第一篇:高层建筑钢筋混凝土结构强约束部位裂缝的分析与控制
高层建筑钢筋混凝土结构强约束部位裂缝的分析与控制
【中国结构师考试网-结构工程师考试】
混凝土工程中材料的特性决定了结构较易产生裂缝,从实践中来看施工中混凝土出现裂缝的概率也是很大的,相当一部分裂缝对建筑物的受力及正常使用无太大的危害,但裂缝的存在会影响到建筑物的整体性、耐久性,会对钢筋产生腐蚀,是受力使用期应力集中的隐患,应当尽量在各方面给予重视,以避免裂缝的出现或把裂缝控制在许可的范围之内。
一、高层建筑施工中几个特殊部位的裂缝分析
1、大体积基础混凝土板
高层建筑中随着高度的不断增加,地下室愈做愈深,底板也愈来愈厚,厚度在3m以上的底板已屡见不鲜。高层建筑中基础底板为主要的受力结构,整体要求高,一般一次性整体浇筑。国内外大量实践证明,各种大体积混凝土裂缝主要是温度变化引起。大体积混凝土浇筑后在升温阶段由于体积大,集聚在内部的水泥水化热不易散发,混凝土内部温度将显著升高,这样在混凝土内部产生压应力,在外表面产生拉应力,由于此时混凝土的强度低,有可能产生表面裂缝。在降温阶段新浇混凝土收缩因存在较强的地基或基础的约束而不能自由收缩。升温阶段快,混凝土弹性模量低,徐变的影响大,所以降温时产生的拉应力大于升温时产生的压应力。差值过大时,将在混凝土内部产生裂缝,最后有可能形成贯穿裂缝。为解决
上述二类裂缝问题,必须进行合理的温度控制。
混凝土温度控制的主要目的是使因温差产生的拉应力小于同期混凝土抗拉强度的标准值,并有一定的安全系数。为计算温差,就要事先计算混凝土内部的最高温度,它是混凝土浇筑温度、实际水化热温升和混凝土散热温度的总和。混凝土内部的最高温度大多发生在浇筑后的3-7天。混凝土内部的最高温度Tmax可按下式计算:
Tmax=To+(WQ)/(Cr)ξ+(F)/(5O)(1)
式中:T0——混凝土的浇筑温度(℃)
W——每m3混凝土中水泥(矿渣硅酸盐水泥)的用量(kg/m3)
F——每m3混凝土中粉煤灰的用量(kg/m3)
Q——每kg水泥水化热(J/kg)
C——混凝土的比热
r——混凝土的密度
ξ——不同厚度的浇筑块散热系数
实测资料显示,当基础板厚大于2米时,上述公式的相对误差在0.1%-1.3%之间,在计算温差后,即可计算出降温阶段混凝土内部的温度应力σ(2)xmax
σxmax=Eα△T(1-(1)/(cosh βL/2))H(t,τ)………(2)式中:E——混凝土的弹性模量(N/mm2)
α——混凝土的线膨胀系数(10-5/℃)
△T——温差(℃)
L——板长(mm)
β=Cx/HE
H——板厚(mm)H>0.2L时,取H=0.2L
Cx——地基水平阻力系数(N/mm3)
H(t,τ)…考虑徐变后的混凝土松驰系数,其中,t——产生约束应力时的龄期,τ——约束应力延续时间。
注意同期内由于混凝土收缩引起的应力应转化为当量温差,计入△T一并计算σxmax.由(1)、(2)分析可知:为避免裂缝出现,主要是减少△T.可采用合理选用材料,降低水泥水化热,优化混凝土集料的配合比,控制水灰比,减少混凝土的干缩,具体控制措施见后。如有可能,减少浇筑长度L,增加养护时间减少降温速率以相应减少松驰系数对控制贯穿裂缝也有一定的意义。
2、地下室混凝土墙板及楼板的裂缝分析
地下室墙板的裂缝产生与基础大体积混凝土裂缝产生的原因有相同之处,即混凝土在硬化过程中由于失水会产生收缩应变,在水泥水化热产生的升温达到最高点以后的降温过程会产生温度应变。但又有其特点:一是墙板受到基础、外围楼板受到地下室外墙的极大约束,这种约束远大于桩基对基础的约束,产生贯穿裂缝的机率大。二是内墙板及楼板受环境温度影响较大。三是内外温差小,产生表面裂缝的机率小。四是养护困难,散热快、降温速率大,混凝土的松驰徐变优势难以利用,在气温骤变季节尤应注意。在计算板内最大拉应力时仍可利用公式(2),但有以下几点应注意:
1)H取0.2L,L为整浇长度;
2)Cx取值应大于1.5N/mm3因为连接部位有较强钢筋约束;
3)计算温差△T时,要考虑底板及外墙(兼作围护情况下)紧靠土体,受环境温差小,而被它们约束的墙板及周边楼板在施工过程中基本同外界温度同步变化。
4)若底板墙板施工间隔过长、外墙兼作围护时,则在计算混凝土收缩时应注意约束体与被约束体的收缩期不同,收缩量也不相同。
3、高强混凝土裂缝分析
目前高层建筑中已广泛使用C40-C60中高强混凝土,随着材料科学的迅速发展,C80~C120的高强混凝土在具体工程中已有应用。由于高强混凝土采用的配合比设计多为低水灰比、高标号水泥、高水泥用量、使用高效减小剂及掺加超细矿粉。这样其收缩机制与普通混凝土就有所不同。
高强混凝土由于其水泥用量大多在450-600kg/m3),是普通混凝土的1.5-2倍。这样在混凝土生成过程中由于水泥水化而引起的体积收缩即自缩就大于普通混凝土,出现收缩裂缝的机率也大于普通混凝土。
高强混凝土因采用高标号水泥且用量大,这样在混凝土硬化过程中,水化放热量大,将加大混凝土的最高温升,从而使混凝土的温度收缩应力加大。在叠加其他因素的情况下,很有可能导致温度收缩裂缝。由于高强混凝土中水泥石含量是普通混凝土的1.5倍,在硬化早期由于水分蒸发引起的干缩也将大于普通混凝土。
二、裂缝的控制措施
1、设计措施
1)增配构造筋提高抗裂性能,配筋应采用小直径、小间距。全截面的配筋率应在0.3-0.5%之间。
2)避免结构突变产生应力集中,在易产生应力集中的薄弱环节采取加强措施。3)在易裂的边缘部位设置暗梁,提高该部位的配筋率,提高混凝土的极限拉伸。
4)在结构设计中应充分考虑施工时的气候特征,合理设置后浇缝,在正常施工条件下,后浇缝间距20-30m,保留时间一般不小于60天。如不能预测施工时的具体条件,也可临时根据具体情况作设计变更。
2、施工措施
1)严格控制混凝土原材料的的质量和技术标准,选用低水化热水泥,粗细骨料的含泥量应尽量减少(1-1.5%以下)。
2)细致分析混凝土集料的配比,控制混凝土的水灰比,减少混凝土的坍落度,合理掺加塑化剂和减少剂。
3)浇筑时间尽量安排在夜间,最大限度降低混凝土的初凝温度。白天施工时要求在沙、石堆场搭设简易遮阳装置,或用湿麻袋覆盖,必要时向骨料喷冷水。混凝土泵送时,在水平及垂直泵管上加盖草袋,并喷冷水。
4)根据工程特点,可以利用混凝土后期强度,这样可以减少用水量,减少水化热和收缩。5)加强混凝土的浇灌振捣,提高密实度。
6)混凝土尽可能晚拆模,拆模后混凝土表面温度不应下降15℃以上,混凝土的现场试块强度不低于C5.7)采用两次振捣技术,改善混凝土强度,提高抗裂性。8)根据具体工程特点,采用UEA补偿收缩混凝土技术
9)对于高强混凝土,应尽量使用中热微膨胀水泥,掺超细矿粉和膨胀剂,使用高效减水剂。通过试验掺入粉煤灰,掺量15%-50%.该文章转载自无忧考网:http://www.51test.net 引言
高层建筑工程钢筋混凝土结构产生裂缝的原因很多,主要是由温度变形、收缩变形、基础不均匀沉降等变形作用引起的。据有关统计,由变形作用引起的裂缝几乎占全部裂缝的80%以上,其中,在条件相同的情况下,强约束部位工程裂缝出现的概率更大、裂缝更宽。结构物的变形受到约束后才产生约束应力,当约束应力超过钢筋混凝土结构的抗拉强度时便产生裂缝,因此约束强弱对结构物是否产生裂缝有着相当大的影响。高层建筑结构在强约束条件下的变形与裂缝分析
高层建筑中地下室外墙板、二层梁、顶层梁板与屋面女儿墙由于受温度应力的作用,比一般情况下更易产生裂缝,工程实践中经常会在这些部位出现裂缝。
2.1地下室结构
地下室工程中最容易产生裂缝的部位是外墙板,底板与顶板产生裂缝的概率不大,其主要原因是:高层建筑地下室结构往往超长,外墙板受到地下室底板的强大约束,其约束远远大于地下室底板与顶板所受的约束。外墙板产生的裂缝绝大多数为竖向裂缝,多数缝长与墙高相当,两端逐渐减小。裂缝大部分出现在拆模后不久,有的还与环境温度变化梯度有关。一般情况下为表面裂缝,有时也有贯穿裂缝。
2.2底层结构
高层建筑一、二层在上部结构中所受约束最大。地下室外墙板与顶板厚度大、配筋密集,地下室结构本身受到地下室基础、底板、外侧土体的约束,因此地下室结构对上部一、二层的约束很大。高层建筑一、二层结构梁板经常会出现横向裂缝,特别是位于两个电梯井间(电梯井采用筒体结构)的大梁,该大梁还受到两个钢筋混凝土简体的强大约束,实际工程中经常有竖向裂缝出现,裂缝一般位于板下梁的两侧,有时裂缝在梁底跟通,这些裂缝通常是表面裂缝,深度在1~2 cm以内。
2.3中间层结构
高层建筑中间结构层梁板产生裂缝的情况很少,一个主要原因就是其所受的约束较小。
2.4顶层结构
高层建筑楼层结构越往上所受的约束越小,其水平位移越大,符合“约束强变形小、约束弱变形大”的规律。因此,距离底部基础约束最远的顶层结构所受的约束最小,其水平位移最大。但是顶层上部由于无约束或约束极小(如屋面机房对其的约束),受到的下部结构约束与上部相比很大,再加上顶层结构温差变化大,屋面板面大体薄对温度变化敏感,加上屋面板转角部位分别受到两个方面的约束,因此屋面板容易在转角部位产生八字形裂缝。还有一些屋面南侧边梁受到日照温差相当大,因此南侧边梁也容易产生竖向裂缝。
2.5屋面女儿墙
屋面女儿墙的约束情况与地下室外墙板、顶层结构相似。女儿墙受到的下部约束很大,而上部由于一般只按构造要求设一道压顶梁,上部约束很小,再加上女儿墙为薄壁结构,温
差变化大,极易产生收缩裂缝。大底板多塔楼建筑结构在强约束条件下的变形与裂缝分析
大底板多塔楼高层建筑产生的裂缝除具有一般高层建筑的特点外,还具有其自身的特点。大底板底板与地下室楼面在塔楼部位受到的水平约束与竖向约束均很大,因此在塔楼与裙房(或广场)的连接部位容易产生裂缝。
3.1大底板底板
大底板多塔楼高层建筑经常采用桩筏或桩箱基础其特点是竖向荷载的差异,使塔楼与裙房或广场产生差异沉降,这种类型的桩筏或桩箱基础的一个特点是底板厚度H远小于长宽尺寸L,当H/L小于或等于0.2时,底板在温度收缩变形作用下,离开端部区域,板的全截面受拉应力较均匀。在不均匀沉降作用、地基约束、塔楼竖向作用力下,将出现水平法向应力,该应力是引起垂直裂缝的主要原因,尤其在底板厚度或肋梁较小的裙房与广场部位特别容易产生裂缝。
一般横向裂缝产生是由于上部荷载的不均匀作用,导致地基与基础受力不均匀,在差异沉降、底板收缩与地基约束下,底板自身的刚度不够,调节不均匀受力的能力较弱,遂产生了横向裂缝。沿底板对角线分布的斜向裂缝,其裂缝宽度一般呈现中间大两端小的枣核状,具有较明显的受剪破坏的特征,也是在差异沉降与地基约束作用下,底板自身的刚度不够而产生的。有时在塔楼与广场连接处的柱子会出现沿柱根呈“口”字形的裂缝,裂缝进一步发展时,“口”字四角再向外呈斜向发展,长度一般较短。
3.2地下室顶板
大底板多塔楼高层建筑的地下室顶板平面尺寸一般都很大、各边长度超长,温度变化引起的伸缩与混凝土自身收缩值均较大。塔楼大量的混凝土墙柱与剪力墙是结构中重要的抗侧力构件,它的存在大大提高了结构的抗侧移能力,加大对顶板变形的约束。由于顶板受到周边塔楼结构的强约束,而中间广场部位有一个较大的空间,只受到地下室墙柱的弱约束,因此顶板周边受到的约束远远大于中央部位受到的约束,周边受到的应力也远远大于中央部位。由于顶板在塔楼附近应力集中,因此裂缝首先在这里产生。由于平面尺寸大、结构超长,顶板其它部位也逐渐有裂缝产生,顶板中心由于约束很弱,一般无裂缝产生。塔楼部位的顶板受到地下室与上部结构的约束均较大,而自身的梁板跨度均较小且梁断面较大、刚度较好,一般不会出现裂缝。
3.3地下室外墙板
大底板多塔楼高层建筑地下室外墙板除具有一般地下室外墙板的特点外,由于外墙板受到塔楼结构的强约束,因此外墙板除具有一般的竖向裂缝外,在裙房(或广场)与塔楼连接处易产生较大的裂缝,裂缝一般呈竖向略带斜向,裂缝上部靠近塔楼,下部靠近裙房。其它结构在强约束条件下的变形与裂缝分析
4.1汽车坡道
现代建筑物经常具有车辆直接进入二层的汽车坡道,一层通常作为车库。车道一端与一层楼面连接,另一端位于室外自然基础或地下室顶板上,平面布置如图1。由于车道的斜向布置使其具有极强的约束,特别是另一端位于地下室顶板上的情况,使车道产生平行于横向的裂缝,裂缝经常为贯穿性的。
4.2回字形结构
有些工程由于使用的需要,设计成呈“回”字形的内外两个钢筋混凝土简体,两简体间采用梁板连接。当内外两个简体间距较近时,梁板受到的变形约束极大,容易在楼面产生裂缝。某工程为地下一层结构,由内外两个简体构成,中间为无顶板水池,四周为走道有顶板,混凝土强度等级为C30。内外简体墙板厚度分别为250mm、300mm,顶板厚度为120mm,顶板配筋为上下双层双向10mm@150mm。顶板刚度相对简体很弱,受到的约束很大。顶板产生的裂缝如图2所示,在角部呈45°角分布,中间呈垂直于简体方向布置。防止钢筋混凝土强约束部位结构裂缝的技术处理措施
强约束是建筑工程产生裂缝的一个重要原因,对有强约束的建筑工程,应采取减小约束、加强结构刚度、施加预应力等技术措施来有效减少裂缝的产生。
5.1减小约束
减小约束从根本上缓解裂缝的产生。对超长结构和大底板塔楼结构可以采用后浇带、伸缩缝,充分释放混凝土的伸缩应力,给结构留有合理的伸缩空间。对处在基岩或老混凝土上的基础或结构采用设置滑动层和铰接点的方法。如对斜形车道,可将其另一端设在具有滑动层的自然基础上。
5.2加强刚度
加强结构刚度,提高整体抗裂能力。在强约束区提高配筋,减小钢筋间距和钢筋直径,提高混凝土与钢筋的协同作用,提高抗裂能力。如:可在地下室外墙板中设置暗梁;在竖向荷载变化很大的连接部位加密钢筋;对加强大底板多塔楼高层建筑地下室底板整体刚度,提高其调节不均匀沉降的作用与抗裂能力;加强混凝土配合比的设计等。
5.3施加预应力
施加预应力直接约束结构的变形,减小因约束而产生的内力,从而防止结构开裂。预应力技术尤其适合于楼面结构,楼面结构的裂缝以横向为主,纵向钢筋的配置对其有重大的影响,一般可在纵向主梁中采用预应力筋以施加预应力。
5.4施工措施
加强施工,做好混凝土的养护工作,尽可能提高混凝土的实际强度。严格掌握后浇带的封堵时间,使混凝土有充分应力的时间等。工程实例
6.1实例 1
湖南某工程有地下室一层且连成整体,上部由7幢高层主楼组成。整个平面呈一个大的“L”形,两个长边分别达到153.5m、133.6m。主楼采用框架剪力墙结构。广场地下室采用框架结构,柱网间距8.2m。每幢主楼有两个东西对称布置的电梯间和楼梯间混凝土筒体。
地下室外墙板产生较多竖向表面裂缝,间距在3~4m,个别有渗水现象。地下室底板无明显裂缝与渗水现象。地下室顶板产生了较多斜向45°裂缝且大多有渗水现象,裂缝主要分布在强约束区与应力集中的大阴角处,如图3所示。
7幢主楼连接两个电梯间、楼梯间的二层大梁均有裂缝产生。裂缝在梁侧呈竖向分布,上端接近于板底,下端通到梁底,梁底下侧个别也有连通。裂缝深度在1cm以内。三层该部位大梁也有少量裂缝产生,四层以上该部位大梁没有裂缝发现。由于顶层边梁配筋得到加强,屋面板转角均配置了上下层放射筋,因此顶层结构没有发现裂缝。
6.2 实例2
湖南某工业科技园综合楼工程建筑面积56100m2。A楼地下1层,地上6层,结构长度(含悬挑结构)为300.5m。基础采用人工挖孔桩与钻孔灌注桩,底板厚度为40cm。结构形式为全现浇框架结构,混凝土强度等级为C30。上部建筑采用通透式设计,外墙采用落地式大排窗。
6.2.1地下室裂缝控制
1)减少约束
在29轴设置一条伸缩缝分成东西两块,每块底板又设置了两条后浇带,如图4地下室平面示意图所示。地下室底板、外墙板、室外顶板及后浇带的混凝土均采用掺入10%UEA-H的微膨胀混凝土,提高混凝土抗伸缩能力。
2)加强刚度
地下室底板与外墙板在满足要求的前提下纵向钢筋的小而密。底板上下配置
18mm@150mm钢筋网。外墙板厚度为300mm,水平筋配置为14mm@150mm。掺加粉煤灰、膨胀剂、外加剂等减少水泥与水的用量,提高混凝土极限拉伸值。黄砂采用中砂,碎石采用连续的5~25mm粒径。塌落度为12cm。
3)施工控制
按后浇带为界分块分批浇注,保证每一块混凝土的热量能最大限度地释放,使混凝土内不会集中较大的收缩应力。加强养护,加快土方回填。后浇带的填充时间为结构混凝土浇捣后3个月,使结构的总降温与收缩变形进行到一半以上,以有效释应力。
6.2.2上部裂缝控制
1)加强刚度
板的配筋采用连续式配筋,上部结构楼面板厚为120mm,纵向板筋为上下18@150mm。屋面板厚度为120mm,纵向板筋为上下12@125mm,对转角处楼板配置上下两层放射筋。
2)预加预应力
纵向框架梁采用无粘结预应力技术。按施工段划分为6个区块,每个区块以后浇带为界进行分段张拉,每段长度均在50m左右。后浇带处梁增设骑缝筋连接,也采用预应力技术。
3)施工控制
材料控制与施工控制类同于地下室结构施工。
6.2.3 施工效果
通过采取了一系列技术处理措施后,该强约束结构部位情况良好,经过近两年多的使用,没有发现结构裂缝和渗漏水现象。
参考文献:
[1] 混凝土结构设计规范.GB50010-2002.北京,中国建筑工业出版社,2002。
[2] 高层建筑混凝土结构技术规程.JGJ 3-2002.中国建筑工业出版社。
[3] 王铁梦.超长大体积混凝土裂缝控制.混凝土工程新技术,1998。
[4] 李国胜.建筑结构裂缝及加固疑难问题的处理-附实例.中国建筑工业出版社,2006。
第二篇:浅析钢筋混凝土水池裂缝的成因与控制
浅析钢筋混凝土水池裂缝的成因与控制
[摘 要]钢筋混凝土水池在施工或使用中出现漏水现象是最致命的,严重时将影响使用。水池渗漏最根本的原因是水池的裂缝。本文对水池裂缝的成因进行分析,并针对其现象提出了一些控制措施。
[关键词]钢筋混凝土水池 裂缝 成因 控制
中图分类号:TM53 文献标识码:A 文章编号:1009-914X(2017)12-0161-01
现阶段,钢筋混凝土水池在工程中具有广泛的应用,然而作为水池,在施工中避免其出现漏水现象是一个重点也是难点。在混凝土工程施工中,裂缝是一个既普遍存在而又难以解决的问题,因此如何处理好裂缝成为避免水池漏水的重要因素,本文将对裂缝的成因进行分析,并针对其现象提出了一些控制措施。
一、钢筋混凝土水池裂缝的成因
1.材料质量造成的裂缝
混凝土是一种由砂石骨料、水泥、水及其他外加材料混合而形成的非均质脆性材料。要避免水池结构产生破坏性裂缝,混凝土用料是否适当及材料质量能否保证,起着重要的作用。因用料不当或材料质量有问题而造成的裂缝,即便经修复后能满足正常使用,但往往仍留有隐患,所以一定要注重事前的防范。
2.荷载作用造成的裂缝
当结构在外部荷载(各种恒、活载、水、土压力地基反力等)作用下,因受力性能不足,产生了过大变形,使裂缝发生并发展为破坏性裂缝。这种由荷载作用造成的裂缝的产生,主要是由于设计时采用的基础资料有误或是设计中考虑不周、计算疏忽等失误造成。
3.混凝土收缩造成裂缝
混凝土硬化期间水泥放出大量水化热,内部温度不断上升,在表面引起拉应力。后期在降温过程中,由于受到支座或原有混凝土的约束,又会在混凝土内部出现拉应力。因此,水池结构中的混凝土早期收缩裂缝主要出现在裸露表面,混凝土硬化后的收缩裂缝出现在结构件的中部附近较多。
4.温度变化引起的裂缝
气温的降低也会在混凝土表面引起很大的拉应力,有时温度应力可超过其它外荷载所引起的应力,当这些拉应力超出混凝土的抗裂能力时即会出现裂缝。这种裂缝一般只在混凝土表面?^浅的范围内产生。
二、钢筋混凝土水池裂缝的控制
1.混凝土浇筑
施工前要有混凝土浇筑方案,应采用分层分段法浇筑混凝土,有利于混凝土水化热的散失,减小混凝土内外温差。每块每段均为一次混凝土连续浇筑,水平浇筑或分层浇筑要保证上下层混凝土在初凝前结合好,不致形成施工缝。由于泵送混凝土坍落度较大,混凝土浇筑后及时排除表面积水,雨季施工时,采用分段搭设雨篷进行混凝土浇筑,混凝土在硬前1~2小时均用抹压,以防沉降裂缝的产生。后浇带的浇筑采用微膨胀水泥混凝土,后浇带保留时间越长越好,一般不应少于40天,最宜60天。在浇筑后浇带混凝土时,应将原混凝土凿毛、浇水、湿润,再浇筑后浇带。
2.降低混凝土入模温度
为了减少混凝土日后冷缩引起的开裂,应尽量降低混凝土入模温度,施工时采用温度较低的水,混凝土泵输送管均加以覆盖。选择较适宜的气温浇筑混凝土,尽量避开炎热天气浇筑混凝土,堆骨料进行护盖或设置遮阳装置,避免日光直晒,以降低混凝土拌和物的入模温度。
3.混凝土振捣
混凝土振捣要密实,防止漏振,也避免过振。一般每点振捣时间为20~30秒,但应视混凝土表面不再显著下沉,不再出现气泡,表面泛出灰浆为准。
4.混凝土的养护
混凝土浇筑完毕的12小时以内进行覆盖麻袋浇水养护,浇水时间不得少于14天,浇水次数应保持混凝土具有湿润状态,夏季应注意避免曝晒,确定合理的拆模时间。混凝土浇筑后要加强早期养护,防止干缩裂缝,加强混凝土早期养护是保证质量的关键。
5.加强施工时的温度控制
在混凝土浇筑之后,做好混凝土的保温养护,缓缓降温,减少温度应力,夏季应避免暴晒,注意保湿。采用长时间的养护,规定合理的拆模时间,延缓降温时间和速度,充分发挥混凝土的“应力松弛效应”。改善配筋,避免应力集中,增强抵抗温度应力的能力在孔洞周围,变断面转角部位,转角处等由于温度变化和混凝土收缩,会产生应力集中而导致裂缝。为此,可建议设计人员设置必要的温度配筋。孔洞四周增配斜向钢筋,在转折处增加转角筋,混凝土的底板或墙板可建议设计人员增配构造钢筋,使构造筋起到温度筋的作用,能有效地提高混凝土抗裂性能。配筋应尽可能采用小直径、配筋应细一些、密一些,按全截面对称配置比较合理,均起到温度配筋作用,以改善应力集中,防止裂缝的出现。
6.设置后浇带
当大体积混凝土平面尺寸过大时,可以适当设置后浇带,以减少温度应力。后浇带及施工缝的处理,为了确保混凝土粘结良好,续浇混凝土前将原混凝土凿毛,应充分湿润,清除杂物,才能续浇混凝土。做好测温工作,控制混凝土内外温差不大于25℃。施工时应设专人进行温度监测,及时反映温差,随时指导养护,出现混凝土内外温差大于25℃时,应及时采取措施调整养护状况。
三、结语
水池的裂缝漏水是工程中常见的弊病,每个环节的疏漏都有可能造成对结构造成损害,从而影响水池的正常使用。但是只要我们在施工中及时控制裂缝并采用较好的接缝形式,科学合理的进行施工,严格按照标准规范执行,是可以避免的。
参考文献
[1] GB50204-2002混凝土结构工程施工质量验收规范.中国建筑工业出版社,2002.[2] 梁永生,侯俊强.钢筋混凝土水池裂缝的形成及控制[J].内蒙古石油化工,2011,(03).[3] 齐海英.混凝土建筑裂缝的预防与控制[J].同煤科技,2010,(01).
第三篇:浅论钢筋混凝土水池裂缝的成因与控制
浅论钢筋混凝土水池裂缝的成因与控制
李汇锋1 王彩霞2(1.河南省城市规划设计研究院有限公司,郑州 450000;
2.新密市建设管理局,新密 452370)
摘要:钢筋混凝土水池产生结构裂缝是在工程实践中经常遇到的问题,本文分析了水池工程混凝土结构裂缝产生的原
因,从设计、施工等方面探讨了防止水池结构产生裂缝的几种措施。
关键词:混凝土水池;裂缝;设计;施工
中图分类号:TU755 文献标识码:A
The Formation Cause and Controlling Measures to Preventing Cracks in Reinforced Concrete Water Pool Li Huifeng1? Wang Caixia2(1.City Planning and Design Acedeme Ltd.Company of Henan;2.Construction Administration Bureau in Xinmi)
Abstract: It is a common problem that is often met with in engineering practice to produce structure cracks in the reinforced concrete water pool, the paper summarizes the reasons why the cracks in the water pool produce;and then it expounds some methods and measures to prevent the producing structure cracks of water pool in respect of design and construction.Key words:reinforced concrete water pool;crack;design;Construction
在给水和污水处理的工程中,钢筋混凝土水池得到了广泛应用。在净水厂中的清水池、沉淀池、滤池
等构筑物,在污水处理厂中的粗隔栅及进水泵房、细隔栅及漩流沉砂池、氧化沟、二沉池、接触池等构筑
物。如何有效地减少和防止这些建筑物出现裂缝,需要在工程实践中不断总结形成裂缝的主要原因,以便
从设计和施工上采取的措施加以解决。
1钢筋混凝土水池裂缝的成因
实际上,钢筋混凝土水池裂缝的成因非常复杂,有多种因素相互影响,但每一条裂缝均有其产生的一
种或几种主要原因,比如:温度和湿度的变化,混凝土的脆性和不均匀性,以及结构不合理,原材料不合
格(如碱骨料反应),模板变形,基础不均匀沉降等。钢筋混凝土水池裂缝的种类,就其产生的主要原因,大致可分为以下几种:
1.1 温度变化引起的裂缝
混凝土硬化期间水泥放出大量水化热,内部温度不断上升,在表面引起拉应力。后期在降温过程中,由于受到基础或原有混凝土的约束,又会在混凝土内部出现拉应力。气温的降低也会在混凝土表面引起很
大的拉应力,有时温度应力可超过其它外荷载所引起的应力,当这些拉应力超出混凝土的抗裂能力时即会
出现裂缝。因此掌握温度应力的变化规律对于进行合理的结构设计和施工极为重要。(温度裂缝区别于其
它裂缝的最主要特征是将随温度变化而扩张或合拢。)
1.2 收缩引起的裂缝
在实际工程中,混凝土因收缩所引起的裂缝是最常见的。在混凝土收缩种类中,塑性收缩和缩水收缩
(干缩)是发生混凝土体积变形的主要原因。
塑性收缩:发生在施工过程中、混凝土浇筑后4~5小时左右,此时水泥水化反应激烈,分子链逐渐形
成,出现泌水和水分急剧蒸发,混凝土失水收缩,同时骨料因自重下沉,因此时混凝土尚未硬化,称为塑
性收缩。塑性收缩所产生量级很大,可达1%左右。在骨料下沉过程中若受到钢筋阻挡,便形成沿钢筋方向 的裂缝。为减小混凝土塑性收缩,施工时应控制水灰比,避免过长时间的搅拌,下料不宜太快,振捣要密
实。
缩水收缩(干缩):混凝土结硬以后,随着表层水分逐步蒸发,湿度逐步降低,混凝土体积减小,称
为缩水收缩(干缩)。因混凝土表层水分损失快,内部损失慢,因此产生表面收缩大、内部收缩小的不均
匀收缩,表面收缩变形受到内部混凝土的约束,致使表面混凝土承受拉力,当表面混凝土承受拉力超过其
抗拉强度时,便产生收缩裂缝。混凝土硬化后收缩主要就是缩水收缩。如配筋率较大的构件(超过3%),钢筋对混凝土收缩的约束比较明显,混凝土表面就容易出现龟裂裂纹。
1.3 沉陷引起的裂缝
沉陷裂缝的产生是由于结构地基土质不匀、松软,或回填土不实或浸水而造成不均匀沉降所致;或者
因为模板刚度不足,模板支撑间距过大或支撑底部松动等导致,特别是在冬季,模板支撑在冻土上,冻土
化冻后产生不均匀沉降,致使混凝土结构产生裂缝。此类裂缝多为深进或贯穿性裂缝,其走向与沉陷情况
有关,一般沿与地面垂直或呈30°~45°角方向发展,较大的沉陷裂缝,往往有一定的错位,裂缝宽度往
往与沉降量成正比关系.裂缝宽度受温度变化的影响较小。地基变形稳定之后,沉陷裂缝也基本趋于稳定。
1.4 施工不当引起的裂缝
在混凝土结构浇筑、构件制作、起模、运输、堆放等过程中,若施工工艺不合理施工质量低劣,容易
产生纵向的、横向的、斜向的、竖向的、水平的、表面的、深进的和贯穿的各种裂缝。裂缝出现的部位、走向、裂缝宽度因产生的原因而异,比较典型和常见的有: 1.4.1因水池池壁较薄,每次支立的模板相对较高,当混凝土和易性欠佳或浇注方法不当时,拌合物
一旦产生离析,就会使混凝土不均匀,局部出现空洞、蜂窝、麻面等现象。
1.4.2预埋件未焊好止水板(环),预埋件安装前未将锈皮或油渍清除干净,影响与混凝土的粘结,形成裂缝而致漏水.预埋件周围的混凝土未浇捣密实,形成蜂窝、孔洞,同混凝土毛细孔连通,引起漏水。
尤其在预埋件稠密处,更易发生此类问题。此外预埋件固定不牢,在受外力碰撞或振动时产生松动,与砼
之间形成裂缝。
1.4.3固定模板的对拉螺栓(或铁丝)部位形成裂缝而致漏水,主要原因是对拉螺栓未加焊止水环或
加焊止水环而未满焊。而铁丝穿过防水砼结构,形成缝隙而致漏水。
1.4.4钢筋施工不当形成裂缝而致漏水,主要原因是绑扎钢筋时,未按规定设置足够的保护层,或留
保护层的方法不当,致使钢筋与模板直接接触,或有贯通内外壁的钢筋、铁丝等,当采用铁马凳架设钢筋
时,(在不能取掉的情况下,)没有在铁马凳上加焊止水环,水沿铁马凳渗入砼结构。
1.4.5 施工质量控制差,任意套用混凝土配合比,水、砂石、水泥材料计量不准,结果造成混凝土强
度不足和其他性能(和易性、密实度)下降,导致结构开裂。设计构造措施
混凝土是一种复合材料,其自身的约束和外界条件的约束影响都十分复杂,产生裂缝的原因也比较复
杂,对于温度应力的计算理论还偏于近似范畴。因此在设计计算过程中,除根据具体条件作应力计算外,采用一系列综合性构造措施对控制裂缝是十分必要的。根据工程的具体情况可以选用以下几种处理方法:
2.1 减少边界约束
结构伸缩变形产生的应力用结构强度抵抗既不经济,也难于实施,宜采用“放”的办法,尽量减少对
构筑物的边界约束,保证结构在变形时能够自由伸缩,以达到释放应力的目的。
由于工艺要求,构筑物的形状和尺寸千变万化,某些结构形状对构筑物的自由变形极为不利,应视工
程的具体情况,采用适当的方法处理。例如当地基为岩石或其它坚硬土层时,应设置柔性隔离层,使结构
能够自由伸缩变形,避免产生裂缝。
2.2 设置后浇带
设置后浇带是结构工程设计施工的常用方法。后浇带可以有效地释放混凝土硬化和养护期间的收缩,消除因施工期的变形引起的结构附加应力。但后浇带施工比较麻烦,增加工程的施工时间,后浇带处理不
好还会影响水池结构的水密性。
2.3 使用外加剂
随着工程技术的快速发展,混凝土外加剂的性能和使用也得到很大提高。在混凝土中掺加膨胀剂,混
凝土的膨胀量可以部分抵消混凝土硬化和养护期间的收缩变形,改善结构使用期间温度变形的适应能力,防止温度裂缝。《规范》对在混凝土中掺加可靠外加剂的构筑物可根据经验确定最大伸缩缝间距。
但值得注意的是,掺加防水剂时一定要注明对防水剂的限制膨胀率的要求。因为膨胀剂和防水剂的行
业标准不同,防水剂中的检验指标没有限制膨胀率要求,如果使用没有膨胀限制的防水剂,其后果是难以
想象的。
使用膨胀剂的另一个误区是认为掺加膨胀剂后结构可以无限制地超长。膨胀剂的作用是在施工期间混
凝土产生膨胀以补偿硬化和养护期间的收缩变形量,是特定时期的恒定量,而结构的温度变形是随环境温
度的变化而变化,是客观存在的自然规律,膨胀剂的效能不能改变温度变形,只能避免因温度变形与混凝
土硬化收缩变形量叠加值而产生过大变形。
2.4加强整体刚度和抗裂度
采用扶壁式挡水池形式,扶壁和底板连接处,应设置加强腋角增大转角处刚度,分散池角应力;为了
防止池壁产生贯穿裂缝和减少表面裂缝,钢筋应对称设置,沿板底上、下两层,沿壁体左右两层,钢筋尽
量细些,但如果完全采用细钢筋,则施工刚度不够,可粗细搭配,含钢率控制在0.3%~0.4% 范围内;池壁
顶部增设圈梁(暗梁);转角或孔边作构造筋加强,转角处增配斜向钢筋或钢筋网片;采取合理的结构布
置和围护措施以减少温、湿度对结构的影响等; 施工技术控制
3.1 混凝土的浇注与养护
为了严格控制由于施工原因造成的裂缝产生和发展,除严格执行设计技术要求外,施工人员还应注意
以下几点:
3.1.1模板要求。模板应牢固、密实,不得漏浆。模板发生变形和漏浆,极易引起水池漏水。内、外
模之间不宜用拉筋固定,因为混凝土发生收缩将在拉筋处出现渗漏点;当无法避免使用拉筋时,应在每一
根拉筋上加焊止水环。为了减少施工缝,池壁最好一次支模,一次浇注到顶。
3.1.2混凝土浇注。由于水池池壁相对较薄,为避免混凝土产生分层、离析,浇注时应格控制拌合物 的自由落差。一般自由落差不应超过1.5m,可以使用串筒来减缓拌合物的自由下落,也可以在侧面模板上
开窗口直接输送混凝土。浇注可分层分段进行,但应注意层与层、段与段之间的浇注时间间隔不得超过初
凝时间,以免出现施工缝。混凝土浇注时,对侧面模板压力很大,应注意控制初凝前的浇注高度不要过大,并要随时观测和检查模板、支撑的变形情况,以防发生跑模现象。
3.1.3严格控制水灰比。水灰比一般控制在0.5左右,1m3混凝土水泥用量在320kg左右,据测定,1m3混凝土中每增减10kg水泥 ,温度相应升降1℃。
3.1.4提高混凝土振捣的质量。抗渗混凝土应全面细致地进行振捣。投料和振捣要形成一定的顺序,防止漏振、欠振。要在下层混凝土初凝前投放上层混凝土,振捣棒宜插入下层混凝土中5~10cm,以保证接
层部位混凝土的质量。每次投料后应从底层开始,渐渐上移进行振捣,这样可以避免拌合物离析。要严格
控制振捣时间,以混凝土开始泛浆和不冒气泡为准,不得欠振或超振。
3.1.5养护。混凝土终凝后即应洒水养护,拆除模板后也要定时浇水,以保持表面湿润。为防止出现
干缩裂缝及温度裂缝,最好在表面覆盖塑料薄膜或麻袋草帘进行保温、保湿、养护。
3.2 个别部位的处理
3.2.1施工缝的处理。当混凝土不能一次浇注完毕时,可以设施工缝。但顶板与底板最好一次浇筑完
成,不宜留施工缝。施工缝也不宜留在底板与池壁交界处,应设在高于底板500mm的池壁上。池壁留施工缝 时,应设置橡胶止水带或止水钢板,将橡胶止水带或止水钢板的一半埋入下层混凝土中,另一半浇在接灌
混凝土中。接灌混凝土前,要将原有混凝土表面浮浆凿去,并认真清理冲洗后再浇注新混凝土。
3.2.2 预埋件的处理。当水池设有预埋件时,要注意不要使预埋部分穿透池壁或池底板,以免造成渗
漏通道。预埋件可以和钢筋点焊在一起,保证位置准确、固定牢固。当必须穿透模板时,应在每一个预埋
件上加焊止水环。预埋件穿过模板处要堵塞严密,不得漏浆。混凝土浇注时,要注意将预埋件下方的混凝
土振捣好,防止出现空洞、蜂窝。结束语
水处理钢筋混凝土水池的设计与施工实践说明,水池的裂缝产生和发展是可以从根本上得到控制的和
减少的.我们必须重视温差及混凝土收缩、水化热、内外约束、以及不均匀沉降等对水池裂缝宽度的影响,在满足工艺要求的前提下,合理的结构设计,正确的施工方法是工程质量的重要保证。
__________________ 收稿日期:2007-05-01 作者简介:李汇锋(1978-),男,工程师,河南新密市人,主要从事建筑结构设计工作。
参考文献:
[1] DB 50069-2002.《给水排水工程构筑物结构设计规范》[S].[2] CECS 138:2002.《给水排水工程钢筋混凝土水池结构设计规程》[S].[3] 王铁梦.《工程结构裂缝控制》[M].北京:中国建筑工业出版社,1997.
第四篇:(二)钢筋混凝土现浇板裂缝控制与防治技术措施
一、设计
1.钢筋混凝土现浇楼板(以下简称现浇板)的设计厚度一般不宜小于100m(厨房、浴厕、阳台板不得小于90mm),建筑外转角处的室内角部板块和井式楼盖的角部板块,其板厚不宜小于120mm。建筑物平面刚度突变处的楼板宜适当加厚。
2.当楼板内需要埋置管线时,现浇板的设计厚度不宜小于100mm,管线必须在上下层钢筋网片之间。管线不宜立体交叉穿越,并沿管线方向在板的上下表面各加设一道Ф4@100宽600mm的钢丝网片作为补强措施。
3.在房屋下列部位的现浇混凝土楼板、屋面板内应配置抗温度收缩钢筋:
1)当房屋平面有较大凹凸时,在房屋凹角处的楼板; 2)房屋两端阳角处及山墙处的楼板;
3)房屋南面外墙设置大面积玻璃窗时,与南面外墙相邻的楼板;
4)房屋顶层的屋面板;
5)与周围梁、柱、墙等构件整浇且受约束较强的楼板。4.在现浇板的板宽急剧变化处、大开洞削弱处等易引起收缩应力集中处,钢筋间距不应大于150mm,直径不应小于6mm,并应在板的上表面布置纵横两个方向的温度收缩钢筋。洞口削弱处应每侧配置附加钢筋。
5.外墙转角处构造柱的截面积不宜大于240mm×240mm,与楼板同时浇筑的外墙圈梁,其截面高度应不大于300mm。
6.现浇板混凝土强度等级不宜小于C20,且不宜大于C40。7.住宅长度大于40m时,宜在楼板中部设置后浇带,后浇带两边应设置加强钢筋。
8.露台板、厨房厕所板以及≤2m的多跨连续单向板均宜设置通长面筋。
二、材料
1.水泥。宜采用硅酸盐水泥、普通硅酸盐水泥或矿渣硅酸盐水泥;对大体积混凝土,宜采用中热硅酸盐水泥、低热硅酸盐水泥、低热矿渣硅酸盐水泥。对防裂抗渗要求较高的混凝土,所用水泥的铝钙含量不宜大于8%。使用时水泥的温度不宜超过600C。
2.骨料。严格控制砂、石的含泥量,砂的含泥量不得超过3%,石子的含泥量不得超过1%,使用前必须按规定进行检验。拌制混凝土宜采用中、粗砂,不应采用粉砂和细砂。
3.矿物掺合料。粉煤灰必须符合国家Ⅱ级灰的标准,掺量不宜超过水泥用量的15%;矿渣粉掺量不宜超过水泥用量的30%;沸石粉不宜超过水泥用量的10%;采用复合矿物掺合料时,其掺量不宜超过水泥用量的30%。掺合料的总量不应大于水泥用量的50%。4.外加剂。选用外加剂时,必须根据工程具体情况先做水泥适应性及实际效果试验。
5.水。应符合《混凝土拌和用水标准》JGJ63的规定,当使用混凝土搅拌站中的回收水时,应经过沉淀,去除砂石、泥浆澄清后方可使用。
6.混凝土配合比应按《普通混凝土配合比设计规程》JGJ55规定,根据要求的强度等级、抗渗等级、耐久性及工作性能等进行配合比设计。
7.预拌混凝土中应控制中粗骨料(石子)的用量,对于现浇混凝土楼板,每立方粗骨料的用量不少于1000kg。8.预拌混凝土中应控制混凝土的砂率,混凝土的砂率宜控制在40%以内。现浇楼板的混凝土应采用中粗砂,严禁用细砂。9.坍落度在满足施工要求的条件下,尽量采用较小的混凝土坍落度;楼板、屋面的混凝土坍落度宜小于120mm;高层建筑混凝土楼板坍落度根据高度宜控制在小于180mm,多层及高层建筑底部的混凝土楼板坍落度宜控制在小于150mm。
10.严格控制现浇楼板混凝土单方用水量≤180kg/m3。11.水泥用量,普通强度等级的混凝土宜为270~450kg/m3,高强混凝土不宜大于550kg/m3。
12.水胶比应尽量采用较小的水胶比,混凝土水胶比不宜大于0.6。
三、施工
1.根据施工现场的实际,认真编制混凝土浇筑方案,尽量避开当日高温时段。选择混凝土的配合比,测定其坍落度损失值,科学合理地确定浇筑顺序和施工缝的留置。
2.预拌混凝土现浇楼板、屋面板宜采用对混凝土收缩影响较小的减缩剂。
3.预拌混凝土现浇楼板中可采用添加纤维措施增加混凝土的抗拉强度,控制混凝土的裂缝。
4.预拌泵送混凝土进场时按检验批检查入模坍落度,当有离析时应进行二次搅拌,搅拌时间由试验室确定。严禁向运输到浇筑地点的混凝土中任意加水。
5.严格控制现浇板的厚度和现浇板中钢筋保护层的厚度。阳台、雨蓬等悬挑现浇板的负弯矩钢筋下面,应设置间距不大于300mm的钢筋保护层垫块,在浇筑混凝土时保证钢筋不位移。
6.加强楼面上层钢筋网的有效保护措施。楼面双层双向钢筋(包括分离式配置的负弯矩短筋)必须设置钢筋小撑马,其纵横向间距不应大于700mm(即每_不得不少于2只);对于Ф8一类细小钢筋,小撑马的间距应控制在600mm以内(即每_不得少于3只)。7.由于混凝土的泌水、骨料下沉,易产生塑性收缩裂缝,此时应对混凝土浇板表面进行压实抹光;在混凝土的初凝前进行二次振捣,在混凝土终凝前进行两次压抹。
8.加强混凝土现浇板的养护和保温,控制结构与外界温度梯度在250C范围内。混凝土浇筑后应在12h内进行覆盖和浇水养护,养护时间不得小于7d;对掺用缓凝型外加剂的混凝土,不得小于14d。夏季应适当延长养护时间,以提高抗裂能力。冬季应适当延长保温和脱模时间,使其缓慢降温,以防温度骤变、温差过大引起裂缝。9.现浇板养护期间,当混凝土强度小于1.2Mpa时,不得在其上踩踏或安装模板及支架。当混凝土强度小于10MPa时,不得在现浇板上吊运、堆放重物。吊运、堆放重物时应减轻对现浇板的冲击影响。10.施工缝的位置和处理、后浇带的位置和混凝土浇筑应严格按设计要求和施工方案执行。后浇带应设在对结构受力影响较小的部位,宽度不宜小于800mm。后浇带的混凝土浇筑应在其两侧混凝土龄期至少60d后进行,混凝土强度等级宜较其两侧混凝土高一个等级,并应采用补偿收缩混凝土进行浇筑,其湿润养护时间不少于15d。11.模板及其支架的选用必须经过计算,除满足强度要求外,还必须有足够的刚度和稳定性,能可靠地承受浇筑混凝土的自重、侧压力、施工过程中产生的荷载,以及上层结构施工时产生的荷载。边支撑立杆与墙间距不得大于300mm,中间不宜大于800mm。根据工期要求,配备足够数量的模板,保证按规范要求拆模。
12.已拆除模板及其支架的结构,在混凝土强度达到设计要求的强度后方可承受全部使用荷载;当施工荷载所产生的效应比使用荷载的效应更为不利时,必须经过核算并加设临时支撑。13.现浇板的板底装饰时宜采用免粉刷措施。
第五篇:加强钢筋混凝土楼面裂缝分析与防治措施
加强钢筋混凝土楼面裂缝分析与防治措施
摘要:本文通过对全现浇钢筋混凝土楼屋面板的裂缝产生的原因进行分析,结合多年来大量施工实践中的经验和教训,提出多种裂缝的预防和处理方法,来减少住宅工程现浇楼板裂缝发生,避免出现混凝土的贯通性裂缝等裂缝,提高混凝土施工技术水平。关键词:全现浇钢筋混凝工程建筑住宅工程楼面裂缝防治措施 目前在建筑行业来说,质量较难克服的通病之一。因而,全现浇钢筋混凝土楼屋面板裂缝产生也是常见的问题,特别是住宅工程楼板的裂缝发生后,往往会引起的投诉、纠纷、以及索赔要求等。针对这一问题抓住主要几个矛盾,从设计、材料、施工三大方面提出改进和防治措施,现结合多年来大量施工实践中的经验和教训,以及裂缝的防治处理,重点介绍以施工为主、兼顾设计和材料原因分析楼面裂缝的综合性防治及具体措施。1设计重点与加强改善
经过仔细分析,我们回看到住宅工程现浇楼板裂缝发生的部位最常见、最普遍和数量最多的是房屋四周阳角处(含平面形状突变的凹口房屋阳角处)的房间在离开阳角1米左右,即在楼板的分离式配筋的负弯矩筋以及角部放射筋未端或外侧发生45度左右的楼地面斜角裂缝,此通病在现浇楼板的任何一种类型的建筑中都普遍存在。其原因主要是砼的收缩特性和温差双重作用所引起的,并且愈靠近屋面处的楼层裂缝往往愈大。从设计角度看,现行设计规范侧重于按强度考虑,未充分按温差和混凝土收缩特性等多种因素作
综合考虑,配筋量因而达不到要求。而房屋的四周阳角由于受到纵、横二个方向剪力墙或刚度相对较大的楼面梁约束,限制了楼面板砼的自由变形,因此在温差和砼收缩变化时,板面在配筋薄弱处(即在分离式配筋的负弯矩筋和放射筋的未端结束处)首先开裂,产生45度左右的斜角裂缝。虽然楼地面斜角裂缝对结构安全使用没有影响,但在有水源等特殊情况下会发生渗漏缺陷,容易引起住户投诉,是裂缝防治的重点。根据上面的原因分析,近几年的图纸会审中,十分注意建议业主和设计单位对四周的阳角处楼面板配筋进行加强,负筋不采用分离式切断,改为沿房间(每个阳角仅限一个房间)全长配置,并且适当加密加粗(即按照技术导则一的第6条中的前半条文采用)。多年来的实践充分证明,凡采纳或按上述设计的房屋,基本上不再发生45度斜角裂缝,已能较满意地解决好楼板裂缝中数量最多的主要矛盾,效果显著。
对于外墙转角处的放射形钢筋,我公司根据实践检验,认为作用较小。其原因是放射形钢筋的长度一般不大(约1.2米左右),当阳角处的房间在不按双层双向钢筋加密加强而仍按分离式设置构造负弯矩短筋时,45度的斜向裂缝仍然会向内转移到放射筋的未端或外侧,而当采用了双层双向钢筋加密加强后,纵、横二个方向的钢筋网的合力已能很好地抵抗和防止45度斜角裂缝的发生和转移,并且放射形钢筋往往只有上部一层,在绑扎时常搁置在纵横板面钢筋的上方,导致钢筋交叉重叠,将板面的负弯矩钢筋下压,减少了板面负弯矩钢筋的有效高度,同时浇筑时钢筋弯头(即拐脚)
容易翘起造成平仓困难,所以建议重点加强加密双层双向钢筋即可。
2商品砼的性能改善
目前,在整个行业来说已普遍采用泵送商品砼进行浇筑,但受剧烈的市场竞争,导致各商品砼厂商以采用大粉煤灰掺量,低价位、低性能的砼处掺剂,以及细度模数低、含泥量较高的中细砂作为降低价格和成本的主要竞争手段。因此建议有关部门牵头,尽快健全和统一对商品砼厂商的行业管理,并根据成本投入比例,相应和合理地提高商品砼的市场价格(特别是用于地下室和住宅楼面工程的砼),促使商品砼厂商转变观念,控制好原材料质量,选用高效优质砼外掺剂,改善和减小混凝土的收缩值,建立好控制体系(即按技术导则中第二条执行),是一项改善商品砼质量和性能的根本性工作。
另一方面承包商在订购商品砼时,应根据工程的不同部位和性质提出对砼品质的明确要求,不能片面压价和追求低价格、低成本而忽视了砼的品质,导致砼性能下降和收缩裂缝增多。同时现场应逐车严格控制好商品砼的坍落度检查,以保证砼熟料的半成品质量。3施工过程技术控制措施
楼面裂缝的发生除以阳角45度斜角裂缝为主外,其他还有较常见的两类:一类是预理线管及线管集散处,另一类为施工中周转材料临时较集中和较频繁的吊装卸料堆放区域。现从施工角度进行综合分析,并分类采取以下几项主要技术措施。
(一)重点加强楼面上层钢筋网的有效保护措施。
钢筋在楼面砼板中的抗拉受力,起着抵坑外荷载所产生的弯矩和防止砼收缩和温差裂缝发生的双重作用,而这一双重作用均需钢筋处在上下合理的保护层前提下才能确保有效。在实际施工中,楼面下层的钢筋网在受到砼垫块及模板的依托下保护层比较容易正确控制。但当垫块间距放大到1.5米时,钢筋网的合理保护层厚度就无法保障,所以纵横向的垫块间距限制在1米左右。与此相反,楼面上层钢筋网的有效保护,一直是施工中的一大较难问题。其原因为:板的上层钢筋一般较细较软,受到人员踩踏后就立即弯曲、变形、下坠;钢筋离楼层模板的高度较大,无法受到模板的依托保护;各工种交叉作业,造成施工人员众多、行走十分频繁,无处落脚后难免被大量踩踏;上层钢筋网的钢筋小撑马设置间距过大,甚至不设(仅依靠楼面梁上部钢筋搁置和分离式配筋的拐脚支撑)。
在上述四个原因中,前二条是客观存在,不可能也难于提出措施加以改进(否则楼面负筋用钢量将大大增加,造成浪费)。但后二个原因却在施工中必须大大加以改进,对于最后一个原因,根据大量的施工实践,建议楼面双层双向钢筋(包括分离式配置的负弯矩短筋)必须设置钢筋小撑马,其纵横向间距不应大于700毫米(即每平方米不得少于2只),特别是对于φ8一类细小钢筋,小撑马的间距应控制在600毫米以内(即每平方米不得少于3只),才能取得较良好的效果。对于第3条原因,可采取下列综合措施加以
解决:
a、尽可能合理和科学地安排好各工种交叉作业时间,在板底钢筋绑扎后,线管予埋和模板封镶收头应及时穿插并争取全面完成,做到不留或少留尾巴,以有效减少板面钢筋绑扎后的作业人员数量。
b、在楼梯、通道等频繁和必须的通行处应搭设(或铺设)临时的简易通道,以供必要的施工人员通行。
c、加强教育和管理,使全体操作人员充分重视保护板面上层负筋的正确位置,必须行走时,应自觉沿钢筋小马撑支撑点通行,不得随意踩踏中间架空部位钢筋。
d、安排足够数量的钢筋工(一般应不少于3-4人或以上)在砼浇筑前及浇筑中及时进行整修,特别是支座端部受力最大处以及楼面裂缝最容易发生处(四周阳角处、预埋线管处以及大跨度房间处)应重点整修。
e、砼工在浇筑时对裂缝的易发生部位和负弯矩筋受力最大区域,应铺设临时性活动挑板,扩大接触面,分散应力,尽力避免上层钢筋受到重新踩踏变形。
(二)预埋线管处的裂缝防治
预埋线管,特别是多根线管的集散处是截面砼受到较多削弱,从而引起应力集中,容易导致裂缝发生的薄弱部位。当预理线管的直径较小,并且房屋的开间宽度也较小,同时线管的敷设走向又不重于(即垂直于)砼的收缩和受拉方向时,一般不会发生楼面裂缝。
反之,当预埋线管的直径较大,开间宽度也较大,并且线管的敷设走向又重合于(即垂直于)砼的收缩和受拉力向时,就很容易发生楼面裂缝。因此对于较粗的管线或多根线管的集散处,应按技术导则三的第4条要求增设垂直于线管的短钢筋网加强。根据我公司的经验,建议增设的抗裂短钢筋采用φ6-φ8,间距≤150,两端的锚固长度应不小于300毫米。
线管在敷设时应尽量避免立体交叉穿越,交叉布线处可按技术导则三的第4条采用线盒,同时在多根线管的集散处宜采用放射形分布,尽量避免紧密平行排列,以确保线管底部的砼灌筑顺利和振捣密实。并且当线管数量众多,使集散口的砼截面大量削弱时,宜按予留孔洞构造要求在四周增设上下各2φ12的井字形抗裂构造钢筋。
(三)材料吊卸区域的楼面裂缝防治
目前在主体结构的施工过程中,普遍存在着质量与工期之间的较大矛盾。一般主体结构的楼层施工速度平均为5-7天左右一层,最快时甚至不足5天一层。因此当楼层砼浇筑完毕后不足24小时的养护时间,就忙着进行钢筋绑扎、材料吊运等施工活动,这就给大开间部位的房间雪上加霜。除了大开间的砼总收缩值较小开间要大的不利因素外,更容易在强度不足的情况下受材料吊卸冲击振动荷载的作用而引起不规则的受力裂缝。并且这些裂缝一旦形成,就难于闭合,形成永久性裂缝,这种情况在高层住宅主体快速施工时
较常见。对这类裂缝的综合防治措施如下:
a、主体结构的施工速度不能强求过快,楼层砼浇筑完后的必要养护(一般不宜≤24小时)必须获得保证。主体结构阶段的楼层施工速度宜控制在6-7天一层为宜,以确保楼面砼获得最起码的养护时间。
b、科学安排楼层施工作业计划,在楼层砼浇筑完毕的24小时以前,可限于做测量、定位、弹线等准备工作,最多只允许暗柱钢筋焊接工作,不允许吊卸大宗标材料,避免冲击振动。24小时以后,可先分批安排吊运少量小批量的暗柱和剪力墙钢筋进行绑扎活动,做到轻卸、轻放,以控制和减小冲击振动力。第3天方可开始吊卸钢管等大宗材料以及从事楼层墙板和楼面的模板正常支模施工。
c、在模板安装时,吊运(或传递)上来的材料应做到尽量分散就位,不得过多地集中堆放,以减少楼面荷重和振动。d、对计划中的临时大开间面积材料吊卸堆放区域部位(一般约40平方米左右)的模板支撑架在搭设前,就预先考虑采用加密立杆(立杆的纵、横向间距均不宜大于800毫米)和搁栅增加模板支撑架刚度的加强措施,以增强刚度,减少变形来加强该区域的抗冲击振动荷载,并应在该区域的新筑砼表面上铺设旧木模加以保护和扩散应力,进一步防止裂缝的发生。
(四)加强对砼早期的妥善养护
砼的保湿养护对其强度增长和各类性能的提高十分重要,特别是
早期的妥善养护可以避免表面脱水并大量减少砼初期伸缩裂缝发生。但实际施工中,由于抢赶工期和浇水将影响弹线及施工人员作业,因此楼面砼往往缺乏较充分和较足够的浇水养护延续时间。为此,施工中必须坚持覆盖麻袋或草包进行一周左右的妥善保湿养护,并建议采用喷hl等品种和养护液进行养护,达到降低成本和提高工效,并可避免或减少对施工的影响。4 对产生裂缝后的修补处理措施
在采取了上述综合性防治措施后,由于各种原因仍可能有少量的楼面裂缝发生。当这些楼面裂缝发生后,应在楼地面和天棚粉刷之前预先作好妥善的裂缝处理工作,然后再进行装修。根据我公司的经验,住宅楼地面上部的粉刷找平层较厚,可以通过在找平层中增设钢丝网、钢板网或抗裂短钢筋进行加强,并且上部常被木地板等装饰层所遮盖,问题相对较小。但板底则粉刷层较薄,并且通常无吊顶遮盖,更易暴露裂缝,影响美观并引起投诉,所以板底更应妥善处理。板底袭缝宜委托专业加固单位采用复合增强纤维等材料对裂缝作粘贴加强处理(注:当遇到裂缝较宽、受力较大等特殊情况时,建议采用碳纤维粘贴加强)。复合增强纤维的粘贴宽度以350-400毫米为宜,既能起到良好的抗拉裂补强作用,又不影响粉刷和装饰效果,是目前较理想的裂缝弥补措施。