循环; 7)计算平衡节点的功率和线路功率,输出最后计算结果; ① 公式推导

② 流程图

matlab编程代码

clear;

% 如图所示1,2,3,4为PQ节点,5为平衡节点

y=0;

% 输入原始数据,求节点导纳矩阵

y(1,2)=1/(0.07+0.21j);

y(4,5)=0;y(1,3)=1/(0.06+0.18j);

y(1,4)=1/(0.05+0.10j);

y(1,5)=1/(0.04+0.12j);

y(2,3)=1/(0.05+0.10j);

y(2,5)=1/(0.08+0.24j);

y(3,4)=1/(0.06+0.18j);

for i=1:5

for j=i:5

y(j,i)=y(i,j);

end

end

Y=0;

% 求节点导纳矩阵中互导纳

for i=1:5

for j=1:5

if i~=j

Y(i,j)=-y(i,j);

end

end

end

% 求节点导纳矩阵中自导纳

for i=1:5

Y(i,i)=sum(y(i,:));

end

Y

% Y为导纳矩阵

G=real(Y);

B=imag(Y);% 输入原始节点的给定注入功率

S(1)=0.3+0.3j;

S(2)=-0.5-0.15j;

S(3)=-0.6-0.25j;

S(4)=-0.7-0.2j;

S(5)=0;

P=real(S);

Q=imag(S);

% 赋初值,U为节点电压的幅值,a为节点电压的相位角

U=ones(1,5);

U(5)=1.05;

a=zeros(1,5);

x1=ones(8,1);

x2=ones(8,1);

k=0;

while max(x2)>1e-6

for i=1:4

for j=1:4

H(i,j)=0;

N(i,j)=0;

M(i,j)=0;

L(i,j)=0;

oP(i)=0;

oQ(i)=0;

end

end

% 求有功、无功功率不平衡量

for i=1:4

for j=1:5

oP(i)=oP(i)-U(i)*U(j)*(G(i,j)*cos(a(i)-a(j))+B(i,j)*sin(a(i)-a(j)));

oQ(i)=oQ(i)-U(i)*U(j)*(G(i,j)*sin(a(i)-a(j))-B(i,j)*cos(a(i)-a(j)));

end

oP(i)=oP(i)+P(i);

oQ(i)=oQ(i)+Q(i);

end

x2=[oP,oQ]';

% x2为不平衡量列向量

% 求雅克比矩阵

% 当i~=j时,求H,N,M,L

for i=1:4

for j=1:4

if i~=j

H(i,j)=-U(i)*U(j)*(G(i,j)*sin(a(i)-a(j))-B(i,j)*cos(a(i)-a(j)));

N(i,j)=-U(i)*U(j)*(G(i,j)*cos(a(i)-a(j))+B(i,j)*sin(a(i)-a(j)));

L(i,j)=H(i,j);

M(i,j)=-N(i,j);

end

end

end

% 当i=j时,求H,N,M,L

for i=1:4

for j=1:5

if i~=j H(i,i)=H(i,i)+U(i)*U(j)*(G(i,j)*sin(a(i)-a(j))-B(i,j)*cos(a(i)-a(j)));N(i,i)=N(i,i)-U(i)*U(j)*(G(i,j)*cos(a(i)-a(j))+B(i,j)*sin(a(i)-a(j)));

M(i,i)=M(i,i)-U(i)*U(j)*(G(i,j)*cos(a(i)-a(j))+B(i,j)*sin(a(i)-a(j)));

L(i,i)=L(i,i)-U(i)*U(j)*(G(i,j)*sin(a(i)-a(j))-B(i,j)*cos(a(i)-a(j)))

end

end

N(i,i)=N(i,i)-2*(U(i))^2*G(i,i);

L(i,i)=L(i,i)+2*(U(i))^2*B(i,i);

end

J=[H,N;M,L]

% J为雅克比矩阵

x1=-((inv(J))*x2);

% x1为所求△x的列向量

% 求节点电压新值,准备下一次迭代

for i=1:4

oa(i)=x1(i);

oU(i)=x1(i+4)*U(i);

end

for i=1:4

a(i)=a(i)+oa(i);

U(i)=U(i)+oU(i);

end

k=k+1;

end

k,U,a

% 求节点注入功率

i=5;

for j=1:5

P(i)=U(i)*U(j)*(G(i,j)*cos(a(i)-a(j))+B(i,j)*sin(a(i)-a(j)))+P(i);

Q(i)=U(i)*U(j)*(G(i,j)*sin(a(i)-a(j))-B(i,j)*cos(a(i)-a(j)))+Q(i);

end

S(5)=P(5)+Q(5)*sqrt(-1);

S

% 求节点注入电流

I=Y*U'

运行结果

节点导纳矩阵

经过五次迭代后的雅克比矩阵

迭代次数以及节点电压的幅值和相角(弧度数)

节点注入功率和电流

五 结果分析

在这次学习和实际操作过程里:首先,对电力系统分析中潮流计算的部分特别是潮流计算的计算机算法中的牛顿-拉夫逊法进行深入的研读,弄明白了其原理、计算过程、公式推导以及设计流程。牛顿-拉夫逊法是求解非线性方程的迭代过程,其计算公式为FJX,式中J为所求函数的雅可比矩阵;X为需要求的修正值;F为不平衡的列向量。利用x(*)=x(k+1)+X(k+1)进行多次迭代,通过迭代判据得到所需要的精度值即准确值x(*)。六 结论

通过这个任务,自己在matlab编程,潮流计算,word文档的编辑功能等方面均有提高,但也暴漏出一些问题:理论知识储备不足,对matlab的性能和特点还不能有一个全面的把握,对word软件也不是很熟练,相信通过以后的学习能弥补这些不足,达到一个新的层次。

第三篇:电力系统潮流计算程序设计

电力系统潮流计算程序设计

姓名:韦应顺

学号:2011021052 电力工程学院

牛顿—拉夫逊潮流计算方法具有能够将非线性方程线性化的特点,而使用MATLAB语言是由于MATLAB语言的数学逻辑强,易编译。

【】【】1.MATLAB程序12

Function tisco %这是一个电力系统潮流计算的程序 n=input(‘n请输入节点数:n=’); m=input(‘请输入支路数:m=’);ph=input(‘n请输入平衡母线的节点号:ph=’); B1=input(‘n请输入支路信号:B1=’);%它以矩阵形式存贮支路的情况,每行存贮一条支路 %第一列存贮支路的一个端点 %第二列存贮支路的另一个端点 %第三列存贮支路阻抗

%第四列存贮支路的对地导纳

%第五列存贮变压器的变比,注意支路为1 %第六列存贮支路的序号

B2=input(‘n请输入节点信息:B2=’); %第一列为电源侧的功率 %第二列为负荷侧的功率 %第三列为该点的电压值

%第四列为该点的类型:1为PQ,2为PV节点,3为平衡节点 A=input(‘n请输入节点号及对地阻抗:A=’); ip=input(‘n请输入修正值:ip=’); %ip为修正值);Y=zeros(n);

Y(p,q)=Y(p,q)-1./(B1(i3)*B1(i5);e=zeros(1,n);

Y(p,q)=Y(p,q);f=zeros(1,n);

no=2*ph=1; Y(q,q)=Y(q,q)+1./B1(i3)+B1(i4)/2;

End for i=1:n

G=real(Y);if A(i2)=0

B=imag(Y);p=A(i1);

Y(p p)=1./A(i2);for i=1:n End e(i)=real(B2(i3));End f(i)=imag(B2(i3));For i=1:m S(i)=B2(i1)-B2(i2);p=B1(i1);V(i)=B2(i3);p=B1(i2);end Y(p,p)=Y(p,p)+1./(B1(i3)*B1(i5)^2+B1(i4)./2P=real(S);Q=imag(S);[C,D,DF]=xxf(G,B,e,f,P,Q,n,B2,ph,V,no);J=jacci(Y,G,B,P,Q,e,f,V,C,D,B2,n,ph,no);[De,Di]=hxf(J,D,F,ph,n,no);t=0;while

max(abs(De))>ip&max(abs(Dfi)>ip

t=t+1;

e=e+De;

f=f+Df;

[C,D,DF]=xxf(G,B,e,f,P,Q,n,B2,ph,V,no);

J=jacci(Y,G,B,P,Q,e,f,V,C,D,B2,n,ph,no);

[De,Df]=hxf(J,Df,ph,n,no);end v=e+f*j;for i=1:n hh(i)=conj(Y(ph,i)*v(i));end S(ph)=sum(hh)*v(ph);B2(ph,1)=S(ph);V=abs(v);

jd=angle(v)*180/p;resulte1=[A(:,1),real(v),imag(v),V,jd,real(S’),imag(S’),real(B2(:1)),imag(B2(:1)),real(B2(:2)),imag(B2(:,2))];for i=1:m

a(i)=conj((v(B1(i1))/B1(i5)-v(B1(i2))/B1(i3));

b(i)=v(B1(i1))*a(i)-j*B1(i4)*v(B1(i))^2/2;

c(i)=-v(B1(i2))*a(i)-j*B1(i4)*v(B1(i2))^2/2;end result2=[B1(:,6),B1(:,1),B1(:,2),real(b’),imag(b’),real(c’),imag(c’), real(b’+c’),imag(b’+c’)];printcut(result1,S,b,c,result2);type resultm function [C,D,Df]=xxf(G,B,e,f,P,Q,n,B2,ph,V,no)%该子程序是用来求取Df for i=1:n

If

i=ph

C(i)=0;

D(i)=0;

For j=i:n

C(i)=C(i)+G(i,j)*e(j)-B(i,j)*f(j);D(i)=D(i)+G(i,j)*f(j)+B(i,j)*e(j);end

P1=C(i)*e(i)+D(i)*f(i);Q1=C(i)*f(i)-D(i)*e(i);V1=e(i)^2+f(i)^2;If

B2(i4)=2 p=2*i-1;

Df(p)=P(i)-P1;p=p+1;else p=2*i-1;

Df(p)=P(i)-P1;p=p+1;

Df(p)=Q(i)-Q1;end end end Df=Df’;If ph=n Df(no=[];end

function [De,Df]=hxf(J,Df,ph,n,no)%该子函数是为求取De Df DX=JDf;DX1=DX;

x1=length(DX1);if ph=n DX(no)=0;DX(no+1)=0;

For i=(no+2):(x1+2)DX(i)=DX1(i-2);End Else

DX=[DX1,0,0];End k=0;

[x,y]=size(DX);For i=1:2:x K=k+1;

Df(k)=DX(i);De(k)=DX(i+1);End End case 2 Function for j=1:n J=jacci(Y,G,B,PQ,e,f,V,C,D,B2,n,ph,no)X1=G(i,j)*f(i)-B(i,j)*e(i);

X2=G(i,j)*e(i)+B(i,j)*f(i);%该子程序是用来求取jacci矩阵

for i=1:n X3=0;switch B2(i4)X4=0;case 3 P=2*i-1;continue q=2*j-1;case 1 J(p,q)=X1;for j=1:n m=p+1;if

J=&J=ph J(m,q)=X3;X1=G(i)*f(i)-B(i,j)*e(i);q=q+1;X2=G(i,j)*e(i)+B(i,j)*f(i);J(p,q)=X2;X3=-X2;J(m,q)=X4;X4=X1;X1=D(i)+G(i,j)*f(i)-B(i,j)*e(i);p=2*i-1;X2=C(i)+G(i,j)*e(i)+B(i,j)*f(i);q=2*j-1;X3=0;J(p,q)=X1;X4=0;m=p+1;P=2*i-1;J(p,q)=X2;q=2*j-1;J(m,q)=X4;J(p,q)=X1;Else if j=&j=jph m=p+1;X1=D(i)+G(i,j)*f(i)-B(i,j)*e(i);J(m,q)=X3;X2=C(i)+G(i,j)*e(i)+B(i,j)*f(i);q=q+1;X3= C(i)+G(i,j)*e(i)-B(i,j)*f(i);J(p,q)=X2;X4= C(i)+G(i,j)*f(i)-B(i,j)*e(i);J(m,q)=X4;P=2*i-1;end q=2*j-1;end J(p,q)=X1;end m=p+1;end J(m,q)=X3;if ph=n q=q+1;J(no:)=[];J(p,q)=X2;J(no:)=[];J(m,q)=X4;J(:,no)=[];End J(:,no)=[];End

2实例验证 【例题】设有一系统网络结线见图1,各支路阻抗和各节点功率均已以标幺值标示于图1中,其中节点2连接的是发电厂,设节点1电压保持U1=1.06定值,试计算其中的潮流分布,请输入节点数:n=5 请输入支路数:m=7 请输入平衡母线的节点号:ph=l 请输入支路信息:

BI=[ l 2 0.02+0.06i O l 1;1 3 0.08+0.24i 0 1 2;2 3 0.06+0.18i 0 l 3: 2 4 0.06+0.18i O l 4: 2 5 0.04+0.12i 0 l 5: 3 4 0.01+0.03i 0 l 6: 4 5 0.08+0.24i O 1 7] 请输入节点信息:

B2=[ 0 0 1.06 3;0.2+0.20i 0 1 1;一O.45一O.15i 0 l l;一0.4-0.05i 0 l 1;一0.6—0.1i 0 1 l] 请输入节点号及对地阻抗: A=[l 0;2 0;3 0;4 0;5 O ] 请输入修正值:ip=0.000 0l

参考文献

[1]陈珩.电力系统稳定分析[M].北京:中国电力出版社,2002:139—187.

[2]郑阿奇.MATLAB实用教程[M].北京:电子工业出版社,2005:1-243.

[3] 束洪春,孙士云,等.云电送粤交商流混联系统全过 程动态电压研究[J】.中国电力,2008,4l(10):l-4. SHU Hong—ch吼,SUN Shi-yun,et a1.Research on fun prc'cess dyn锄ic Voltage stabil时of hybrid AC/DC poWer tmnsmission System舶m Yu衄an proVince to G啪gdong province【J】.Electric Power,2008,4l(10): l-4.

[4] 朱新立,汤涌,等.大电网安全分析的全过程动态仿 真技术[J】.电网技术,2008,32(22):23—28. SONG Xin—Ii,TANG Yof唱,et a1. Full dyn锄ic simulation for the stabilhy a眦lysis of large power system【J】.Power System融IlrIolo影,2008,32(22): 23.28.

[5]Roytelm锄I,Shallidehpour S M.A comprehcnsivc long teml dynaIIlic simulation for powcr system recoVery【J】. IEEE Transactions 0n Power Systems,1994,9(3). [6] 石雩梅,汪志宏,等.发电机励磁系统数学模型及参 数对电网动态稳定性分析结果影响的研究[J】.继电 器,2007,35(21):22-27.

SHI Xue.mei,WANG Zlli-hon舀et a1.Iksearch on the innuence of g锄e翰to璐baScd ∞de诅iled excitation system models柚d parameterS t0 power铲id dyn锄ic stabil时【J】.Relay,2007,35(2 1):22-27.

[7] 方思立,朱方.快速励磁系统对系统稳定的影响[J】.中 国电机工程学报,1986,6(1):20.28.

FANG Si.1i,ZHU Fang.The effbct of f弧t.respon∞

excitation system on the stability of power netwofk【J】. Proceedings ofthe CSEE,1986,6(1):20-28.

[8] 刘取.电力系统稳定性及发电机励磁控制[M】.北京: 中国电力出版社,2007.

LIU Qu.Power system S诅bility锄d generator excitation control【M】.BeUing:ChiIla Electric Powef Press,2007. [9] Dallachy J L,Anderson T.EXperience with rcplacing ro诅ting exciters wim static exciters【J】.1k InStitution of Electrical Engineers,1 996.

[10] 陈利芳,陈天禄.浅谈自并励励磁系统在大容量机组 中的应用【J】.继电器,2007,35(1):8l培4. CHEN Li-f抽岛CHEN Tian—lIL Application of 辩l仁exci组tion mode in large capacity髫memtor unit【J】. ReIay'2007,35(1):81-84.

[11] 方思立,刘增煌,孟庆和.大型汽轮发电机自并励励 磁系统的应用条件【J].中国电力,1994,27(12):61.63. FANG Si.Ii,LIU Zeng-hu锄g,MENG Qin争hc.m application conditions of large turbine generator self-excitation system【J】.Electric Powef,1994,27(12): 61.63.

[12]梁小冰,黄方能.利用EMTDC进行长持续时间过程 的仿真研究【J】.电网技术,2002,26(9):55.57. LIANG Xiao-bing,HUANG Fan争眦ng.How to cany out simulalion of long dul‘ation processes by use of EMTDC【J】.Power System 11echnology,2002,26(9): 55-57.

[13]王卉,陈楷,彭哲,等.数字仿真技术在电力系统中 的应用及常用的几种数字仿真工具【J】.继电器,2004,32(21):7l一75.

wANG Hui,CHEN Kai,PENG zhe,et a1.Application of digital simulation眦hniques棚d severaJ simulation tools in power system[J】.Relay,2004,32(21):71·75.

[14]IEEE Power Engmeering Socie哆.IEEE std 421.5.2005 IEEE玎ccOmmended practice for excitation system models for power system stabiI时studies【s】.

第四篇:电力系统潮流计算程序

电力系统潮流计算c语言程序,两行,大家可以看看,仔细研究,然后在这个基础上修改。谢谢

#include “stdafx.h” #include #include #include

#include“Complex.h” #include“wanjing.h” #include“gauss.h” using namespace std;

int _tmain(int argc, _TCHAR* argv[]){

int i;

//i作为整个程序的循环变量

int N=Bus::ScanfBusNo();//输入节点个数

int L=Line::ScanflineNo();//输入支路个数

if((L&&N)==0){return 0;} //如果找不到两个文件中的任意一个,退出

Line *line=new Line[L];//动态分配支路结构体

Line::ScanfLineData(line);//输入支路参数

Line::PrintfLineData(line,L);//输出支路参数

Bus *bus=new Bus[N];//动态分配结点结构体

for(int i=0;i

bus[i].Sdelta.real=0;

bus[i].Sdelta.image=0;}

Bus::ScanfBusData(bus);//输入节点参数

Bus::PrintfBusData(bus,N);//输出结点参数

Complex **X;X=new Complex *[N];for(i=0;i

Bus::JisuanNodeDnz(X,line,bus,L,N);//计算节点导纳矩阵

Bus::PrintfNodeDnz(X,N);//输出节点导纳矩阵

int NN=(N-1)*2;double **JacAug;JacAug=new double *[NN];for(i=0;i

double *x;x=new double[NN];int count=1;

LOOP:

Bus::JisuanNodeI(X,bus,N);//计算节点注入电流

Bus::JisuanNodeScal(X,bus,N);//计算节点功率

Bus::JisuanNodeScal(X,bus,N);//计算节点功率

Bus::JisuanNodeSdelta(bus,N);//计算节点功率差值

Bus::PrintfNodeScal(X,bus,N);//输出节点功率差值

int icon=wehcon1(bus,N);//whether converbence看迭代是否结束

if(icon==1){

cout<<“icon=”<

Bus::JisuanJacAug(JacAug,X,bus,N);//计算雅可比增广矩阵 // Bus::PrintfJacAug(JacAug,N);

gauss::gauss_slove(JacAug,x,NN);//解方程组求出电压差值

Bus::ReviseNodeV(bus,x,N);//修正节点电压

// Bus::PrintfNodeV(bus,N);

count++;

goto LOOP;}

else

{

for(i=0;i

{

int statemp,endtemp;

Complex aa,bb,cc,dd,B;

B.real=0;

B.image=-line[i].B;

statemp=line[i].start;

endtemp=line[i].end;

aa=Complex::productComplex(Complex::getconj(bus[statemp-1].V), B);

bb=Complex::subComplex

(Complex::getconj(bus[statemp-1].V), Complex::getconj(bus[endtemp-1].V));

cc=Complex::productComplex(bb , Complex::getconj(line[i].Y));

dd=Complex::CaddC(aa,cc);

line[i].stoe=Complex::productComplex(bus[statemp-1].V,dd);

aa=Complex::productComplex(Complex::getconj(bus[endtemp-1].V), B);

bb=Complex::subComplex

(Complex::getconj(bus[endtemp-1].V), Complex::getconj(bus[statemp-1].V));

cc=Complex::productComplex(bb , Complex::getconj(line[i].Y));

dd=Complex::CaddC(aa,cc);

line[i].etos=Complex::productComplex(bus[endtemp-1].V,dd);

}

cout<<“icon=”<

Bus::JisuanNodeScal(X,bus,N);//计算节点功率

for(i=0;i

{

bus[i].Scal.real = bus[i].Scal.real + bus[i].Load.real;//发电机功率=注入功率+负荷功率

bus[i].Scal.image= bus[i].Scal.image+ bus[i].Load.image;

bus[i].V=Complex::Rec2Polar(bus[i].V);

}

cout<<“====节点电压===============发电机发出功率======”<

for(i=0;i

{

cout<<“节点”<<(i+1)<<'t';

Complex::PrintfComplex(bus[i].V);

coutt(bus[i].Scal.real);

coutt(bus[i].Scal.image);

cout<

}

cout<<“======线路传输功率==========”<

for(i=0;i

{

int statemp,endtemp;

statemp=line[i].start;

endtemp=line[i].end;

cout<

Complex::PrintfComplex(Complex::ComDivRea(line[i].stoe,0.01));

Complex::PrintfComplex(Complex::ComDivRea(line[i].etos,0.01));

cout<

} }

return 0;}

#include “stdafx.h” #include #include #include

#include“Complex.h” #include“wanjing.h” #include“gauss.h” using namespace std;

int _tmain(int argc, _TCHAR* argv[]){

int i;

//i作为整个程序的循环变量

int N=Bus::ScanfBusNo();//输入节点个数

int L=Line::ScanflineNo();//输入支路个数

if((L&&N)==0){return 0;} //如果找不到两个文件中的任意一个,退出

Line *line=new Line[L];//动态分配支路结构体

Line::ScanfLineData(line);//输入支路参数

Line::PrintfLineData(line,L);//输出支路参数

Bus *bus=new Bus[N];//动态分配结点结构体

for(int i=0;i

bus[i].Sdelta.real=0;

bus[i].Sdelta.image=0;}

Bus::ScanfBusData(bus);//输入节点参数

Bus::PrintfBusData(bus,N);//输出结点参数

Complex **X;X=new Complex *[N];for(i=0;i

Bus::JisuanNodeDnz(X,line,bus,L,N);//计算节点导纳矩阵

Bus::PrintfNodeDnz(X,N);//输出节点导纳矩阵

int NN=(N-1)*2;double **JacAug;JacAug=new double *[NN];for(i=0;i

double *x;x=new double[NN];int count=1;

LOOP:

Bus::JisuanNodeI(X,bus,N);//计算节点注入电流

Bus::JisuanNodeScal(X,bus,N);//计算节点功率

Bus::JisuanNodeScal(X,bus,N);//计算节点功率

Bus::JisuanNodeSdelta(bus,N);//计算节点功率差值 Bus::PrintfNodeScal(X,bus,N);//输出节点功率差值

int icon=wehcon1(bus,N);//whether converbence看迭代是否结束

if(icon==1){

cout<<“icon=”<

Bus::JisuanJacAug(JacAug,X,bus,N);//计算雅可比增广矩阵

// Bus::PrintfJacAug(JacAug,N);

gauss::gauss_slove(JacAug,x,NN);//解方程组求出电压差值

Bus::ReviseNodeV(bus,x,N);//修正节点电压

// Bus::PrintfNodeV(bus,N);

count++;

goto LOOP;}

else

{

for(i=0;i

{

int statemp,endtemp;

Complex aa,bb,cc,dd,B;

B.real=0;

B.image=-line[i].B;

statemp=line[i].start;

endtemp=line[i].end;

aa=Complex::productComplex(Complex::getconj(bus[statemp-1].V), B);

bb=Complex::subComplex

(Complex::getconj(bus[statemp-1].V), Complex::getconj(bus[endtemp-1].V));

cc=Complex::productComplex(bb , Complex::getconj(line[i].Y));

dd=Complex::CaddC(aa,cc);

line[i].stoe=Complex::productComplex(bus[statemp-1].V,dd);

aa=Complex::productComplex(Complex::getconj(bus[endtemp-1].V), B);

bb=Complex::subComplex

(Complex::getconj(bus[endtemp-1].V), Complex::getconj(bus[statemp-1].V));

cc=Complex::productComplex(bb , Complex::getconj(line[i].Y));

dd=Complex::CaddC(aa,cc);

line[i].etos=Complex::productComplex(bus[endtemp-1].V,dd);

}

cout<<“icon=”<

Bus::JisuanNodeScal(X,bus,N);//计算节点功率

for(i=0;i

{

bus[i].Scal.real = bus[i].Scal.real + bus[i].Load.real;//发电机功率=注入功率+负荷功率

bus[i].Scal.image= bus[i].Scal.image+ bus[i].Load.image;

bus[i].V=Complex::Rec2Polar(bus[i].V);

}

cout<<“====节点电压===============发电机发出功率======”<

for(i=0;i

{

cout<<“节点”<<(i+1)<<'t';

Complex::PrintfComplex(bus[i].V);

coutt(bus[i].Scal.real);

coutt(bus[i].Scal.image);

cout<

}

cout<<“======线路传输功率==========”<

for(i=0;i

{

int statemp,endtemp;

statemp=line[i].start;

endtemp=line[i].end;

cout<

Complex::PrintfComplex(Complex::ComDivRea(line[i].stoe,0.01));

Complex::PrintfComplex(Complex::ComDivRea(line[i].etos,0.01));

cout<

} }

return 0;}

#include using namespace std;

class Complex//定义复数类 { public: double real;double image;int

RecPolar;//0表示直角坐标,1表示极坐标

static Complex CaddC(Complex c1,Complex c2);//求两个复数和

static Complex subComplex(Complex c1,Complex c2);//求两个复数差

static Complex productComplex(Complex c1,Complex c2);//求两个复数积

static Complex divideComplex(Complex c1,Complex c2);//求两个复数商

static Complex ComDivRea(Complex c1,double r2);//除数

static Complex getconj(Complex c1);//求一个复数共轭

static Complex getinverse(Complex c1);//取倒数

static double getComplexReal(Complex c1);//求一个复数实部

static double getCompleximage(Complex c1);//求一个复数虚部

static void PrintfComplex(Complex c1);//显示一个复数

static void PrintfmultiComplex(Complex C,int N);//显示多个复数

static void zeroComplex(Complex c1);//将复数复零

static Complex Rec2Polar(Complex c1);//取极坐标

Complex(){

RecPolar=0;} };

Complex Complex::Rec2Polar(Complex c1)//极坐标表示 { Complex Node;Node.real=sqrt(c1.real*c1.real+c1.image*c1.image);Node.image=atan2(c1.image,c1.real)*180/3.1415926;Node.RecPolar=1;return Node;}

Complex Complex::CaddC(Complex c1,Complex c2)//复数加法 {

Complex Node;

Node.real=c1.real+c2.real;

Node.image=c1.image+c2.image;

return Node;}

Complex Complex::subComplex(Complex c1,Complex c2)//复数减法 {

Complex Node;

Node.real=c1.real-c2.real;

Node.image=c1.image-c2.image;

return Node;}

Complex Complex::productComplex(Complex c1,Complex c2)//复数乘法 {

Complex Node;

Node.real=c1.real*c2.real-c1.image*c2.image;

Node.image=c1.image*c2.real+c2.image*c1.real;

return Node;} Complex Complex::divideComplex(Complex c1,Complex c2)//复数除法 {

Complex Node;

Node.real=(c1.real*c2.real+c1.image*c2.image)/(pow(c2.real,2)+pow(c2.image,2));Node.image=(c1.image*c2.real-c1.real*c2.image)/(pow(c2.real,2)+pow(c2.image,2));return Node;} Complex Complex::ComDivRea(Complex c1,double r1)//复数除数 { Complex Node;Node.real=c1.real/(r1);Node.image=c1.image/(r1);return Node;} Complex Complex::getconj(Complex c1)//取共轭 {

Complex Node;

Node.real=c1.real;Node.image=-c1.image;

return Node;}

Complex Complex::getinverse(Complex c1)//取倒数 { Complex Node;Node.real=1;Node.image=0;Node=(Complex::divideComplex(Node,c1));return Node;}

double Complex::getComplexReal(Complex c1)//取实部 {

return c1.real;}

double

Complex::getCompleximage(Complex c1)//取虚部 {

return c1.image;}

void

Complex::PrintfComplex(Complex c1)//按直角坐标输出 { if(c1.RecPolar==0){ cout.precision(6);

cout.width(8);

cout.setf(ios::right);

cout<

”;

cout.precision(6);

cout.width(8);

cout.setf(ios::left);

cout<

”;} else {

cout<

Complex::zeroComplex(Complex c1)//清零 { c1.real=0;c1.image=0;}

class gauss { public: static void gauss_slove(double **a,double *x,int NN);static void gauss_output();};

void gauss::gauss_slove(double **a,double *x,int NN){

int n,i,j,k,*pivrow,**pivcol;double eps,pivot,sum,aik,al;

n=NN;pivrow=new int[n];pivcol=new int *[n];

for(i=0;i

pivot= fabs(a[k][k]);

pivrow[k]=k;//行

pivcol[k][0]=k;pivcol[k][1]=k;//列n*2矩阵

for(i=k;i

{

for(j=k;j

{

if(pivot

{

pivot=fabs(a[i][j]);

pivrow[k]=i;//行

pivcol[k][1]=j;//列

}

}

}

if(pivot

{

cout<<“error”<

getchar();

exit(0);

}

if(pivrow[k]!=k)//行变换

{

for(j=k;j<(n+1);j++)

{

al=a[pivrow[k]][j];

a[pivrow[k]][j]=a[k][j];

a[k][j]=al;

}

}

if(pivcol[k][1]!=k)//列变换

{

for(i=0;i

{

al=a[i][pivcol[k][1]];

a[i][pivcol[k][1]]=a[i][k];

a[i][k]=al;

}

}

if(k!=(n-1))//将矩阵化为上三角形

{

for(i=(k+1);i

{

aik=a[i][k];

for(j=k;j<(n+1);j++)

{

a[i][j]-=aik*a[k][j]/a[k][k];

}

}

} } x[n-1]=a[n-1][n]/a[n-1][n-1];//解方程

for(i=(n-2);i>=0;i--){

sum=0;

for(j=(i+1);j

{

sum +=a[i][j]*x[j];0.182709

0.016894-0.0310701

-0.0402051 0.156702

-0.0355909-0.0668055

-0.00703229-0.0886481

-0.0129814-0.0390805

-0.0135062-0.1023

-0.0460568

-0.0342827

-0.00382402-0.102896

-0.0184062

}

x[i]=(a[i][n]-sum)/a[i][i];} for(k=(n-2);k>=0;k--){

al=x[pivcol[k][1]];

x[pivcol[k][1]]=x[pivcol[k][0]];

x[pivcol[k][0]]=al;}

cout<<“节点电压修正量”<

cout<

}

====节点功率计算值==== 0.935261

-0.159048 0.573909

0.0789973-0.00289889

-0.00796623-0.0791247

-0.0168362-0.436255

-0.0580392 0.0359139

-0.0106592-0.229118

-0.0885419-0.136179

-0.148207 0.0446243

0.0111298-0.0223764

-0.00695775-0.0237482

-0.198318

-5.24266e-015

-0.0354071

-0.0925078

-1.05629e-015

-0.0391348

0.014529

0.00158644

-0.0258771

-0.109514

icon=1进行第2次迭代 节点电压修正量

=================-0.00164889-0.000540034-0.00261067-0.00532027-0.00235315-0.00600971-0.00189677-0.00643874-0.0023631-0.00650659-0.00170949-0.0074907-0.00164545-0.00485415-0.00493977-0.0119042-0.00331285-0.0175611-0.00207908

-0.00347744-0.0869347-9.48909e-015-0.0110778-0.0538236-7.53784e-016-0.0168097 7.049e-005-0.00146487-0.00458276 0.00251645

-0.00336375-0.00530645-0.0147816-0.000326161-0.00640487-0.00251701-0.0169829-0.00175286-0.0174333-0.0239063

-0.0119192-0.076014

-0.0160104-0.441997

-0.0750285 0.000250012

3.72542e-005-0.228052

-0.108844-0.100078

-0.105634 0.000410707

0.000378067-0.057497

-0.0195879 0.200039

0.0582563-0.00307326-0.0163809-0.00232773-0.0175806 8.74293e-005-0.0192018 0.000558996-0.0197776-0.000247851-0.0193784-0.00115346-0.0185848-0.00127275-0.0186244-0.00010108-0.0188966 0.000553585-0.0200901-3.76315e-005-0.0208303 0.00308341-0.0219386-0.00195916-0.0205356-0.00184757-0.0076401 0.00197593-0.0245534 0.00434657-0.027534

====节点功率计算值==== 0.98623

-0.134163 0.583136

0.166278-0.111173

0.199792

-0.0621041

-0.0821379

-0.0350785

-0.0902383

-0.0320461

-0.0951562

-0.0220362

-0.175458

4.72557e-015

-0.0320661

-0.0871134

-7.03489e-017

-0.0350769

0.000273455

1.51804e-005

-0.0240417

-0.10604

icon=1进行第3次迭代 节点电压修正量

=================-2.67079e-005-2.30128e-006-2.20543e-005-6.00686e-005-2.33043e-005-6.85601e-005-3.22294e-005-2.61107e-005-2.80198e-005-6.6167e-005-2.34528e-005

-0.0739846 0.0227868-0.0158709-0.0248173-0.0179447-0.0578368-0.00890719-0.0337091-0.00693706-0.111601 1.21429e-014-0.0159145-0.0667319 9.24355e-016-0.0228592 7.10354e-005-6.6188e-006-0.00889343-0.0184098

-5.66132e-005-4.4646e-005-1.74668e-005-4.50947e-005-0.000181763-3.81763e-006-0.000286581-6.68993e-005-1.28441e-005-5.17172e-005-0.000223284-4.54717e-005-2.47586e-005 4.32335e-007-0.000258494 1.82635e-005-0.000272051-6.95195e-006-0.000251969 1.11318e-005-0.000279418 5.74737e-005-0.000307368 6.86998e-005-0.000320274 5.38112e-005-0.00031447 3.59531e-005-0.00030494 3.37607e-005-0.000307449 5.26532e-005-0.000310721 6.92761e-005-0.000350373 5.60942e-005-0.00040977 0.000123641-0.000440259 1.36149e-005-0.000426973-1.70227e-005-9.37794e-005 0.000113675-0.000544011 0.000176034-0.000636202

====节点功率计算值====

0.986878

-0.133979 0.583

0.167193-0.024

-0.012-0.076

-0.016-0.442

-0.0748606

1.43501e-008

1.07366e-008-0.228

-0.109

-0.0999999

-0.104049 4.51318e-008

8.98835e-008-0.0579999

-0.0199999 0.2

0.0591018-0.112

-0.0749997 0.2

0.0242519-0.062

-0.016-0.082

-0.025-0.035

-0.018

-0.0900001

-0.058-0.032

-0.00899997-0.095

-0.0339999-0.022

-0.00699998-0.175

-0.112

-6.07156e-015

-1.19217e-014-0.032

-0.016-0.087

-0.0669999

7.03078e-017

-9.23979e-016-0.035

-0.0229999

1.09492e-007

4.45699e-008 1.54958e-009

-2.01531e-010-0.024

-0.00899994-0.106

-0.0189996

icon=0,迭代结束。

====节点电压===============发电机发出功率======

节点1

1.05

0。

98.6878-13.3979

节点2

1.045

-1.846。

29.4193

节点3

1.02384-3.83352。

0

点25 1.01216-9.68486。

0

0 0 节点4

1.01637-4.55698。

0

点26 0.994393

-10.1089。

0 0

0 节点5

1.01

-6.48617。

节 点27 1.02012-9.42025。

0

11.5139 0 节点6

1.01332-5.38073。

0

点28 1.00992-5.86244。

0

0 0 节点7

1.00489-6.38368。

0

点29 1.00022-10.6579。

0

0 节点8 19.5951 节点9 0 节点10 0 节点11 5.91018 节点12 0 节点13 2.42519 节点14 0 节点15 0 节点16 0 节点17 0 节点18 0 节点19 0 节点20 0 节点21 0 节点22 0 节点23 0 节点24 0 1.01

-5.62974。

1.03905-6.78143。

1.03595-8.69362。

-4.5962。

1.04711-7.80323。

1.05

-6.34392。

1.03242-8.7401。

1.02788-8.86784。

1.03458-8.45044。

1.03051-8.83678。

1.01845-9.5141。

1.01604-9.70326。

1.02022-9.50938。

1.0237-9.17478。

1.02432-9.17024。

1.01802-9.36719。

1.01339-9.68362。

0 20

节 点30 0.988705

-11.5464。

0

0 0

======

线路传输功率========== 2to1

-57.7373

5.41674i

58.3454

0

-15.1827i

3to1

-39.659

-7.75964i

40.3424

1.78481i

4to2

-30.87

-9.74186i

31.4153

0

3.58352i

4to3

-37.0772

-7.78596i

37.259

6.55964i

5to2

-44.3717

-9.78456i

45.2968

0

4.84242i

6to2

-38.4766

-8.22625i

39.3252

0

2.87667i

6to4

-34.946

1.92384i

35.0885

0

-3.28202i

7to5

-0.16304

-6.41767i

0.171702

0

2.2985i

7to6

-22.637

-4.48233i

22.7745

0

1.44238i

8to6

-11.8939

-5.48098i

11.913

0

3.70557i

6to9

12.3737

-12.3826i

-12.3737

0

13.0033i

6to10

10.9107

-3.80907i

-10.9107

0

4.53223i

11to9

5.91018i

0

-5.08963i

10to9

-32.652

-2.3712i

32.652

0

3.46974i

4to12

23.5411

-11.5375i

-23.5411

0

13.2407i

13to12

2.42519i

1.05

-1.90978i 1.66484i 14to12

-7.9019

-2.06732i

7.97894

30to29

-3.6702

-0.542564i

3.70398

2.22749i 0.606393i 15to12

-18.254

-5.74885i

18.4835

28to8

-1.89152

-3.79982i

1.89395

6.20089i-4.9239i 16to12-7.53872

-2.90237i

7.59633

28to6

-14.7868

-2.82565i

14.8234

3.02352i 0.294601i 15to14-1.69544

-0.461488i

1.70189

请按任意键继续...0.467323i 17to16-4.03014 1.10238i 18to15-6.08074 1.46028i 19to18-2.87549 0.478389i 20to19

6.6418-2.93222i 20to10

-8.8418 3.85077i 17to10-4.96987 4.76656i 21to10-16.1562 9.42843i 22to10-7.87782 4.21401i 22to21

1.34443-2.01837i 23to15-5.59369 2.25006i 24to22-6.48186 2.08163i 24to23-2.38596 0.579814i 25to24-0.167617 0.281364i 26to25

-3.5 2.3674i 27to25

3.39433-2.08638i 28to27

16.1446 3.13006i 29to27-6.10398 1.67047i 30to27-6.92979-1.07089i-1.37839i-0.467767i

2.96679i-3.66679i-4.72911i-9.18162i-4.10132i

2.01969i-2.17981i-2.00141i-0.56401i

-0.28102i-2.29999i

2.11848i-2.10093i-1.50639i

-1.3574i

4.03872

6.12096

2.88074

-6.62452

8.9242

4.98423

16.2709

7.93248

-1.34378

5.62846

6.53339

2.39369

0.167814

3.54513

-3.37751

-16.1446

6.19083

7.09313

高等电力系统分析 IEEE30节点潮流程序

班级:电研114班

姓名:王大伟

学号:2201100151

第五篇:基于pscad潮流计算课程设计

目 录

摘要 潮流计算简介 1.1 潮流计算简介

2课题内容目的及要求

2.1课程设计的目的

2.2课程设计的要求

2.3课题及相关技术参数 3 PSCAD软件介绍及应用 3 3.1 PSCAD简介及说明

3.2 PSCAD设计优点

4系统调试与仿真

4.1仿真调试

总结

参考文献

I

4 8 9

摘 要

电力系统的出现,使高效,无污染,使用方便,易于控制的电能得到广泛应用,推动了社会生产各个领域的发展,开创了电力时代,发生了第二次技术革命。潮流计算是电力系统最基本最常用的计算。根据系统给定的运行条件,网络接线及元件参数,通过潮流计算可以确定各母线的电压幅值和相角,各元件流过的功率,整个系统的功率损耗。潮流计算是实现电力系统安全经济发供电的必要手段和重要工作环节。因此,潮流计算在电力系统的规划计算,生产运行,调度管理及科学计算中都有着广泛的应用。对于正在规划的电力系统,通过潮流计算,可以为选择电网供电方案和电气设备提供依据。潮流计算还可以为继电保护和自动装置定整计算、电力系统故障计算和稳定计算等提供原始数据。

关键词:电力系统;潮流计算;PSCAD软件

潮流计算简介 1.1 潮流计算简介

潮流计算是电力系统分析中的一种最基本的计算,指在给定电力系统网络拓扑、元件参数和发电、负荷参量条件下,计算有功功率、无功功率及电压在电力网中的分布。潮流计算是根据给定的电网结构、参数和发电机、负荷等元件的运行条件,确定电力系统各部分稳态运行状态参数的计算。通常给定的运行条件有系统中各电源和负荷点的功率、枢纽点电压、平衡点的电压和相位角。待求的运行状态参量包括电网各母线节点的电压幅值和相角,以及各支路的功率分布、网络的功率损耗等。

在电力系统运行和规划中,都需要研究电力系统稳定运行情况,确定电力系统的稳态运行状态。给定电力系统的网络结构、参数和决定电力系统运行状况的边界条件,确定电力系统运行的方法之一是朝流计算。

从数学上说:朝流计算是要求解一组有潮流方程描述的非线性方程组。电力系统潮流计算是电力系统分析中最重要最基本的计算,是电力运行、规划以及安全性、可靠性分析和优化的基础,也是各种电磁暂态和机电暂态分析的基础和出发点。电力系统潮流计算是电力系统最基本的计算,也是最重要的计算。所谓潮流计算,就是已知电网的接线方式与参数及运行条件,计算电力系统稳态运行各母线电压、个支路电流与功率及网损。对于正在运行的电力系统,通过潮流计算可以判断电网母线电压、支路电流和功率是否越限,如果有越限,就应采取措施,调整运行方式。对于正在规划的电力系统,通过潮流计算,可以为选择电网供电方案和电气设备提供依据。

潮流计算还可以为继电保护和自动装置定整计算、电力系统故障计算和稳定计算等提供原始数据。此外,在进行电力系统稳态及暂态稳定计算时,要利用潮流计算的结果作为其计算的基础;一些故障分析以及优化计算也需要有相应的潮流计算作配合;潮流计算往往成为上述计算程序的一个重要组成部分。以上这些,主要是在系统规划设计及运行方式安排中的应用,属于离线计算范畴。随着现代化的调度中心的建立,为了对电力系统进行实时安全监控,需要根据实时数据库所提供的信息。2课题内容目的及要求 2.1课程设计的目的

(1)掌握电力系统潮流计算的基本原理。

(2)掌握并能熟练运用PSCAD/MATLAB 仿真软件

(3)采用PSCAD/MATLAB 软件,做出系统接线图的潮流计算仿真结果。2.2课程设计的要求

本次课程设计主要是为了掌握电力系统潮流计算的基本原理和熟练运用PSCAD仿真软件。课程设计的具体要求如下:

(1)熟悉PSCAD/MATLAB 软件

(2)编写潮流计算流程图

(3)建立系统接线图的仿真过程(4)得出仿真结果

2.3课题及相关技术参数

在图2.1所示的简单电力系统中,系统节点1为PV节点,节点2为平衡节点,其余为PQ节点,已给定网络歌元件参数的标幺值如图。输电线路电压等级为220KV,收敛系数ε=0.00001。计算各个母线上的潮流分布。

所有数据均为标幺值,系统基准值SYSBASE:100KV

图2.1简单电力系统

PSCAD软件介绍及应用 3.1 PSCAD简介及说明

PSCAD是一种有效的用户图形界面,能够显著地提高电力系统电磁瞬时模拟研究的效率。利用PSCAD 家族的软件工具,使得电力系统工程师能够充分利用现代微机工作站的资源, 更为有效地使用马尼托巴高压直流研究中心的EMTDC瞬时模拟软件。该族软件还可作为该中心的实时数字模拟器(RTDS)的用户界面。

PSCAD 由下述软件模块构成:档管理系统、建模(DRAFT)模块、架空线(T-LINE)和电缆(CABLE)模块、运行(RUN TIME)模块、单曲线绘图(UNIPLOT)和多曲线绘图(MULTIPLOT)模块。

PSCAD/EMTDC在时间域描述和求解完整的电力系统及其控制的微分方程(包括电磁和机电两个系统)。这一类的模拟工具不同于潮流和暂态视定的模拟工具。后者是用稳态解去描述电路(即电磁过程)。但是在解电机的机械动态(即转动惯量)微分方程。PSCAD/EMTDC的结果是作为时间的即时值被求解。但通过内置的转换器和测量功能(象实有效值表计或者快速育里叶变换频谱分析等)。这些结果能被转换为矢量的幅值和相角。

实际系统的测量能够通过很多途径来完成。由于潮流和稳定的程序是通过稳定方程来代表它们只能基频段幅值和相位。因此PSCAD的模拟结果能够产生电力系统所有频率的相应限制仅在于用户自己选择的时间步长。这种时间步长可以在毫秒到秒之间变化。

3.2 PSCAD设计优点

基于以上简单说明我们可以了解到PSCAD是电力专业十分有用的仿真软件。我们组的课题系统节点较多,传统的手工计算显然不切实际。于是要寻找一种简单科学的计算方法来替代传统的手工计算,从而提高计算效率。因此利用PSCAD仿真运行出结果就成了本次课程设计最为关键的一个环节。利用PSCAD对IEEE14节点系统进行的仿真可以快速准确得出各母线上的潮流分布及系统的其他运行状态输出显示快速、明了。

4系统调试与仿真 4.1仿真调试

图4.1仿真图 输出显示如图4.2所示,点击最右边放大图标可以查看各节点参数分布情况。

图4.2输出端显示图

点击最左边任意正弦图标,对应显示相关输出,下面几张图分别为母线上2、4的有功功率分布(图4.3和图4.6),无功功率分布(图4.4和4.7),电压分布(图4.5和图4.6)。

图4.3 母线上2上有功功率分布

图4.4母线上2上无功功率分布

图4.5母线上2上电压分布

图4.6母线上4有功功率分布

图 4.7母线上4上无功功率分布

图4.8母线上4上电压分布

从上面几张图中可以看出有功和无功开始有些波动,最后趋于稳定,波形近似一条直线。

在仿真过程开始,我们遇到了一些问题,比如编译时提示有错误,我们通过错误提示找到问题所在,将信号标签和图对应好,同过更改信号标签,最后实现了仿真。而且我们在仿真过程中也应该注意元件要选用给定的参数。

总 结

在本次潮流计算的设计中,我收获很大,这次的学习让我更好的掌握了潮流计算的相关原理及计算步骤。通过本次的课题,我深深感受到了从前学习的知识还相当浅显,课堂上我们学习的潮流计算只是非常简单的原理和公式。由于我们是初次接触到课程设计要使用的专业软件PSCAD,而且这个软件的相关教程基本都是英文的,所以仿真对于我们来说还是很有难度的。因此为了完成此次课程设计,我把教材相关章节又看了几遍,在图书馆和网上查阅了相关文献资料,并和我们组的同学进行了讨论。通过这次课程设计,我们看到了实践与理论的差距,更让我们体会到了理论与实践相结合的重要性,使我得到了一次用专业知识、专业技能分析和解决问题全面系统的锻炼。使我在潮流计算技巧的掌握方面都能向前迈了一大步。最后感谢老师对我们的辛勤指导。

参考文献

[1]西安交通大学等.电力系统计算[M].北京:水利电力出版社,1993.12 [2]陈 衍.电力系统稳态分析[M].北京:水利电力出版社,2004.1 [3]李光琦.电力系统暂态分析[M].北京: 水利电力出版社,2002.5 [4]何仰赞 温增银.电力系统分析[M].华中科技大学出版社2010.3

[5]于永源 杨绮雯.电力系统分析(第二版)[M].北京:中国电力出版社,2004.3

下载潮流计算毕业论文word格式文档
下载潮流计算毕业论文.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    潮流计算作业A4范文

    电力系统潮流计算综述 学院:电气工程学院 专业:电力系统及其自动化 学号:s*** 姓名:张雪 摘 要 电力系统潮流计算是电力系统分析中最基本的一项计算。本文对电力系统潮......

    电力系统潮流计算发展史

    电力系统潮流计算发展史 对潮流计算的要求可以归纳为下面几点: (1)算法的可靠性或收敛性 (2)计算速度和内存占用量 (3)计算的方便性和灵活性 电力系统潮流计算属于稳态分析范畴,不......

    潮流计算项目计划书

    潮流计算项目计划书1项目目标远期目标:完成潮流计算商业软件开发,拥有软件完全知识产权。近期目标:完成基于IEEE30的潮流计算软件demo开发2 demo软件开发功能设计内容在已有例......

    电力系统潮流计算[大全五篇]

    自测题(二)---- 电力系统潮流计算与调控 一、 单项选择题(下面每个小题的四个选项中,只有一个是正确的,请你在答题区填入正确答案的序号,每小题2分,共50分)1、架空输电线路全换位的......

    用matlab电力系统潮流计算

    题目:潮流计算与matlab 教学单位 电气信息学院 姓 名 学 号年 级 专 业 电气工程及其自动化指导教师 职 称 副教授 摘 要 电力系统稳态分析包括潮流计算和静态安全分......

    电力系统分析潮流计算例题

    3.1 电网结构如图3—11所示,其额定电压为10KV。已知各节点的负荷功率及参数:S2(0.3j0.2)MVA,S3(0.5j0.3)MVA,S4(0.2j0.15)MVA Z12(1.2j2.4),Z23(1.0j2.0),Z24(1.5j3.0) 试求电压和......

    BPA潮流计算实验指导书

    PSD-BPA电力系统分析程序 实验1——潮流计算 一、实验目的 1.了解并掌握电力系统计算机算法的相关原理。 2.了解和掌握PSD-BPA电力系统分析程序稳态分析方法(即潮流计算)。 3.了......

    电力系统仿真MATPOWER潮流计算

    IEEE30节点潮流计算 宁夏大学新华学院 马智 潮流计算,指在给定电力系统网络拓扑、元件参数和发电、负荷参量条件下,计算有功功率、无功功率及电压在电力网中的分布。潮流计算......