第一篇:2009年全国大学生电子设计竞赛G题低频功率放大器题解分享
2009年全国大学生电子设计竞赛G题低频功率放大器题解分享 2009年全国大学生电子设计竞赛G题低频功率放大器题解分享
2009年全国大学生电子设计竞赛G题是一个设计功率放大器的题,主要考核学生模拟电子技术的基础技能,要求是一定要用场效应晶体管做末级放大,且电路增益要求很大,如5mV的输入要达到5W(8欧负载)的输出,算下来要1265倍,这么大倍数的放大器还要求噪声非常小,小到5mV,失真度1%,这题相对来说是比较难的。
此外,还要检测放大器的输出功率、电源供给功率以及效率,这部分稍微容易些,但是也
不是那么轻易就能解决的。
先说说实现方案吧。
功率放大器实现方法有几类,低频的有甲、乙、甲乙、丁等几种。
甲类效率很低,约20%左右,但是其失真度可以做的非常小,如0.1%,效率没做评分要点,只是适当考虑,所以可以采用;
乙类的只能有半周输出,失真度太大所以不能采用。
甲乙类是解决甲类的效率和乙类的失真度的综合途径,推荐采用;
丙类肯定不用了,那是高频功率放大器专用的类型,这里是低频的(10Hz~50KHz),所以
不能采用;
丁类的(就是所谓的D类)采用H桥的开关方式工作,输入的信号要进行PWM(PWM是脉冲宽度调制),H桥输出后是一个开关量,要经过LC滤波转变为模拟量,再传送给扬声器。这种方法效率极高,但是电路复杂,调试困难,且效率不做评分的主要依据,建议舍弃这
种方案。
经过综合权衡考虑,宜采用甲乙类比较合适。
再说下电路组成结构
该课题有三个主要部分构成,1:功率传输部分;2:电压放大部分(1265倍以上);3:
信号测量部分
功率传输部分没得选,课题已经规定了,一定得用场效应管,最好是P沟道和N沟道互补,这么大功率的场效应管要用V-MOS的,需要查场效应管资料来选型,尤其注意其源极电阻要小,这样才能发挥出优秀的转换效率,此外就是电压和电流的选型。电压为双12V,几乎所有的V-MOS管都能满足,电流要大于2A,内阻选8毫欧的便可。
电压放大器选择很重要,频带要求是50KHz,放大倍数是1265倍,则增益带宽积要大于
1265*50=63.25M,选100M以上的。
测量部分由MCU、AD转换器、显示单元组成,注意,要两路AD转换,一路负责对扬声器上的电压测量,另一路负责对电源电流的测量,显示器选择很多,LCD点阵、LCD字符、LED数码管等均可以。
TOP↑
继续
根据OCL电路的电压和功率和负载三者之间的数据关系(P=V2/8RL电压的平方除以8倍的负载电阻)计算得到
V=17.88V,这是理想状况,由于管子的UG与US之间有一定的压降(2-4V,两只为4-8V,比普通三极管的UBE要大得多),实际上电压需要更大一些,我们先选24V,即+12V和-12V。
电路如图,逐个元件分析。
N沟和P沟的V-MOS场效应管选择跨导、UGS、RD相同的对管,10K电位器用于调节跟踪两个UGS并略大些,以便消除交越失真,两个4148接在电位器上,4148一定要接近场效应管的散热片,以感受热量,实现温度负反馈,以便调节管子温度过高而导致的电流加大,这是利用反向饱和电流随温度变高而变大,UGG减小,导通能力变小,电流减小,温度降
低从而保护场效应管。
这里要隆重展现两个1000uF电容的功劳,这里起到自举的作用,随着正弦输入信号的上升,上面的电容上方电压有超过电源正电位的可能,随着正弦输入信号的下降,下面的电容下端的电压低于电源负电位的可能,这样,随着信号的增大,场效应管的输出有完全跟踪输入信号的幅度的可能,使得输出功率达到极致,电源利用效率大大提高。
电压放大部分比较简单,选择的原则是要满足增益带宽积为100MHz的要求,其次是开环增益要大,如10的9次方,如果兼顾考虑选择斩波稳零放大器,且温度漂移小的,则功率传输部分的输入电容可以改为直达的直接耦合方式,以进一步展宽频带。但这样的运放放大器很贵。
该运放还可以分两级来完成,前一级和后一级的AV的乘积为1265倍也可,这样一方面对放大器的增益带宽积的要求可以降低,另一方面对运算放大器的开环增益要求也可降低。但是这样做对输出噪声的要求不利,且级数多了容易发生自激现象。
综合考虑,采用一级100MHz增益带宽积、高增益的运放,交流耦合,这样对输出噪声参数的要求(0输入时5mV)有利,对失调电压、零点漂移的要求可以降低,只要输出电容的容量足够大,满足频带要求是不成问题的。
第二篇:2009年全国大学生电子设计竞赛G题低频功率放大器题解分享
2009年全国大学生电子设计竞赛G题低频功率放大器题解分享
2009年全国大学生电子设计竞赛G题是一个设计功率放大器的题,主要考核学生模拟电子技术的基础技能,要求是一定要用场效应晶体管做末级放大,且电路增益要求很大,如5mV的输入要达到5W(8欧负载)的输出,算下来要1265倍,这么大倍数的放大器还要求噪声非常小,小到5mV,失真度1%,这题相对来说是比较难的。
此外,还要检测放大器的输出功率、电源供给功率以及效率,这部分稍微容易些,但是也不是那么轻易就能解决的。
1、先说说实现方案吧。
功率放大器实现方法有几类,低频的有甲、乙、甲乙、丁等几种。
甲类效率很低,约20%左右,但是其失真度可以做的非常小,如0.1%,效率没做评分要点,只是适当考虑,所以可以采用;
乙类的只能有半周输出,失真度太大所以不能采用。
甲乙类是解决甲类的效率和乙类的失真度的综合途径,推荐采用;
丙类肯定不用了,那是高频功率放大器专用的类型,这里是低频的(10Hz~50KHz),所以不能采用;
丁类的(就是所谓的D类)采用H桥的开关方式工作,输入的信号要进行PWM(PWM是脉冲宽度调制),H桥输出后是一个开关量,要经过LC滤波转变为模拟量,再传送给扬声器。这种方法效率极高,但是电路复杂,调试困难,且效率不做评分的主要依据,建议舍弃这种方案。
经过综合权衡考虑,宜采用甲乙类比较合适。
2、再说下电路组成结构
该课题有三个主要部分构成:
1、功率传输部分;
2、电压放大部分(1265倍以上);
3、信号测量部分
功率传输部分:没得选,课题已经规定了,一定得用场效应管,最好是P沟道和N沟道互补,这么大功率的场效应管要用V-MOS的,需要查场效应管资料来选型,尤其注意其源极电阻要小,这样才能发挥出优秀的转换效率,此外就是电压和电流的选型。电压为双12V,几乎所有的V-MOS管都能满足,电流要大于2A,内阻选8毫欧的便可。
电压放大器:选择很重要,频带要求是50KHz,放大倍数是1265倍,则增益带宽积要大于1265*50=63.25M,选100M以上的。
测量部分:由MCU、AD转换器、显示单元组成,注意,要两路AD转换,一路负责对扬声器上的电压测量,另一路负责对电源电流的测量,显示器选择很多,LCD点阵、LCD字符、LED数码管等均可以。
继续
功率传输部分:
根据OCL电路的电压和功率和负载三者之间的数据关系(P=V2/8RL电压的平方除以8倍的负载电阻)计算得到
V=17.88V,这是理想状况,由于管子的UG与US之间有一定的压降(2-4V,两只为4-8V,比普通三极管的UBE要大得多),实际上电压需要更大一些,我们先选24V,即+12V和-12V。电路如图,逐个元件分析。
N沟和P沟的V-MOS场效应管选择跨导、UGS、RD相同的对管,10K电位器用于调节跟踪两个UGS并略大些,以便消除交越失真,两个4148接在电位器上,4148一定要接近场效应管的散热片,以感受热量,实现温度负反馈,以便调节管子温度过高而导致的电流加大,这是利用反向饱和电流随温度变高而变大,UGG减小,导通能力变小,电流减小,温度降低从而保护场效应管。
这里要隆重展现两个1000uF电容的功劳,这里起到自举的作用,随着正弦输入信号的上升,上面的电容上方电压有超过电源正电位的可能,随着正弦输入信号的下降,下面的电容下端的电压低于电源负电位的可能,这样,随着信号的增大,场效应管的输出有完全跟踪输入信号的幅度的可能,使得输出功率达到极致,电源利用效率大大提高。
电压放大器
电压放大部分比较简单,选择的原则是要满足增益带宽积为100MHz的要求,其次是开环增益要大,如10的9次方,如果兼顾考虑选择斩波稳零放大器,且温度漂移小的,则功率传输部分的输入电容可以改为直达的直接耦合方式,以进一步展宽频带。但这样的运放放大器很贵。
该运放还可以分两级来完成,前一级和后一级的AV的乘积为1265倍也可,这样一方面对放大器的增益带宽积的要求可以降低,另一方面对运算放大器的开环增益要求也可降低。但是这样做对输出噪声的要求不利,且级数多了容易发生自激现象。
综合考虑,采用一级100MHz增益带宽积、高增益的运放,交流耦合,这样对输出噪声参数的要求(0输入时5mV)有利,对失调电压、零点漂移的要求可以降低,只要输出电容的容量足够大,满足频带要求是不成问题的。
精密整流滤波电路.JPG(18.02 KB)
此题不易,某省测试没有一个理想的,省会元件中心卖的2元MOS管子质量不好。。双电源12伏很难出来..双电源12V不采取双自举当然无法获得5W,引入双自举后我的在交专家处测试为6.3W
如果我手头有增益带宽积为80-100M的,开环增益为10的8次方的运算放大器的话,我的就完美了,国家一等奖没问题
但是我只有10M的NE5534,通频带不够大,只有6KHz,所以只封样,没冲进国家奖,遗憾。
省测试结果:
失真度 0.2%(特强)功率 6.3W(特强)噪声 3mV 通频带 8Hz~6KHz(太差)效率 61% 50Hz陷波 = 接近60db(特强)
测量电路的测量结果:专家无异议,满足5%要求
电源电流检测电路
G题共享完毕
第三篇:2009年全国大学生电子设计竞赛 G题低频功率放大器 设计与题解
2009年全国大学生电子设计竞赛G题低频功率放大器题解分享
2009年全国大学生电子设计竞赛G题是一个设计功率放大器的题,主要考核学生模拟电子技术的基础技能,要求是一定要用场效应晶体管做末级放大,且电路增益要求很大,如5mV的输入要达到5W(8欧负载)的输出,算下来要1265倍,这么大倍数的放大器还要求噪声非常小,小到5mV,失真度1%,这题相对来说是比较难的。
此外,还要检测放大器的输出功率、电源供给功率以及效率,这部分稍微容易些,但是也不是那么轻易就能解决的。
先说说实现方案吧。
功率放大器实现方法有几类,低频的有甲、乙、甲乙、丁等几种。
甲类效率很低,约20%左右,但是其失真度可以做的非常小,如0.1%,效率没做评分要点,只是适当考虑,所以可以采用;
乙类的只能有半周输出,失真度太大所以不能采用。
甲乙类是解决甲类的效率和乙类的失真度的综合途径,推荐采用;
丙类肯定不用了,那是高频功率放大器专用的类型,这里是低频的(10Hz~50KHz),所以不能采用;
丁类的(就是所谓的D类)采用H桥的开关方式工作,输入的信号要进行PWM(PWM是脉冲宽度调制),H桥输出后是一个开关量,要经过LC滤波转变为模拟量,再传送给扬声器。这种方法效率极高,但是电路复杂,调试困难,且效率不做评分的主要依据,建议舍弃这种方案。
经过综合权衡考虑,宜采用甲乙类比较合适。
再说下电路组成结构
该课题有三个主要部分构成,1:功率传输部分;2:电压放大部分(1265倍以上);3:信号测量部分
功率传输部分没得选,课题已经规定了,一定得用场效应管,最好是P沟道和N沟道互补,这么大功率的场效应管要用V-MOS的,需要查场效应管资料来选型,尤其注意其源极电阻要小,这样才能发挥出优秀的转换效率,此外就是电压和电流的选型。电压为双12V,几乎所有的V-MOS管都能满足,电流要大于2A,内阻选8毫欧的便可。
电压放大器选择很重要,频带要求是50KHz,放大倍数是1265倍,则增益带宽积要大于1265*50=63.25M,选100M以上的。
测量部分由MCU、AD转换器、显示单元组成,注意,要两路AD转换,一路负责对扬声 器上的电压测量,另一路负责对电源电流的测量,显示器选择很多,LCD点阵、LCD字符、LED数码管等均可以。
根据OCL电路的电压和功率和负载三者之间的数据关系(P=V2/8RL电压的平方除以8倍的负载电阻)计算得到
V=17.88V,这是理想状况,由于管子的UG与US之间有一定的压降(2-4V,两只为4-8V,比普通三极管的UBE要大得多),实际上电压需要更大一些,我们先选24V,即+12V和-12V。电路如图,逐个元件分析。
N沟和P沟的V-MOS场效应管选择跨导、UGS、RD相同的对管,10K电位器用于调节跟踪两个UGS并略大些,以便消除交越失真,两个4148接在电位器上,4148一定要接近场效应管的散热片,以感受热量,实现温度负反馈,以便调节管子温度过高而导致的电流加大,这是利用反向饱和电流随温度变高而变大,UGG减小,导通能力变小,电流减小,温度降低从而保护场效应管。
这里要隆重展现两个1000uF电容的功劳,这里起到自举的作用,随着正弦输入信号的上升,上面的电容上方电压有超过电源正电位的可能,随着正弦输入信号的下降,下面的电容下端的电压低于电源负电位的可能,这样,随着信号的增大,场效应管的输出有完全跟踪输入信号的幅度的可能,使得输出功率达到极致,电源利用效率大大提高。
电压放大部分比较简单,选择的原则是要满足增益带宽积为100MHz的要求,其次是开环增益要大,如10的9次方,如果兼顾考虑选择斩波稳零放大器,且温度漂移小的,则功率传输部分的输入电容可以改为直达的直接耦合方式,以进一步展宽频带。但这样的运放放大器很贵。
该运放还可以分两级来完成,前一级和后一级的AV的乘积为1265倍也可,这样一方面对 放大器的增益带宽积的要求可以降低,另一方面对运算放大器的开环增益要求也可降低。但是这样做对输出噪声的要求不利,且级数多了容易发生自激现象。
综合考虑,采用一级100MHz增益带宽积、高增益的运放,交流耦合,这样对输出噪声参数的要求(0输入时5mV)有利,对失调电压、零点漂移的要求可以降低,只要输出电容的容量足够大,满足频带要求是不成问题的。
第四篇:2009全国大学生电子设计竞赛 ——《数字幅频均衡功率放大器》
2009全国大学生电子设计竞赛 题目F:
《数字幅频均衡功率放大器》
参赛学生:徐宋静 刘玉河 梁杰
指导教师: 赵正敏 杨定礼
学 校:淮阴工学院
院 系: 电子与电气工程学院
2009年9月5日
摘要:
本系统采用DSP作为主控制器,通过前置放大、滤波,经AD转换,对信号进行采样,把连续信号离散化,然后通过离散傅氏变换(DFT)运算,在时域和频域对音频信号各个频率分量以及功率等指标进行分析和处理,最后通过低频功放将信号放大,并通过计算机辅助设计软件MATLAB将处理后的参数送入DSP,同时将信息在液晶屏上显示出来。
关键词:DSP、数字均衡、低频功放、MATLAB 引言
随着数字信号处理(DSP)技术的发展,DSP技术已广泛应用于各个领域。借助于现代数字电子及数字信号处理技术,古老的音响技术也焕发出新的活力。本次大赛中我们选择了F题,围绕这一课题我们进行方案选择与论证、系统的软硬件设计与调试,基本实现了课目的各项指标也要求。并在此基础上,撰写了本报告的。
整个系统分为前置放大、信号滤波、数字均衡及功率放大几个部分,以下分别介绍。前置放大器的设计
2.1 前置放大的硬件设计和带阻网络
2.1.1 前置放大的硬件设计
可控增益宽带放大器由芯片AD603构成。AD603为单通道、低噪声、增益变化范围线性连续可调的可控增益放大器,AD603的带宽为90MHz时,其增益高达30dB.本课题中,我们选择两片AD603,构成如图.1所示的自动增益控制放大器。C1310VAD603输入电阻100欧C1710VR10R15R13110VC9J4U5U6128C113578R0103Q157R910VR74C141210VR114R011C18AGC时间常数电容CavQ21266J29C20R8C013+C12C15C16+12R12R16R14J35J512R17R18R1910V可编程放大器电路P14312
图.1可编程放大电路
2.1.2 带阻网络设计
本题中要求,所制作的带阻网络对前置放大电路所输出的信号v1进行滤波,根据题目要求,本次制作的带阻网络电路图如图.2所示。
图.2带阻网络
根据题目中所给的阻带网络结构,我们采用Multisim进行了辅助分析与设计,其幅频特性的分析结果如图.4所示。
图.3波特图
根据图.3可知,在以10kHz时输出信号v2电压幅度为基准,衰减大约为30db,达到了最大衰减10dB的要求。数字均衡方法比较与选择
在音响系统中,均衡器可以分别调节音频信号的各频率成分增益,从而可以补偿扬声器和声场的缺陷。均衡器可分为三类:图示均衡器,参量均衡器和房间均衡器。传统的均衡器仅将音频信号按高频、中频、低频三段频率进行调节。采用数字信号处理技术可以实现对音频信号的更精细的调节,这类均衡器称为数字均衡器。数字均衡器可以作成图示EQ、参量EQ或者两者兼有的EQ,不仅性能指标优异,操作方便,而且还可同时储存多种用途的频响均衡特性,以供不同节目要求选用。数字均衡可以做到10段参量均衡和29段图示均衡,结合其它功能,如噪声门功能等。
在本次设计中,我们给出了一个有参量EQ或者两者兼有的EQ。其设计过程 如下:
3.1 数字均衡器实现方案选择
方案一:采用ARM(嵌入式系统)实现数字均衡
基于精简指令集(RISC)的32位ARM微控制器具有一定的数字信号处理能力,可以用来实现简单的数字均衡器,但当均衡器的功能及性能要求较高时,ARM就不能胜任了。
方案二:采用基于DSP的数字信号处理系统
数字信号处理器具有强大的数字信号处理功能,能够胜任较为复杂的音频信号的各种处理功能,速度快,功耗低。但是DSP弱于事务管理。往往要结合其它处理器,实现友好的人机界面。
方案三:大规模可编程器件
利用大规模可编程器件实现的算法是以逻辑运算完成的最大优越性在于“高速”,实现算法的系统延时非常小,但价格较高。
综合以上各种因素,并考虑到我们的知识与能力,我们选择DSP实现音频信号的数字均衡,并以DSP实现简单的人机界面。
3.2 数字均衡算法选择
3.2.1 软件理论实现方案有三种,如下: 方案一:带通滤波器
根据数字均衡基本原理,我们可以采用一组中心频率和带宽符合一定要求、增益可调的带通滤波器(band-pass filter)实现均衡,并采用MATLAB等计算机辅助分析与设计工具,选择设计理想的滤波器,生成滤波函数的时域冲激响应系数,最后在DSP中以时域卷积的形式实现滤波与均衡。
方案二:傅立叶变换
傅立叶变换是将信号从时域变换到频域的一种变换形式,是信号处理领域中的一种重要的分析工具。离散傅立叶变换(DFT)是连续傅立叶变换在离散系统中的表现形式。在信号的频谱分析、系统分析、设计和实现中都会用到DFT的计算。快速傅立叶变换(FFT)算法,这是一种快速计算的DFT,可以明显降低运算量,大大地提高了DFT的运算速度。
综上所述,由于水平有限,我们在软件理论中采用了带通滤波器的方式。3.2.2用Matlab实现带通滤波器
Matlab的信号处理工具箱提供了支持实现FIR滤波器和IIR滤波器设计方法的函数,以下是通过Matlab所画出的滤波图。低频功放的硬件设计
由于甲类功率放大器的效率小于50%,所以不符合题目中≥60%的要求。B类功率放大器虽然效率较高,但是其交越较大,所以也不符合要求。AB类功放存在着交越失真,也不符合,所以选择D类功率放大器。D类功放具有效率高、体积小、输出功率大等优点。
对于D类功放有三种方案
4.1 采用专用的D类功放器件
此类D 类功放主要由脉冲宽度调制器、开关放大器和低通滤波器等三部分组成,由三角波发生器、比较器和音频输入信号构成脉宽调制器(PWM);两只输出场效应管组成开关放大器;LF 和 CF 构成低通滤波器,用以恢复音频信号。驱动级用来驱动开关放大器,使放大器输出信号为在VDD和VDD 间切换的高频方波。
图.4经典D 类功放结构示意图
4.2 基于DSP或ARM的D类功率放大器件
首先对输入的音频PCM信号进行采样, 然后进入DSP 处理系统进行数字变换和滤波, 包括差值运算器, 数字低通滤波器和Σ-△调制器。然后用已经获得的二进制序列法去控制MOS管的通断, 并通过模拟的0~24K 的低通滤波器传输到模拟输出。
此方案是利用DSP 芯片的高速计算能力, 实现了数字功率放大器的功能及数字处理本身的特性, 整个放大过程的精度、信噪比和延时都可以通过对算法的修改来实现,。比PWM技术具有更大的灵活性, 且能实现较好的还原效果。
4.3 采用可编程器件实现D类功率放大器 在全数字音频功率放大器的设计中,采用了CPLD来实现将PCM数字语音数据转换成PWM信号,并在D类放大器的实现上采用了改进的PWM方案,实现了D类放大器具有效率高、滤波器设计简化等特点。
信号经过AD转换器进入DSP器件,再经过由CPLD构成的脉冲宽度调制器,产生的信号用来驱动级由MOS管构成的开关放大器,经滤波之后将信号反馈到输入端,与输入值作比较来减少输出波形的失真度。如图.5所示。
本次设计中,我们采用由高速模拟比较器、波形发生成及
PID环节构的控
制器。硬件系统的设计
5.1 DSP的硬件设计
本开发板配有8位数码管显示、16个按键的控制电路、外接21引脚液晶显示、2个138译码器、AD与DA转换器和丰富的外部扩展接口。具体功能和应用介绍如下。
5.1.1 DSP芯片介绍
此次竞赛采用TMS320C5416芯片,这个芯片的特点有:1采用哈佛结构,能同时对程序存储器、数据存储器进行操作;2采用多种线结构,可同时进行取指令和多个数据存取操作;3采用流水线操作;4配有专用的硬件乘法—累加器,可在一个周期内完成一次乘法和一次累加操作;5具有的特殊DSP指令;6快速的指令周期;7硬件配置强;支持多处理结构;省电管理和低功耗。
5.1.2 按键电路
本实验板有16个小按键,按键读写控制由138译码器(U10)的11、12脚结合两块SN74HC573芯片控制,以识别按键操作。138再由DSP的A12到A15端口(高四位地址)控制按键的选通。按键电路可以用于控制数码管显示、液晶显示等等,这主要由编程控制
5.1.3 液晶电路
实验板上提供外接21脚液晶,我们采用外接型号为ATM240128的液晶显示屏。
液晶显示内容由DSP的D0到D7端口外接10千欧电阻提供数据。液晶的现实控制由138译码器控制LCD使能端口、DSP_R/W控制WR和RD端口、DSP_A0、A1分别控制LED背景光源负极和数据命令选择端。
5.1.4 AD / DA转换器
实验板AD转换器由贴片芯片TLV1571组成,DA转换器由贴片芯片TLV5619组成。TLV1571 是TI 公司专门为DSP 配套制作的一种10 位并行A/D 转换器,具有速度高、接口简单、功耗低的特点,外围电路中通过A/D 转换器把模拟信号转换为数字信号,再由DSP 实时地对大量数据进行数字技术处理。TLV5619是美国德州仪器公司推出的高速低功耗DAC器件, 它是带有12位并行数字输入的电压输出型DAC。该器件与TMS320系列器件的并行接口兼容, 采用2.7~5.5 V单电压供电。当使用LDAC管脚时, 它可以异步更新缓冲区的数据。当设置为低功率时, 其功耗仅为50 nW。软件设计
6.1软件流程图如图.10所示。
开始初步确定中心频率用matlab仿真进行辅助设计满足技术指标?YN参数处理导入CCS,进行仿真N满足技术指标?Y下载运行结束
图.10 软件流程图 系统测试
系统测试过程中,首先通过MATLAB仿真,按照竞赛要求设计20hz-20khz的衰减小于1.5分贝,得到滤波系数h(n),然后通过ccs进行数字信号处理。首先通过A/D转换,将模拟信号转换成数字信号,然后将输入的信号与h(n)进行卷积,得到滤波的信号,本设计考虑到实行性,及稳定性采用40阶的FIR滤波器。在调试的过程中,遇到的问题很多,如实时性,首先用80阶的FIR,不能完成实时性,后来,通过调试改为40阶FIR滤波器。D类功放的测试分控制电路部分、功率主回路部分及系统总体测试。首先完成了,D类功放主回路的调试与测试,这部分调试通过后,再调试控制回路,完成了其中的高速PWM发生器,PID环节。8 设计总结
我们花了两个多月的时间来准备电子设计大赛,从9月2日起,比赛正式开始,到今日为止,整整四天三夜。在这些天的奋斗过程中,大家互相合作,互补不足。俗话说:“三个臭皮匠,顶个诸葛亮。”在这四天三夜里,我们集聚了个人的所长,及时的完成了我们选的题目。在这次的次赛中,我们对电子制作有了更加浓厚的兴趣,对数字信号处理、数字均衡、DSP及相关期间有了更进一步的了解,我们再完成任务的同时,也锻炼了我们吃苦耐劳的能力。但,由于初次参加此类比赛,对有些芯片还不是很了解,导致在比赛过程中,在芯片选择上,花费了大量的时间。这说明我们的准备工作做的还不是非常到位。
参考文献
[1]黄智伟.《 全国大学生电子设计竞赛系统设计》.北京航空航天大学出版社.2006年; [2]邹彦.《DSP原理及应用》.电子工业出版社
[3]曾宝国;曾妍.《D 类功率放大器的原理及应用》.四川信息职业技术学院
[4]符晓玲;姜 波.《基于DSP 的数字音频功率放大器的设计》.新疆大学电气工程学院
第五篇:全国大学生电子设计竞赛
全国大学生电子设计竞赛
全国大学生电子设计竞赛是教育部倡导的大学生学科竞赛之一,是面向大学生的群众性科技活动,目的在于推动高等学校促进信息与电子类学科课程体系和课程内容的改革,有助于高等学校实施素质教育,培养大学生的实践创新意识与基本能力、团队协作的人文精神和理论联系实际的学风;有助于学生工程实践素质的培养、提高学生针对实际问题进行电子设计制作的能力;有助于吸引、鼓励广大青年学生踊跃参加课外科技活动,为优秀人才的脱颖而出创造条件。
全国大学生电子设计竞赛的特点是与高等学校相关专业的课程体系和课程内容改革密切结合,以推动其课程教学、教学改革和实验室建设工作。竞赛的特色是与理论联系实际学风建设紧密结合,竞赛内容既有理论设计,又有实际制作,以全面检验和加强参赛学生的理论基础和实践创新能力。
全国大学生电子设计竞赛每逢单数年的9月份举办,赛期四天(具体日期届时通知)。在双数的非竞赛年份,根据实际需要由全国竞赛组委会和有关赛区组织开展全国的专题性竞赛,同时积极鼓励各赛区和学校根据自身条件适时组织开展赛区和学校一级的大学生电子设计竞赛。
竞赛采用全国统一命题、分赛区组织的方式,竞赛采用“半封闭、相对集中”的组织方式进行。竞赛期间学生可以查阅有关纸介或网络技术资料,队内学生可以集体商讨设计思想,确定设计方案,分工负责、团结协作,以队为基本单位独立完成竞赛任务;竞赛期间不允许任何教师或其他人员进行任何形式的指导或引导;竞赛期间参赛队员不得与队外任何人员讨论商量。参赛学校应将参赛学生相对集中在实验室内进行竞赛,便于组织人员巡查。为保证竞赛工作,竞赛所需设备、元器件等均由各参赛学校负责提供。
为保证竞赛工作的顺利进行,应严格遵守全国竞赛组委会届时颁布的《全国大学生电子设计竞赛竞赛规则与赛场纪律》。竞赛期间,各赛区组织巡视人员,严格执行巡视制度。
竞赛题目是保证竞赛工作顺利开展的关键,应由全国专家组制定命题原则,赛前发至各赛区。全国竞赛命题应在广泛开展赛区征题的基础上由全国竞赛命题专家统一进行命题。全国竞赛命题专家组以责任专家为主体,并与部分全国专家组专家和高职高专学校专家组合而成。
全国竞赛采用两套题目,即本科生组题目和高职高专学生组题目,参赛的本科生只能选本科生组题目;高职高专学生原则上选择高职高专学生组题目,但也可选择本科生组题目,并按本科生组题目的标准进行评审。只要参赛队中有本科生,该队只能选择本科生组题目,并按本科生组题目的标准进行评审。凡不符合上述选题规定的作品均视为无效,赛区不予以评审。
时间:每逢单数年的9月份举办,赛期四天(具体日期届时通知)
http://.cn/