电力系统潮流计算[大全五篇]

时间:2019-05-15 11:25:43下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《电力系统潮流计算》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《电力系统潮流计算》。

第一篇:电力系统潮流计算

自测题

(二)----电力系统潮流计算与调控

一、单项选择题(下面每个小题的四个选项中,只有一个是正确的,请你在答题区填入正确答案的序号,每小题2分,共50分)

1、架空输电线路全换位的目的是()。

A、使三相线路的电阻参数相等;

B、使三相线路的电抗和电纳参数相等;

C、减小线路电抗;

D、减小线路电阻。

2、输电线路采用 等值电路,而不采用 型等值电路的目的原因是()。

A、等值电路比 型等值电路更精确;

B、采用 等值电路可以减少电力系统等值电路的节点总数;

C、采用 等值电路可以增加电力系统的节点总数;

D、电力系统运行方式改变时,采用 等值电路更方便节点导纳矩阵的修改。

3、架空输电线路的电抗与导线之间几何平均距离的关系为()。

A、几何平均距离越大,电抗越大;

B、几何平均距离越大,电抗越小;

C、输电线路的电抗与几何平均距离无关;

D、改变导线之间的几何平均距离可以明显改变线路的电抗。

4、架空输电线路的电纳和导线之间几何平均距离的关系为()。

A、几何平均距离越大,电纳越大;

B、几何平均距离越大,电纳越小;

C、输电线路的电纳与几何平均距离无关;

D、改变导线之间的几何平均距离可以明显改变线路的电纳。

5、在输电线路参数中属于耗能参数的是()。

A、电抗、电阻; B、电纳、电阻; C、电导、电抗; D、电阻、电导。

6、架空输电线路采用分裂导线的目的是()。

A、减小线路电抗; B、增大线路电纳;

C、减小线路电阻; D、改善输电线路的电晕条件。

7,关于中等长度线路下述说法中错误的是()

A、长度为100km~300km的架空输电线路属于中等长度线路;

B、潮流计算中中等长度线路采用集中参数 型等值电路作为数学模型;

C、潮流计算中中等长度线路可以忽略电导和电纳的影响;

D、潮流计算中中等长度线路可以不考虑分布参数的影响。

8、电力系统潮流计算中变压器采用 型等值电路,而不采用T型等值电路的原因是()。

A、采用 型等值电路比采用T型等值电路精确;

B、采用 型等值电路在变压器变比改变时,便于电力系统节点导纳矩阵的修改; C、采用采用 型等值电路可以减少电力系统的节点总数;

D、采用采用 型等值电路可以增加电力系统的节点总数。

9、对于自耦变压器,等值电路中各绕组的电阻,下述说法中正确的是()。

A、等值电路中各绕组的电阻,是各绕组实际电阻按照变压器变比归算到同一电压等级的电阻值;

B、等值电路中各绕组的电阻就是各绕组的实际电阻;

C、等值电路中各绕组的电阻是各绕组的等效电阻归算到同一电压等级的电阻值;

D、等值电路中各绕组的电阻一定为正值,因为绕组总有电阻存在。

10、电力系统稳态分析时,用电设备的数学模型通常采用()。

A、恒功率模型; B、恒电压模型; C、恒电流模型; D、恒阻抗模型。

11、电力系统等值电路中,所有参数应为归算到同一电压等级(基本级)的参数,关于基本级的选择,下述说法中正确的是()。

A、必须选择最高电压等级作为基本级;

B、在没有明确要求的情况下,选择最高电压等级作为基本级;

C、在没有明确要求的情况下选择最低电压等级作为基本级;

D、选择发电机电压等级作为基本级。

12、采用标幺制计算时,只需要选择两个电气量的基准值,其它电气量的基准值可以根据它们之间的关系导出,通常的选择方法是()。

A、选择功率和电压基准值; B、选择功率和电流基准值;

C、选择功率和阻抗基准值; D、选择电压和阻抗基准值。

13、关于电力系统等值电路参数计算时,变压器变比的选择,下述说法中正确的是()。

A、精确计算时采用实际变比,近似计算时采用平均额定变比;

B、近似计算时,采用实际变比;精确计算时采用平均额定变比

C、不管是精确计算还是近似计算均应采用额定变比;

D、不管是精确计算还是近似计算均应采用平均额定变比。

14、对于输电线路,当P2R+Q2X<0时,首端电压与末端电压之间的关系是()

A、末端电压低于首端电压

B、末端电压高于首端电压;

C、末端电压等于首端电压;

D、不能确定首末端电压之间的关系。

15、两台容量相同、短路电压相等的升压变压器 和变压器 并联运行时,如果变比 > ,则有()。

A、变压器 的功率大于变压器 的功率;

B、变压器 的功率小于变压器 的功率;

C、变压器 和变压器 的功率相等;

D、不能确定,还需其他条件。

16、如果高压输电线路首、末端电压之间的关系为U1

δ2,在忽略线路电阻影响的情况下,下述说法中正确的是()。

A、有功功率从首端流向末端、无功功率从末端流向首端;

B、有功功率和无功功率都是从首端流向末端;

C、无功功率从首端流向末端、有功功率从首端流向末端。

D、有功功率和无功功率都从末端流向首端。

17、在下图所示的简单网络中,变压器T中()。

A、有功率通过; B、无功率通过; C、不能确定; D、仅有有功功率通过。

18、图示环网中变压器的变比均为实际变比,对于环网中的循环功率,正确的说法是()

A、无循环功率; B、有逆时针方向的循环功率;

C、有顺时针方向的循环功率。D、有循环功率,但方向无法确定。

19、环形网络中自然功率的分布规律是()

A.与支路电阻成反比 B.与支路电导成反比

C.与支路阻抗成反比 D.与支路电纳成反比

20、在不计网络功率损耗的情况下,下图所示网络各段电路中()。

A、仅有有功功率; B、仅有无功功率;

C、既有有功功率,又有无功功率; D、不能确定有无无功功率。

21、在多电压等级电磁环网中,改变变压器的变比()

A、主要改变无功功率分布; B、主要改变有功功率分布;

C、改变有功功率分布和无功功率分布; D、功率分布不变。

22、对于下图所示的放射性网络,下述说法中正确的是()。

A、网络的潮流分布可以调控; B、网络的潮流分布不可以调控;

C、网络的潮流分布由线路长度决定; D、网络的潮流分布由线路阻抗确定。

23、电力系统潮流计算采用的数学模型是()。

A、节点电压方程; B、回路电流方程;

C、割集方程; D、支路电流方程。

24、电力系统潮流计算时,平衡节点的待求量是()。

A、节点电压大小和节点电压相角;

B、节点电压大小和发电机无功功率;

C、发电机有功功率和无功功率;

D、节点电压相角和发电机无功功率。

25、装有无功补偿装置,运行中可以维持电压恒定的变电所母线属于()。

A、PQ节点;

B、PV节点;

C、平衡结点;

D、不能确定。

二、判断题(下述说法中,对于你认为正确的请选择“Y”,错误的选择“N”,每小题2分,共50分)

1、同步发电机降低功率因数运行时,其运行极限由额定励磁电流确定。()

2、同步发电机进相运行时,其运行极限由发电机并列运行的稳定性和端部发热条件确定。()

3、电力系统稳态分析时,对于与无限大电力系统并列运行的定出力发电机,其数学模型为,约束条件为。()

4、架空输电线路三相导线之间的几何平均距离越大,其单位长度的电抗越大、电纳越小。()

5、采用分裂导线不仅可以减小架空输电线路的电抗,而且可以提高架空输电线路的电晕临界电压。()

6、分裂导线多采用2~4分裂,最多不超过6分裂。()

7、当三相架空输电线路导线平行排列时,三相线路的电抗不相等,其中间相的电抗最大。()

8、对于长线路需要考虑分布参数的影响。()

9、对于容量比不等于100/100/100的普通三绕组变压器,计算变压器参数时需要对铭牌给出的短路损耗进行归算,但铭牌给出的短路电压不需归算。()

10对于容量比不等于100/100/100的三绕组自耦变压器,计算变压器参数时不仅需要对铭牌给出的短路损耗进行归算,还需要对铭牌给出的短路电压进行归算。()

11、同一电压等级电力系统中,所有设备的额定电压都相同。()。

12、近似计算时,架空输电线路的电抗、电纳。()。

13、利用年负荷损耗率法和最大负荷损耗时间法求得的电网年电能损耗一定相等。()

14、高压电网中无功功率分点的电压最低。()

15、任何多电压等级环网中都存在循环功率。()

16、均一电网功率的经济分布与其功率的自然分布相同。()

17、在环形电力网中串联纵向串联加压器主要改变电网的有功功率分布。()

18、电力系统潮流调控的唯一目的是使电力网的有功功率损耗最小,以实现电力系统的经济运行。()。

19、如果两个节点之间无直接联系,则两个节点互导纳为零,两个节点的互阻抗也为零。()

20、电力系统节点导纳矩阵中,某行(或某列)非对角元素之和的绝对值一定小于主对角元素的绝对值。()

21、当变压器采用 形等值变压器模型时,改变变压器变比将引起系统节点导纳矩阵中所有元素的变化。()

22、未装设无功补偿装置的变电所母线为PQ节点。()

23、电力系统潮流计算中,必须设置,并且只设置一个平衡节点。()

24、高斯-塞德尔潮流计算法,由于收敛速度慢,在电力系统潮流计算中很少单独使用。()

25、PQ分解法是对牛顿-拉夫逊潮流计算法的改进,改进的依据之一是高压电网中,电压相角的变化主要影响电力系统的有功功率潮流分布,从而改变节点注入有功功率;电压大小的变化主要影响电力系统无功功率潮流的分布,从而改变节点注入无功功率。()。

第二篇:电力系统潮流计算

南 京 理 工 大 学

《电力系统稳态分析》

课程报告

姓名

XX

学 号: 5*** 自动化学院 电气工程

基于牛顿-拉夫逊法的潮流计算例题编程报学院(系): 专

业: 题

目: 任课教师 硕士导师 告

杨伟 XX

2015年6月10号

基于牛顿-拉夫逊法的潮流计算例题编程报告

摘要:电力系统潮流计算的目的在于:确定电力系统的运行方式、检查系统中各元件是否过压或者过载、为电力系统继电保护的整定提供依据、为电力系统的稳定计算提供初值、为电力系统规划和经济运行提供分析的基础。潮流计算的计算机算法包含高斯—赛德尔迭代法、牛顿-拉夫逊法和P—Q分解法等,其中牛拉法计算原理较简单、计算过程也不复杂,而且由于人们引入泰勒级数和非线性代数方程等在算法里从而进一步提高了算法的收敛性和计算速度。同时基于MATLAB的计算机算法以双精度类型进行数据的存储和运算, 数据精确度高,能进行潮流计算中的各种矩阵运算,使得传统潮流计算方法更加优化。

一 研究内容

通过一道例题来认真分析牛顿-拉夫逊法的原理和方法(采用极坐标形式的牛拉法),同时掌握潮流计算计算机算法的相关知识,能看懂并初步使用MATLAB软件进行编程,培养自己电力系统潮流计算机算法编程能力。

例题如下:用牛顿-拉夫逊法计算下图所示系统的潮流分布,其中系统中5为平衡节点,节点5电压保持U=1.05为定值,其他四个节点分别为PQ节点,给定的注入功率如图所示。计算精度要求各节点电压修正量不大于10-6。

二 牛顿-拉夫逊法潮流计算 1 基本原理

牛顿法是取近似解x(k)之后,在这个基础上,找到比x(k)更接近的方程的根,一步步地迭代,找到尽可能接近方程根的近似根。牛顿迭代法其最大优点是在方程f(x)=0的单根附近时误差将呈平方减少,而且该法还可以用来求方程的重根、复根。电力系统潮流计算,一般来说,各个母线所供负荷的功率是已知的,各个节点的电压是未知的(平衡节点外)可以根据网络结构形成节点导纳矩阵,然后由节点导纳矩阵列写功率方程,由于功率方程里功率是已知的,电压的幅值和相角是未知的,这样潮流计算的问题就转化为求解非线性方程组的问题了。为了便于用迭代法解方程组,需要将上述功率方程改写成功率平衡方程,并对功率平衡方程求偏导,得出对应的雅可比矩阵,给未知节点赋电压初值,将初值带入功率平衡方程,得到功率不平衡量,这样由功率不平衡量、雅可比矩阵、节点电压不平衡量(未知的)构成了误差方程,解误差方程,得到节点电压不平衡量,节点电压加上节点电压不平衡量构成节点电压新的初值,将新的初值带入原来的功率平衡方程,并重新形成雅可比矩阵,然后计算新的电压不平衡量,这样不断迭代,不断修正,一般迭代三到五次就能收敛。2 基本步骤和设计流程图

形成了雅克比矩阵并建立了修正方程式,运用牛顿-拉夫逊法计算潮流的核心问题已经解决,已有可能列出基本计算步骤并编制流程图。由课本总结基本步骤如下:

1)形成节点导纳矩阵Y;

2)设各节点电压的初值,如果是直角坐标的话设电压的实部e和虚部f;如果是极坐标的话则设电压的幅值U和相角a;

3)将各个节点电压的初值代入公式求修正方程中的不平衡量以及修正方程的系数矩阵的雅克比矩阵;

4)解修正方程式,求各节点电压的变化量,即修正量; 5)计算各个节点电压的新值,即修正后的值;

6)利用新值从第(3)步开始进入下一次迭代,直至达到精度退出循环; 7)计算平衡节点的功率和线路功率,输出最后计算结果; ① 公式推导

② 流程图

matlab编程代码

clear;

% 如图所示1,2,3,4为PQ节点,5为平衡节点

y=0;

% 输入原始数据,求节点导纳矩阵

y(1,2)=1/(0.07+0.21j);

y(4,5)=0;y(1,3)=1/(0.06+0.18j);

y(1,4)=1/(0.05+0.10j);

y(1,5)=1/(0.04+0.12j);

y(2,3)=1/(0.05+0.10j);

y(2,5)=1/(0.08+0.24j);

y(3,4)=1/(0.06+0.18j);

for i=1:5

for j=i:5

y(j,i)=y(i,j);

end

end

Y=0;

% 求节点导纳矩阵中互导纳

for i=1:5

for j=1:5

if i~=j

Y(i,j)=-y(i,j);

end

end

end

% 求节点导纳矩阵中自导纳

for i=1:5

Y(i,i)=sum(y(i,:));

end

Y

% Y为导纳矩阵

G=real(Y);

B=imag(Y);% 输入原始节点的给定注入功率

S(1)=0.3+0.3j;

S(2)=-0.5-0.15j;

S(3)=-0.6-0.25j;

S(4)=-0.7-0.2j;

S(5)=0;

P=real(S);

Q=imag(S);

% 赋初值,U为节点电压的幅值,a为节点电压的相位角

U=ones(1,5);

U(5)=1.05;

a=zeros(1,5);

x1=ones(8,1);

x2=ones(8,1);

k=0;

while max(x2)>1e-6

for i=1:4

for j=1:4

H(i,j)=0;

N(i,j)=0;

M(i,j)=0;

L(i,j)=0;

oP(i)=0;

oQ(i)=0;

end

end

% 求有功、无功功率不平衡量

for i=1:4

for j=1:5

oP(i)=oP(i)-U(i)*U(j)*(G(i,j)*cos(a(i)-a(j))+B(i,j)*sin(a(i)-a(j)));

oQ(i)=oQ(i)-U(i)*U(j)*(G(i,j)*sin(a(i)-a(j))-B(i,j)*cos(a(i)-a(j)));

end

oP(i)=oP(i)+P(i);

oQ(i)=oQ(i)+Q(i);

end

x2=[oP,oQ]';

% x2为不平衡量列向量

% 求雅克比矩阵

% 当i~=j时,求H,N,M,L

for i=1:4

for j=1:4

if i~=j

H(i,j)=-U(i)*U(j)*(G(i,j)*sin(a(i)-a(j))-B(i,j)*cos(a(i)-a(j)));

N(i,j)=-U(i)*U(j)*(G(i,j)*cos(a(i)-a(j))+B(i,j)*sin(a(i)-a(j)));

L(i,j)=H(i,j);

M(i,j)=-N(i,j);

end

end

end

% 当i=j时,求H,N,M,L

for i=1:4

for j=1:5

if i~=j H(i,i)=H(i,i)+U(i)*U(j)*(G(i,j)*sin(a(i)-a(j))-B(i,j)*cos(a(i)-a(j)));N(i,i)=N(i,i)-U(i)*U(j)*(G(i,j)*cos(a(i)-a(j))+B(i,j)*sin(a(i)-a(j)));

M(i,i)=M(i,i)-U(i)*U(j)*(G(i,j)*cos(a(i)-a(j))+B(i,j)*sin(a(i)-a(j)));

L(i,i)=L(i,i)-U(i)*U(j)*(G(i,j)*sin(a(i)-a(j))-B(i,j)*cos(a(i)-a(j)))

end

end

N(i,i)=N(i,i)-2*(U(i))^2*G(i,i);

L(i,i)=L(i,i)+2*(U(i))^2*B(i,i);

end

J=[H,N;M,L]

% J为雅克比矩阵

x1=-((inv(J))*x2);

% x1为所求△x的列向量

% 求节点电压新值,准备下一次迭代

for i=1:4

oa(i)=x1(i);

oU(i)=x1(i+4)*U(i);

end

for i=1:4

a(i)=a(i)+oa(i);

U(i)=U(i)+oU(i);

end

k=k+1;

end

k,U,a

% 求节点注入功率

i=5;

for j=1:5

P(i)=U(i)*U(j)*(G(i,j)*cos(a(i)-a(j))+B(i,j)*sin(a(i)-a(j)))+P(i);

Q(i)=U(i)*U(j)*(G(i,j)*sin(a(i)-a(j))-B(i,j)*cos(a(i)-a(j)))+Q(i);

end

S(5)=P(5)+Q(5)*sqrt(-1);

S

% 求节点注入电流

I=Y*U'

运行结果

节点导纳矩阵

经过五次迭代后的雅克比矩阵

迭代次数以及节点电压的幅值和相角(弧度数)

节点注入功率和电流

五 结果分析

在这次学习和实际操作过程里:首先,对电力系统分析中潮流计算的部分特别是潮流计算的计算机算法中的牛顿-拉夫逊法进行深入的研读,弄明白了其原理、计算过程、公式推导以及设计流程。牛顿-拉夫逊法是求解非线性方程的迭代过程,其计算公式为FJX,式中J为所求函数的雅可比矩阵;X为需要求的修正值;F为不平衡的列向量。利用x(*)=x(k+1)+X(k+1)进行多次迭代,通过迭代判据得到所需要的精度值即准确值x(*)。六 结论

通过这个任务,自己在matlab编程,潮流计算,word文档的编辑功能等方面均有提高,但也暴漏出一些问题:理论知识储备不足,对matlab的性能和特点还不能有一个全面的把握,对word软件也不是很熟练,相信通过以后的学习能弥补这些不足,达到一个新的层次。

第三篇:电力系统潮流计算发展史

电力系统潮流计算发展史

对潮流计算的要求可以归纳为下面几点:

(1)算法的可靠性或收敛性(2)计算速度和内存占用量(3)计算的方便性和灵活性

电力系统潮流计算属于稳态分析范畴,不涉及系统元件的动态特性和过渡过程。因此其数学模型不包含微分方程,是一组高阶非线性方程。非线性代数方程组的解法离不开迭代,因此,潮流计算方法首先要求它是能可靠的收敛,并给出正确答案。随着电力系统规模的不断扩大,潮流问题的方程式阶数越来越高,目前已达到几千阶甚至上万阶,对这样规模的方程式并不是采用任何数学方法都能保证给出正确答案的。这种情况促使电力系统的研究人员不断寻求新的更可靠的计算方法。

在用数字计算机求解电力系统潮流问题的开始阶段,人们普遍采用以节点导纳矩阵为基础的高斯-赛德尔迭代法(一下简称导纳法)。这个方法的原理比较简单,要求的数字计算机的内存量也比较小,适应当时的电子数字计算机制作水平和电力系统理论水平,于是电力系统计算人员转向以阻抗矩阵为主的逐次代入法(以下简称阻抗法)。

20世纪60年代初,数字计算机已经发展到第二代,计算机的内存和计算速度发生了很大的飞跃,从而为阻抗法的采用创造了条件。阻抗矩阵是满矩阵,阻抗法要求计算机储存表征系统接线和参数的阻抗矩阵。这就需要较大的内存量。而且阻抗法每迭代一次都要求顺次取阻抗矩阵中的每一个元素进行计算,因此,每次迭代的计算量很大。

阻抗法改善了电力系统潮流计算问题的收敛性,解决了导纳法无法解决的一些系统的潮流计算,在当时获得了广泛的应用,曾为我国电力系统设计、运行和研究作出了很大的贡献。但是,阻抗法的主要缺点就是占用计算机的内存很大,每次迭代的计算量很大。当系统不断扩大时,这些缺点就更加突出。为了克服阻抗法在内存和速度方面的缺点,后来发展了以阻抗矩阵为基础的分块阻抗法。这个方法把一个大系统分割为几个小的地区系统,在计算机内只需存储各个地区系统的阻抗矩阵及它们之间的联络线的阻抗,这样不仅大幅度的节省了内存容量,同时也提高了节省速度。

克服阻抗法缺点的另一途径是采用牛顿-拉夫逊法(以下简称牛顿法)。牛顿法是数学中求解非线性方程式的典型方法,有较好的收敛性。解决电力系统潮流计算问题是以导纳矩阵为基础的,因此,只要在迭代过程中尽可能保持方程式系数矩阵的稀疏性,就可以大大提高牛顿潮流程序的计算效率。自从20世纪60年代中期采用了最佳顺序消去法以后,牛顿法在收敛性、内存要求、计算速度方面都超过了阻抗法,成为直到目前仍被广泛采用的方法。

在牛顿法的基础上,根据电力系统的特点,抓住主要矛盾,对纯数学的牛顿法进行了改造,得到了P-Q分解法。P-Q分解法在计算速度方面有显著的提高,迅速得到了推广。

牛顿法的特点是将非线性方程线性化。20世纪70年代后期,有人提出采用更精确的模型,即将泰勒级数的高阶项也包括进来,希望以此提高算法的性能,这便产生了保留非线性的潮流算法。另外,为了解决病态潮流计算,出现了将潮流计算表示为一个无约束非线性规划问题的模型,即非线性规划潮流算法。

近20多年来,潮流算法的研究仍然非常活跃,但是大多数研究都是围绕改进牛顿法和P-Q分解法进行的。此外,随着人工智能理论的发展,遗传算法、人工神经网络、模糊算法也逐渐被引入潮流计算。但是,到目前为止这些新的模型和算法还不能取代牛顿法和P-Q分解法的地位。由于电力系统规模的不断扩大,对计算速度的要求不断提高,计算机的并行计算技术也将在潮流计算中得到广泛的应用,成为重要的研究领域。

第四篇:电力系统潮流计算程序设计

电力系统潮流计算程序设计

姓名:韦应顺

学号:2011021052 电力工程学院

牛顿—拉夫逊潮流计算方法具有能够将非线性方程线性化的特点,而使用MATLAB语言是由于MATLAB语言的数学逻辑强,易编译。

【】【】1.MATLAB程序12

Function tisco %这是一个电力系统潮流计算的程序 n=input(‘n请输入节点数:n=’); m=input(‘请输入支路数:m=’);ph=input(‘n请输入平衡母线的节点号:ph=’); B1=input(‘n请输入支路信号:B1=’);%它以矩阵形式存贮支路的情况,每行存贮一条支路 %第一列存贮支路的一个端点 %第二列存贮支路的另一个端点 %第三列存贮支路阻抗

%第四列存贮支路的对地导纳

%第五列存贮变压器的变比,注意支路为1 %第六列存贮支路的序号

B2=input(‘n请输入节点信息:B2=’); %第一列为电源侧的功率 %第二列为负荷侧的功率 %第三列为该点的电压值

%第四列为该点的类型:1为PQ,2为PV节点,3为平衡节点 A=input(‘n请输入节点号及对地阻抗:A=’); ip=input(‘n请输入修正值:ip=’); %ip为修正值);Y=zeros(n);

Y(p,q)=Y(p,q)-1./(B1(i3)*B1(i5);e=zeros(1,n);

Y(p,q)=Y(p,q);f=zeros(1,n);

no=2*ph=1; Y(q,q)=Y(q,q)+1./B1(i3)+B1(i4)/2;

End for i=1:n

G=real(Y);if A(i2)=0

B=imag(Y);p=A(i1);

Y(p p)=1./A(i2);for i=1:n End e(i)=real(B2(i3));End f(i)=imag(B2(i3));For i=1:m S(i)=B2(i1)-B2(i2);p=B1(i1);V(i)=B2(i3);p=B1(i2);end Y(p,p)=Y(p,p)+1./(B1(i3)*B1(i5)^2+B1(i4)./2P=real(S);Q=imag(S);[C,D,DF]=xxf(G,B,e,f,P,Q,n,B2,ph,V,no);J=jacci(Y,G,B,P,Q,e,f,V,C,D,B2,n,ph,no);[De,Di]=hxf(J,D,F,ph,n,no);t=0;while

max(abs(De))>ip&max(abs(Dfi)>ip

t=t+1;

e=e+De;

f=f+Df;

[C,D,DF]=xxf(G,B,e,f,P,Q,n,B2,ph,V,no);

J=jacci(Y,G,B,P,Q,e,f,V,C,D,B2,n,ph,no);

[De,Df]=hxf(J,Df,ph,n,no);end v=e+f*j;for i=1:n hh(i)=conj(Y(ph,i)*v(i));end S(ph)=sum(hh)*v(ph);B2(ph,1)=S(ph);V=abs(v);

jd=angle(v)*180/p;resulte1=[A(:,1),real(v),imag(v),V,jd,real(S’),imag(S’),real(B2(:1)),imag(B2(:1)),real(B2(:2)),imag(B2(:,2))];for i=1:m

a(i)=conj((v(B1(i1))/B1(i5)-v(B1(i2))/B1(i3));

b(i)=v(B1(i1))*a(i)-j*B1(i4)*v(B1(i))^2/2;

c(i)=-v(B1(i2))*a(i)-j*B1(i4)*v(B1(i2))^2/2;end result2=[B1(:,6),B1(:,1),B1(:,2),real(b’),imag(b’),real(c’),imag(c’), real(b’+c’),imag(b’+c’)];printcut(result1,S,b,c,result2);type resultm function [C,D,Df]=xxf(G,B,e,f,P,Q,n,B2,ph,V,no)%该子程序是用来求取Df for i=1:n

If

i=ph

C(i)=0;

D(i)=0;

For j=i:n

C(i)=C(i)+G(i,j)*e(j)-B(i,j)*f(j);D(i)=D(i)+G(i,j)*f(j)+B(i,j)*e(j);end

P1=C(i)*e(i)+D(i)*f(i);Q1=C(i)*f(i)-D(i)*e(i);V1=e(i)^2+f(i)^2;If

B2(i4)=2 p=2*i-1;

Df(p)=P(i)-P1;p=p+1;else p=2*i-1;

Df(p)=P(i)-P1;p=p+1;

Df(p)=Q(i)-Q1;end end end Df=Df’;If ph=n Df(no=[];end

function [De,Df]=hxf(J,Df,ph,n,no)%该子函数是为求取De Df DX=JDf;DX1=DX;

x1=length(DX1);if ph=n DX(no)=0;DX(no+1)=0;

For i=(no+2):(x1+2)DX(i)=DX1(i-2);End Else

DX=[DX1,0,0];End k=0;

[x,y]=size(DX);For i=1:2:x K=k+1;

Df(k)=DX(i);De(k)=DX(i+1);End End case 2 Function for j=1:n J=jacci(Y,G,B,PQ,e,f,V,C,D,B2,n,ph,no)X1=G(i,j)*f(i)-B(i,j)*e(i);

X2=G(i,j)*e(i)+B(i,j)*f(i);%该子程序是用来求取jacci矩阵

for i=1:n X3=0;switch B2(i4)X4=0;case 3 P=2*i-1;continue q=2*j-1;case 1 J(p,q)=X1;for j=1:n m=p+1;if

J=&J=ph J(m,q)=X3;X1=G(i)*f(i)-B(i,j)*e(i);q=q+1;X2=G(i,j)*e(i)+B(i,j)*f(i);J(p,q)=X2;X3=-X2;J(m,q)=X4;X4=X1;X1=D(i)+G(i,j)*f(i)-B(i,j)*e(i);p=2*i-1;X2=C(i)+G(i,j)*e(i)+B(i,j)*f(i);q=2*j-1;X3=0;J(p,q)=X1;X4=0;m=p+1;P=2*i-1;J(p,q)=X2;q=2*j-1;J(m,q)=X4;J(p,q)=X1;Else if j=&j=jph m=p+1;X1=D(i)+G(i,j)*f(i)-B(i,j)*e(i);J(m,q)=X3;X2=C(i)+G(i,j)*e(i)+B(i,j)*f(i);q=q+1;X3= C(i)+G(i,j)*e(i)-B(i,j)*f(i);J(p,q)=X2;X4= C(i)+G(i,j)*f(i)-B(i,j)*e(i);J(m,q)=X4;P=2*i-1;end q=2*j-1;end J(p,q)=X1;end m=p+1;end J(m,q)=X3;if ph=n q=q+1;J(no:)=[];J(p,q)=X2;J(no:)=[];J(m,q)=X4;J(:,no)=[];End J(:,no)=[];End

2实例验证 【例题】设有一系统网络结线见图1,各支路阻抗和各节点功率均已以标幺值标示于图1中,其中节点2连接的是发电厂,设节点1电压保持U1=1.06定值,试计算其中的潮流分布,请输入节点数:n=5 请输入支路数:m=7 请输入平衡母线的节点号:ph=l 请输入支路信息:

BI=[ l 2 0.02+0.06i O l 1;1 3 0.08+0.24i 0 1 2;2 3 0.06+0.18i 0 l 3: 2 4 0.06+0.18i O l 4: 2 5 0.04+0.12i 0 l 5: 3 4 0.01+0.03i 0 l 6: 4 5 0.08+0.24i O 1 7] 请输入节点信息:

B2=[ 0 0 1.06 3;0.2+0.20i 0 1 1;一O.45一O.15i 0 l l;一0.4-0.05i 0 l 1;一0.6—0.1i 0 1 l] 请输入节点号及对地阻抗: A=[l 0;2 0;3 0;4 0;5 O ] 请输入修正值:ip=0.000 0l

参考文献

[1]陈珩.电力系统稳定分析[M].北京:中国电力出版社,2002:139—187.

[2]郑阿奇.MATLAB实用教程[M].北京:电子工业出版社,2005:1-243.

[3] 束洪春,孙士云,等.云电送粤交商流混联系统全过 程动态电压研究[J】.中国电力,2008,4l(10):l-4. SHU Hong—ch吼,SUN Shi-yun,et a1.Research on fun prc'cess dyn锄ic Voltage stabil时of hybrid AC/DC poWer tmnsmission System舶m Yu衄an proVince to G啪gdong province【J】.Electric Power,2008,4l(10): l-4.

[4] 朱新立,汤涌,等.大电网安全分析的全过程动态仿 真技术[J】.电网技术,2008,32(22):23—28. SONG Xin—Ii,TANG Yof唱,et a1. Full dyn锄ic simulation for the stabilhy a眦lysis of large power system【J】.Power System融IlrIolo影,2008,32(22): 23.28.

[5]Roytelm锄I,Shallidehpour S M.A comprehcnsivc long teml dynaIIlic simulation for powcr system recoVery【J】. IEEE Transactions 0n Power Systems,1994,9(3). [6] 石雩梅,汪志宏,等.发电机励磁系统数学模型及参 数对电网动态稳定性分析结果影响的研究[J】.继电 器,2007,35(21):22-27.

SHI Xue.mei,WANG Zlli-hon舀et a1.Iksearch on the innuence of g锄e翰to璐baScd ∞de诅iled excitation system models柚d parameterS t0 power铲id dyn锄ic stabil时【J】.Relay,2007,35(2 1):22-27.

[7] 方思立,朱方.快速励磁系统对系统稳定的影响[J】.中 国电机工程学报,1986,6(1):20.28.

FANG Si.1i,ZHU Fang.The effbct of f弧t.respon∞

excitation system on the stability of power netwofk【J】. Proceedings ofthe CSEE,1986,6(1):20-28.

[8] 刘取.电力系统稳定性及发电机励磁控制[M】.北京: 中国电力出版社,2007.

LIU Qu.Power system S诅bility锄d generator excitation control【M】.BeUing:ChiIla Electric Powef Press,2007. [9] Dallachy J L,Anderson T.EXperience with rcplacing ro诅ting exciters wim static exciters【J】.1k InStitution of Electrical Engineers,1 996.

[10] 陈利芳,陈天禄.浅谈自并励励磁系统在大容量机组 中的应用【J】.继电器,2007,35(1):8l培4. CHEN Li-f抽岛CHEN Tian—lIL Application of 辩l仁exci组tion mode in large capacity髫memtor unit【J】. ReIay'2007,35(1):81-84.

[11] 方思立,刘增煌,孟庆和.大型汽轮发电机自并励励 磁系统的应用条件【J].中国电力,1994,27(12):61.63. FANG Si.Ii,LIU Zeng-hu锄g,MENG Qin争hc.m application conditions of large turbine generator self-excitation system【J】.Electric Powef,1994,27(12): 61.63.

[12]梁小冰,黄方能.利用EMTDC进行长持续时间过程 的仿真研究【J】.电网技术,2002,26(9):55.57. LIANG Xiao-bing,HUANG Fan争眦ng.How to cany out simulalion of long dul‘ation processes by use of EMTDC【J】.Power System 11echnology,2002,26(9): 55-57.

[13]王卉,陈楷,彭哲,等.数字仿真技术在电力系统中 的应用及常用的几种数字仿真工具【J】.继电器,2004,32(21):7l一75.

wANG Hui,CHEN Kai,PENG zhe,et a1.Application of digital simulation眦hniques棚d severaJ simulation tools in power system[J】.Relay,2004,32(21):71·75.

[14]IEEE Power Engmeering Socie哆.IEEE std 421.5.2005 IEEE玎ccOmmended practice for excitation system models for power system stabiI时studies【s】.

第五篇:电力系统仿真MATPOWER潮流计算

IEEE30节点潮流计算

宁夏大学新华学院 马智

潮流计算,指在给定电力系统网络拓扑、元件参数和发电、负荷参量条件下,计算有功功率、无功功率及电压在电力网中的分布。潮流计算是根据给定的电网结构、参数和发电机、负荷等元件的运行条件,确定电力系统各部分稳态运行状态参数的计算。通常给定的运行条件有系统中各电源和负荷点的功率、枢纽点电压、平衡点的电压和相位角。待求的运行状态参量包括电网各母线节点的电压幅值和相角,以及各支路的功率分布、网络的功率损耗等。它是基于配电网络特有的层次结构特性,论文提出了一种新颖的分层前推回代算法。该算法将网络支路按层次进行分类,并分层并行计算各层次的支路功率损耗和电压损耗,因而可大幅度提高配电网潮流的计算速度。论文在MATLAB环境下,利用其快速的复数矩阵运算功能,实现了文中所提的分层前推回代算法,并取得了非常明显的速度效益。另外,论文还讨论发现,当变压器支路阻抗过小时,利用Π型模型会产生数值巨大的对地导纳,由此会导致潮流不收敛。为此,论文根据理想变压器对功率和电压的变换原理,提出了一种有效的电压变换模型来处理变压器支路,从而改善了潮流算法的收敛特性。

关键词:电力系统;潮流分析;MATLAB

潮流计算的目的

电力系统的潮流计算最主要的目的是为了让电力系统能够安全稳定运行的同时做到经济运行。所以考留到经及调度、电网规划、电力系统可靠性分析。

具体表现在以下方面:

①在电网规划阶段,通过潮流计算,合理规划电源容量及接入点,合理规划网架,选择无功补偿方案,满足规划水平的大、小方式下潮流交换控制、调峰、调相、调压的要求。

②在编制年运行方式时,在预计负荷增长及新设备投运基础上,选择典型方式进行潮流计算,发现电网中薄弱环节,供调度员日常调度控制参考,并对规划、基建部门提出改进网架结构,加快基建进度的建议。

③正常检修及特殊运行方式下的潮流计算,用于日运行方式的编制,指导发电厂开机方式,有功、无功调整方案及负荷调整方案,满足线路、变压器热稳定要求及电压质量要求。

④预想事故、设备退出运行对静态安全的影响分析及作出预想的运行方式调整方案。

总结为在电力系统运行方式和规划方案的研究中,都需要进行潮流计算以比较运行方式或规划供电方案的可行性、可靠性和经济性。同时,为了实时监控电力系统的运行状态,也需要进行大量而快速的潮流计算。因此,潮流计算是电力系统中应用最广泛、最基本和最重要的一种电气运算。在系统规划设计和安排系统的运行方式时,采用离线潮流计算;在电力系统运行状态的实时监控中,则采用在线潮流计算。

MATLAB软件的应用

MATLAB Compiler是一种编译工具,它能够将M编写的函数文件生成函数库或者可执行文件COM组件等,以提供给其他高级语言如C++、C#等进行调用由此扩展MATLAB的应用范围,将MATLAB的开发效率与其他高级语言的运行结合起来,取长补短,丰富程序开发的手段。

目前电子计算机已广泛应用于电力系统的分析计算,潮流计算是其基本应用软件之一。现有很多潮流计算方法。对潮流计算方法有五方面的要求:(1)计算速度快(2)内存需要少(3)计算结果有良好的可靠性和可信性(4)适应性好,即能处理变压器变比调整、系统元件的不同描述和与其它程序配合的能力强(5)简单。

MATLAB是一种交互式、面向对象的程序设计语言,广泛应用于工业界与学术界,主要用于矩阵运算,同时在数值分析、自动控制模拟、数字信号处理、动态分析、绘图等方面也具有强大的功能。

MATLAB程序设计语言结构完整,且具有优良的移植性,它的基本数据元素

是不需要定义的数组。它可以高效率地解决工业计算问题,特别是关于矩阵和矢量的计算。MATLAB与C语言和FORTRAN语言相比更容易被掌握。通过M语言,可以用类似数学公式的方式来编写算法,大大降低了程序所需的难度并节省了时间,从而可把主要的精力集中在算法的构思而不是编程上。

另外,MATLAB提供了一种特殊的工具:工具箱(TOOLBOXES).这些工具箱主要包括:信号处理(SIGNAL PROCESSING)、控制系统(CONTROL SYSTEMS)、神经网络(NEURAL NETWORKS)、模糊逻辑(FUZZY LOGIC)、小波(WAVELETS)和模拟(SIMULATION)等等。不同领域、不同层次的用户通过相应工具的学习和应用,可以方便地进行计算、分析及设计工作。

MATLAB设计中,原始数据的填写格式是很关键的一个环节,它与程序使用的方便性和灵活性有着直接的关系。原始数据输入格式的设计,主要应从使用的角度出发,原则是简单明了,便于修改。

14611121416***25783***9202422302526

图1 IEEE-30节点系统接线图

总结及感想

通过这次的课程设计,我知道了潮流计算的基本步骤和方法,明白了潮流计算对于电力系统的重要性,准确的潮流计算对于工农业的生产有着十分重要的意义。这次实习忙碌但是充实,在其中我发现了自己的不足,自己知识的很多漏洞,和基础知识不扎实,课外知识知之甚少。看到了自己理论联系实际的能力还需提高,也知道了自己以后学习的方向和目的。这次课程设计对自己意义很大,自己从中获得很多东西。

下载电力系统潮流计算[大全五篇]word格式文档
下载电力系统潮流计算[大全五篇].doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    2第二章 电力系统潮流计算-2

    第二章 电力系统潮流计算 2.1 概 述 2.2 潮流计算问题的数学问题 2.3 潮流计算的牛顿法 2.4 潮流计算的P-Q分解法 2.5 静态安全分析及补偿法 2.5.1 静态安全分析概述 静态......

    实验二 电力系统潮流计算实验

    电力系统分析实验报告 学生姓名: 学 号: 专业班级: 实验类型:□ 验证 □ 综合 ■ 设计 □ 创新 实验日期: 2012-5-28 实验成绩: 一、实验目的: 本实验通过对电力系统潮流计算的计算......

    用matlab电力系统潮流计算

    题目:潮流计算与matlab 教学单位 电气信息学院 姓 名 学 号年 级 专 业 电气工程及其自动化指导教师 职 称 副教授 摘 要 电力系统稳态分析包括潮流计算和静态安全分......

    电力系统潮流计算程序[本站推荐]

    电力系统潮流计算c语言程序,两行,大家可以看看,仔细研究,然后在这个基础上修改。谢谢#include "stdafx.h" #include #include #include #include"Complex.h" #include"wanji......

    基于psasp的电力系统潮流计算

    基于psasp的电力系统潮流计算 摘要:电力系统潮流计算是研究电力系统稳态运行情况的一种计算,它根据给定的运行条件及系统接线情况确定整个电力系统各部分的运行状态。潮流计算......

    电力系统潮流计算问答题.(大全五篇)

    潮流计算数学模型与数值方法 1. 什么是潮流计算?潮流计算的主要作用有哪些? 潮流计算是根据给定的电网结构、参数和发电机、负荷等元件的运行条件,确定电力系统各部分稳态运行......

    基于MATLAB的电力系统潮流计算

    基于MATLAB的电力系统潮流计算 %简单潮流计算的小程序,相关的原始数据数据数据输入格式如下: %B1是支路参数矩阵,第一列和第二列是节点编号。节点编号由小到大编写 %对于含有变......

    电力系统潮流计算程序[推荐5篇]

    #include #include #include "Node.h" #include "Transmission_line.h" #include "Transformer.h" void main { coutPd>>Qd; coutUd; double data[300][8]; //分别......