第一篇:钢筋混凝土连续箱梁的裂缝分析与处理
钢筋混凝土连续箱梁的裂缝分析与处理 裂缝产生的原因分析
影响裂缝产生的原因很多,有地基沉降、支架系统变形、混凝土收缩、温差、材料质量和施工质量等原因,当然也有设计原因。
1.1 混凝土收缩裂缝
混凝土是由气、液、固三相组成的假固体(指浇注过程到保养),其中尚有未水化的水泥颗粒,还要吸收周围的水份。液固相间的胶凝体,因水份散失,体积会缩小,引起收缩裂缝:
①箱梁的体积与表面积比值小,混凝土收缩大,易产生裂缝。
②箱梁混凝土浇筑均采用泵送混凝土,由于泵送混凝土施工工艺要求坍落度大,混凝土用水量和水泥用量较大,湿润养护如不及时,混凝土中的水泥水化物因部分失水而干缩,导致水泥混凝土
表面的干缩裂缝。
③由于温差作用,混凝土顶部温度较高、底部温度较低,顶部混凝土收缩受到下部混凝土的约束产生裂缝;由于泵送混凝土时,温度较高,同时内部水化热进一步升温,而外部环境温度较低时,形成了较大的内外温差,从而使混凝土表面开裂。
1.2 地基基础沉降差异产生的裂缝
①因地基持力层或桩壁土层的变化,容许承载力的差异导致早期
或晚期裂缝。
②由于基础本身施工时处理不当,处理不均匀,致使箱梁浇筑后基础在外荷载作用下发生不均匀沉降导致早期或晚期裂缝。1.3 支架系统变形产生的裂缝
①由于支撑立杆(或立柱)不均匀分布,各部分刚度分布不一致,使其杆件的弹性变形不均匀,导致早期裂缝。
②支架的地基不均匀沉降引起现浇箱梁的早期裂缝。
1.4 施工管理不善产生裂缝
①拌制混凝土时不按配合比计量,任意加水,浇筑的质量不均匀,收缩不统一产生裂缝。
②混凝土从搅拌到浇筑的时间过长,致使大量网状不规则的裂缝
产生。
③混凝土养护差,混凝土在高温和大风的影响下,常产生早期裂缝,裂缝常发生在梁的薄弱处(据有关资料表明:周围温度高于30℃,水份蒸发很快,当风速增至11.1m/s的大风时,水份蒸
发速度快7倍)。
④有的施工处理不当,没有按规定处理就浇筑新混凝土,造成施工缝处新老结合处夹渣和裂缝。
⑤箱梁混凝土过早受力产生裂缝,由浇筑方法本身不够严密或者提早拆模或过早落架使梁过早受力,这种情况经常发生。
⑥野蛮施工,用重物撞击等造成裂缝。
1.5 材料差异造成的裂缝
①使用不合格水泥出现早期不规则的短缝。
②砂、石的含泥量超过规定,不仅降低混凝土的强度和抗渗性,还会使混凝土干燥时产生不规则的网状裂缝。③砂、石的级配差,有的砂粒过细,用这种材料拌制的混凝土常
造成梁侧面裂缝。
1.6 化学反应导致裂缝
①使用反应骨料或风化岩石引起裂缝。骨料中含有泥性硅物质与碱性物质相遇,则水、硅、碱反应生成膨胀的胶质,吸收水后造成局部膨胀和拉应力,则构件产生爆裂状裂缝,在潮湿的地方较
为多见。
②酸、盐类腐蚀。混凝土中含氯量超过规定后,一段时间后沿钢
筋方向产生裂缝。
③碳化收缩裂缝。空气中的CO2与水泥石中Ca(OH)2等分子相互作用生成碳酸钙(CaCO3),同时放出结合水,使混凝土体积缩小,引发细丝裂纹网。
1.7 设计原因(仅供参考)
①构件结构面积不足时,在扭曲或局部应力作用下,会导致在构
件较弱的部位产生裂缝。
②钢筋含筋量过大或保护层太小,会引起沿钢筋纵向方向的裂
缝。预防措施
2.1 施工管理不善产生的裂缝和混凝土收缩
①搅拌混凝土要先做配合比,施工时严格按照配合比计量,控制用水量,确保混凝土强度及坍落度一致。
②采用高效减水剂,在满足混凝土坍落度的前提下降低水泥用量
及含水量。
③浇筑混凝土时,前、后方配合好,设专人负责,随拌随用。
④混凝土浇筑好后要进行二次抹平压实,以消除沉缩裂缝。
⑤浇筑好的混凝土箱梁在12小时内加以覆盖和洒水,以保持混凝土的湿润状态,一般不小于7天,必要时采用养护液喷洒或用塑料膜覆盖封闭,防止水分蒸发,以利于混凝土的养护。
⑥严格按照《钢筋混凝土施工及验收规范》预留和处理施工缝,并尽量缩短施工缝上下两部分混凝土的施工时间差,以减少由于两部分不同量收缩而产生的相互作用力。已浇筑混凝土的抗压强度大于1.2MP后清除混凝土表面的水泥薄膜和松动石子及弱混凝土层,用水冲洗干净,且不积水,浇筑前,宜先铺一层水泥浆,将混凝土捣实,使新、老混凝土紧密结合。
⑦混凝土浇筑程序要充分论证,避免已初凝的混凝土过早受力造
成裂缝。
⑧在暑期昼夜温差较大,混凝土浇筑安排尽量避开高温阶段。
⑨在暑期使用砂、石料尽量遮阳、洒水等措施降低拌和时的温度。
⑩严格控制拆模和落架时间,避免使梁过早受力。并严禁在拆除
底模的梁上堆放重物。
2.2 地基沉降和支架原因产生的裂缝
①支架的地基要处理均匀,并对下卧层的不良土层进行处理。
②支架设计时应尽量分布均匀,其杆件的刚度应尽量保持一致。并进行预压,设计合理的预拱度。2.3 材料质量差异引起的裂缝
①水泥进场必须有出厂合格证,并对其抽样试验,以满足其抗压、抗折强度及安定性要求。应使用水化热较低的硅酸盐水泥,不应
使用水化热较高的水泥。
②砂必须选用材质坚硬、干净的中粗砂;粗骨料的最大粒径、级配、强度均要满足规范要求,并要严格控制含泥量。
2.4 化学反应导致的裂缝
①尽量不用碱集料反应性骨料。
②冬季施工时严格控制混凝土中的含氯量。
③提高外露部分混凝土的强度等级,加强混凝土表面的压实抹光
工序。裂缝的处理
本文介绍两种裂缝处理方法,一般来讲对混凝土收缩裂缝等这些对梁体结构本身受力影响并不大,为了防止钢筋生锈而进行的裂缝处理,或者裂缝较小,象这类裂缝一般采用压注环氧树脂进行粘合封闭;另一种则是因箱梁过早受力和部分设计原因等引起的裂缝,这种裂缝一般采用环氧砂浆进行封堵。
3.1 环氧树脂法
①首先对混凝土裂缝的基层表面进行处理,在裂缝表面用钢丝刷将其表面的灰尘、浮渣、油垢等清除,并沿缝用丙酮擦洗,晾晒干燥,且其含水率不能大于6%。
②环氧树脂胶料配制 称取定量的环氧树脂,按胶料配合比加入稀释剂二甲苯与环氧树脂均匀拌和,待温度降至常温后,再加入固化剂乙二胺充分搅拌就配制成了环氧树脂胶料。配制好的环氧树脂胶料,至加入固化剂起,必须在30分钟内处理完毕。
③环氧树脂胶料的配合比(重量比):
环氧树脂∶二甲苯∶乙二胺=100∶40∶8
④最后用玻璃布或嵌刀将环氧树脂胶泥仔细批嵌封闭。
⑤材料要求:
a.环氧树脂采用E-44#(旧称6101),其软化点为12~20℃、环氧值(当量/100g)为0.41~0.47,为淡黄色至棕黄色粘稠透明液体。
b.乙二胺:纯度大于70%,为无色透明液体。
3.2 环氧砂浆封堵法
①处理步骤
a.混凝土基层表面清理,沿缝凿宽8~10mm,深度大于10mm,用钢丝刷沿缝槽将灰尘、浮渣及松散层彻底清除,用丙酮将其油垢擦洗干净、晾晒,其含水率不大于6%。
b.在清洁的混凝土槽内,薄而均匀地涂刷环氧底胶料,不得有漏涂和留坠现象。
c.涂完底胶料后,自然固化12小时后,然后用玻璃布或嵌刀将环氧砂浆分层封堵,每层厚度不大于5mm,用沟缝条压平压实。
d.环氧砂浆自然固化24小时后,用环氧底胶料封闭,封闭宽度应大于环氧砂浆缝宽,且每边要超出2~3mm。
e.封堵后要保持干燥,用碘钨灯烘烤。
②配合比(重量比)
a.环氧底胶料
环氧树脂∶二甲苯∶乙二胺=100∶60∶8 b.环氧砂浆配合比
环氧树脂∶二甲苯∶乙二胺∶石英粉∶石英砂=100∶60∶8∶100∶150 ③配制方法
a.环氧底胶料的配制方法与环氧树脂胶料的配制方法一样,只不过配合比不同而已。
b.环氧砂浆的配制:先将石英粉、石英砂按比例拌匀,然后将前面拌制好的环氧底胶料倒入已好的混合料中充分搅拌均匀即可。
④注意要点:
a.配制好的环氧砂浆自加入固化剂起计时,必须要在40分钟内用完。
b.裂缝基层清理完成的缝或槽,必须经检查合格后方能进行封堵
第二篇:钢筋混凝土连续箱梁裂缝成因的分析及控制
钢筋混凝土连续箱梁裂缝成因的分析及控制
丛培新
辽宁省路桥建设三公司
摘要:对钢筋混凝土连续箱梁裂缝的成因进行分析,并结合已有工程实践,提出了控制预防裂缝产生、发展的措施。
关键词:钢筋混凝土连续箱梁 裂缝 成因 控制预防措施
1、概述
在城市立交和现今高速公路设计中,为满足线型的需要,保证立交线型美观,桥梁结构常常设计为连续箱梁,当桥梁的跨度小于25m时,通常最经济的结构形式为钢筋混凝土结构。在工程实践中,常常会发生钢筋混凝土箱梁的裂缝超过限度的情况,本文就钢筋混凝土箱梁裂缝的成因及工程设计中采用的预防措施谈一些看法。
2、钢筋混凝土箱梁裂缝成因 2.1钢筋混凝土箱梁裂缝概念
混凝土最主要的缺点是抗拉能力差,容易开裂。理论上讲钢筋混凝土构件均是带裂缝工作的,只有混凝土受拉,钢筋才能受力,只是混凝土受拉裂缝很细,甚至肉眼看不见(<0.05mm)一般对结构的使用无大的危害,可允许其存在。《公路桥梁设计规范》(JTJ024-2000)对钢筋混凝土结构的裂缝宽度有明确的规定,在一般正常大气下不应超过0.25mm,处于严重暴露情况(有侵蚀性气体或海洋大气下)不应超过0.1mm。
钢筋混凝土结构裂缝宽度超过限定时,在使用荷载外界物理、化学因素的作用下,裂缝不断产生和扩展,引起混凝土碳化、保护层剥落、钢筋腐蚀,使混凝土的强度和刚度受到削弱,耐久性降低,严重时甚至发生垮塌事故,危害结构的正常使用。
2.2钢筋混凝土箱梁裂缝,按基产生的原因可分为以下几类:
(1)由荷载效应(如弯距、剪力、扭矩及拉力等)引起的裂缝;(2)由外加变形或约束引起的裂缝,主要包括地基不均匀沉降、混凝土的收缩、外界温度的变化;(3)钢筋锈蚀裂缝;(4)建材原因引起的裂缝;(5)施工原因引起的裂缝。
2.3钢筋混凝土箱梁裂缝的原因 2.3.1由荷载效应引起的裂缝
在设计中计算考虑不周,配筋不合理,结构尺寸不足,构造处理不当,刚度不足,施工阶段不按图纸施工,使用阶段超出设计荷载的重型车辆过桥等均可使箱梁产生受力裂缝。受力裂缝一般是与受力钢筋以一定角度相交的横向裂缝,以及由于局部粘结应力过大引起的,沿钢筋长度出现的粘结裂缝,这种裂缝通常是针角状及劈裂裂缝。
2.3.2地基基础变形引起的裂缝
对于全脚手架施工的钢筋混凝土连续箱梁,地基基础的变形为支架变形、支架地坪变形和桥墩基础竖向不均匀沉降,这些均可使结构中产生附加应力,超出混凝土结构的抗拉能力,导致结构开裂。
2.3.3温度变化引起的裂缝 混凝土具有热胀冷缩性质,当外部环境或结构内部温度发生变化,混凝土将发生变化,若变形遭到约束,则在结构内将产生应力,当应力超过混凝土抗拉强度时即产生温度裂缝。在某些大跨径桥梁中,温度应力可以达到甚至超出活载应力。温度裂缝区别其北裂缝最主要特征是将随温度变化而扩张或合拢。引起温度变化主要因素有:(1)年温差;(2)日照;(3)骤然降温;(4)水化热。
2.3.4收缩引起的裂缝
在实际工程中,混凝土因收缩所引起的裂缝是最常见的。在混凝土收缩各类中,塑性收缩和缩水收缩(干缩)是发生混凝土体积变形的主要原因,另外还有自收缩和炭化收缩。
塑性收缩发生在施工过程中,混凝土浇筑后4~5h左右,此时水泥水化反应激烈,分子链逐渐形成,出现泌水和水分急剧蒸发,混凝土失水收缩,同时骨料因自重下沉,因此时混凝土尚未硬化,称塑性收缩。塑性收缩所产生量级很大,可达1%左右,在骨料下沉过程中若受到钢筋阻挡,便形成沿钢筋方向的裂缝。在构件竖向变截面处如T梁、箱梁腹板与顶底板交接处,因硬化前沉实不均匀将发生表面的顺腹板方向裂缝。为减少混凝土塑性收缩,施工时应控制水灰比,避免过长时间的搅拌,下料不宜太快,振捣要密实,竖向变截面分层浇筑。
缩水收缩(干缩)。混凝土结硬以后,随着表层水份逐渐蒸发,湿度逐步降低,混凝土体积减小,称为缩水收缩(干缩)。因混凝土表层水份损失快,内部损失慢,因此产生表面收缩大、内部收缩小的不均匀收缩。表面收缩变形受到内部混凝土的约束,致使表面混凝土承受拉力,当表面混凝土承受拉力超过其抗拉强度时,便产生收缩裂缝。混凝土硬化后收缩主要是缩水收缩。如配筋率较大的构件(超过3%),钢筋对混凝土收缩的约束比较明显,混凝土表面容易出现龟裂裂纹。
自由收缩。自由收缩是混凝土在硬化过程中,水泥与水发生水化反应,这种收缩与外界湿度无关,且可以是正的(即收缩,如普通硅酸盐水泥混凝土),也可以是负的(即膨胀,如矿渣水泥混凝土与粉煤灰水泥混凝土)。
炭化收缩。大气中的二氧化碳与水泥的水化物发生化学反应引起的收缩变形。炭化收缩只是在湿度50%左右才能发生,且随二氧化碳浓度的增加而加快,炭化收缩一般不做计算。
混凝土收缩裂缝的特点是大部分属表面裂缝,裂缝宽度较细,且纵横交错,成龟裂状,形状没有任何规律。
2.3.5钢筋锈蚀引起的裂缝
由于混凝土质量较差或保护层厚度不足,混凝土保护层受二氧化碳侵蚀炭化至钢筋表面,使周围混凝土碱度降低,或由于氯化物介入,钢筋周围氯离子含量较高,均可引起钢筋表面氧化物破坏,钢筋中铁离子与侵入到混凝土中的氧气和水分发生锈蚀反应,其锈蚀物氢氧化铁体积比原来增大2倍到4倍,从而对周围混凝土产生膨胀应力,导致保护层混凝土开裂、剥离,沿钢筋纵向产生裂缝,并有锈迹渗到混凝土表面。由于锈蚀,使钢筋有效断面面积减小,钢筋与混凝土握裹力削弱,结构承载力下降,并将诱发其它形式的裂缝,加剧钢筋锈蚀结构破坏。
2.3.6施工材料质量引起的裂缝
混凝土主要由水泥、砂、碎石、拌和水及外加剂组成。配置混凝土所采用材料质量不合格,可能导致结构出现裂缝。
2.3.7施工工艺质量引起的裂缝
在混凝土结构浇筑构件制作、起模、运输、堆放、拼装及吊装过程中,若施工工艺不合理、施工质量低劣,容易产生纵向的、横向的、竖向的、水平的、表面的、深进的和贯穿的各种裂缝。
3、控制钢筋混凝土连续箱梁裂缝的措施
在实际的施工中,可以在设计单位的参与和主持下,对混凝土连续箱梁可能出现裂缝的原因进行认真分析,采取了一些预先防止箱梁裂缝的措施,取得了很好的效果,现概括如下。
(1)对钢筋混凝土连续箱梁的受力裂缝采取以下措施:a.采用成熟的计算程序和计算方法,对影响裂缝的因素进行分析,在计算中可以考虑。b.在箱梁构造上采用构造措施,比如对支点附近腹板、底板适当加厚。c.在箱梁的腹板中布设1束-2束预应力钢绞线作为应力储备,其布置按吻合索布置。计算中不考虑,结构的计算分析理论采用钢筋混凝土结构。d.在箱梁可能开裂的部位预先配置钢筋,比如支点附近腹板与顶板连接部的翼缘板下缘等部位。e.采用全脚手架施工的钢筋混凝土连续梁,支点处为墩台支撑,其余部分为脚手架支撑,两者刚度相关较大,如果混凝土一次浇筑,在自重作用下支点部分变形大于其他部分,易使支点附近箱梁用腹板开裂,因此施工时混凝土宜分段浇筑,先浇筑中部分,后浇筑支点部分。
(2)对温度不均匀变化引起的裂缝,采取在箱梁腹板、底板上设置通气孔,减小箱梁内外温差,减小不均匀温差引起的裂缝。
(3)为防止混凝土的收缩裂缝,对箱梁的腹板外侧分布钢筋间距适当加密,同时采用较小的分布钢筋直径。
(4)地基基础变形引起的裂缝,采取以下措施:对脚手架地坪进行加固处理,支架搭设好后应进行预压,预压重等于箱梁恒载自重,同时对桥墩基础沉降量进行控制,以保证各墩台基础的沉降量在一定的范围,并且各墩台基础的沉降差不能超过限定值。
(5)为保证混凝土质量,必须严格控制砂石的含泥量。
(6)加强配合施工,及时进行施工交底,在施工现场配合设计单位优化施工工艺。4 结束语
以上是本人在工作中的一些看法,若有不当之处,还望各位专家同仁们指正。
第三篇:现浇箱梁裂缝处理方案
现浇箱梁裂纹处理方案
1、工程描述
云浮铁路桥现浇箱梁段单幅共一联四跨,采用先浇注底板再浇注顶板的分层施工方法,砼浇注时采用天泵入模,连续均衡施工。左幅段第一施工段顶板内侧产生少量裂纹。裂纹位置不规则,主要在顶板与腹板处。第一施工段施工时间是2009年2月11日,2月16日发现裂纹,2月17日开始进行观测。
2、裂纹产生的原因分析
由于施工时温差较大砼水化热产生的温度较高,在砼浇注后箱梁内侧顶板养护不及时,产生数条细小(≤0.1mm)裂纹。
3、裂纹的观测情况
裂纹出现的位置在内箱顶板上,其长度在0.2-1m不等,现场对每条裂纹做了标示。通过放大镜对每条裂纹进行长达4个月观测,其长度和宽度均未变化(具体见裂纹观测变化表),凿开裂纹确定其深度,裂纹深度在5mm以内。
4、处理方法
根据《公路桥涵施工技术规范》、《评定标准》及《公路钢筋混凝土及预应力混凝土桥涵设计规范》对裂纹的容许宽度为不大于0.15mm。
从耐久性考虑,对裂纹处混凝土表面进行清洗,采用环氧树脂封闭处理。处理方法是否合理,请总监办批示。
广梧四标项目部 2009-7-2
第四篇:预应力钢筋混凝土现浇连续箱梁施工方案
(1)预应力钢筋混凝土现浇连续箱梁施工工艺
①基础处理:箱梁施工前,首先将桥跨处场地推平、碾压,压实度达到95%以上,个别软弱地基填以灰或砂砾,分层夯实,确保地基承载能力200KN/平方米。然后根据支架设计间距放出支架基础位置,上铺5厘米细砂,在细砂上沿横桥向铺设钢板桩,钢板桩口朝上,做为支架条形基础。
②箱梁模板支架采用碗扣式满堂支架,支架在纵向每隔1.2米布设一道,横桥向在底板处间距1.3米,腹板下0.3米,翼缘板处1.5米。支架下部为螺旋调整底杆,顶端为螺旋调整顶托,长度分别为50厘米。碗扣支架搭设后,均有纵横向连杆,保证支架结构稳定。支架顶端用50型轻轨做为横梁。
③箱梁底模采用钢柜架式大型底模,上镶4厘米木板,木板上铺2毫米厚钢板,在支架搭设好后,根据桥轴线对支架进行调整,然后安装箱梁底模,并进行轴线和标高调整,均满足要求后再安装箱梁侧模板,侧模板从梁一端顺序安装,要求接缝严密,相邻模板接缝平整。箱梁侧模板采用柜架上镶高强防水胶合板,以确保箱梁外观质量,箱梁内模均采用木支架,组合钢模板和木模板拼装。
④支架、模板预压:用相当于浇筑段箱梁重量的80%对支架模板进行预压,以消除支架体系的非弹性压缩。待此非弹性压缩稳定后即撤除预压。
⑤钢筋由钢筋班下料成型,先绑扎底板钢筋,再绑扎横隔板和腹板钢筋,绑扎定位牢固后,支内腹板模板和堵头模板,经驻地监理工程师中间检查合格后,方可浇筑砼。
⑥第一次浇注砼至腹板与翼缘板接合处,是指底板、腹板和横隔板的砼,砼在浇注中,采用拌合楼集中拌制、6立方米罐车运输,砼泵车输送入模,插入式振捣器振捣,在浇注腹板时,要掌握好浇注厚度,浇注顺序由一端向另一端斜坡式浇注,振捣时要控制好时间,不要振坏模板。和翼缘板接合处要抹平,使二次浇注接头整齐美观。浇注后应及时养生。
⑦拆除内腹板模板,安装箱顶板底模,结构体系为钢(木)支撑组合钢模,在顺桥向每箱室零弯距点外顶板上予开一天窗,以便拆除和取出箱体顶板底模。
⑧绑扎顶板钢筋,设置控制砼面顶面标高点,经驻地监理工程师检查合格后,浇注第二次砼。浇注顶板砼时在顶板钢筋上布设行夯轨道,控制顶板标高,顶板表面一定要进行二次收浆抹面,拉毛,及时养生,防止大面积裂缝。
⑨张拉预应力钢绞线。在箱梁混凝土达到设计强度后进行张拉预应力束,张拉前需以书面形式将张拉工艺、千斤顶校验情况、锚具及张拉钢材质量等资料递交工程师批准。张拉时采用吨位及张拉延伸量双控制,伸长量以张拉至10%设计吨位位置为起算零点,实测值与设计值误差不超过±6%。张拉程序为:0→10%δk→δk(持荷2min锚固)。预应力张拉完后,一天内进行孔道压浆和封锚。
⑩在箱梁砼达到80%设计强度以后,拆除内外模板支架体系。最后对于天窗采用吊模板,焊接钢筋网,用砼封死天窗口。
第五篇:钢筋混凝土箱梁施工工艺
钢筋混凝土箱梁施工工艺
①基础处理:箱梁施工前,首先将桥跨处场地推平、碾压,压实度达到95%以上,个别软弱地基填以灰或砂砾,分层夯实,确保地基承载能力200KN/平方米。然后根据支架设计间距放出支架基础位置,上铺5厘米细砂,在细砂上沿横桥向铺设钢板桩,钢板桩口朝上,做为支架条形基础。
②箱梁模板支架采用碗扣式满堂支架,支架在纵向每隔1.2米布设一道,横桥向在底板处间距1.3米,腹板下0.3米,翼缘板处1.5米。支架下部为螺旋调整底杆,顶端为螺旋调整顶托,长度分别为50厘米。碗扣支架搭设后,均有纵横向连杆,保证支架结构稳定。支架顶端用50型轻轨做为横梁。
③箱梁底模采用钢柜架式大型底模,上镶4厘米木板,木板上铺2毫米厚钢板,在支架搭设好后,根据桥轴线对支架进行调整,然后安装箱梁底模,并进行轴线和标高调整,均满足要求后再安装箱梁侧模板,侧模板从梁一端顺序安装,要求接缝严密,相邻模板接缝平整。箱梁侧模板采用柜架上镶高强防水胶合板,以确保箱梁外观质量,箱梁内模均采用木支架,组合钢模板和木模板拼装。
④支架、模板预压:用相当于浇筑段箱梁重量的80%对支架模板进行预压,以消除支架体系的非弹性压缩。待此非弹性压缩稳定后即撤除预压。
⑤钢筋由钢筋班下料成型,先绑扎底板钢筋,再绑扎横隔板和腹板钢筋,绑扎定位牢固后,支内腹板模板和堵头模板,经驻地监理工程师中间检查合格后,方可浇筑砼。
⑥第一次浇注砼至腹板与翼缘板接合处,是指底板、腹板和横隔板的砼,砼在浇注中,采用拌合楼集中拌制、6立方米罐车运输,砼泵车输送入模,插入式振捣器振捣,在浇注腹板时,要掌握好浇注厚度,浇注顺序由一端向另一端斜坡式浇注,振捣时要控制好时间,不要振坏模板。和翼缘板接合处要抹平,使二次浇注接头整齐美观。浇注后应及时养生。
⑦拆除内腹板模板,安装箱顶板底模,结构体系为钢(木)支撑组合钢模,在顺桥向每箱室零弯距点外顶板上予开一天窗,以便拆除和取出箱体顶板底模。
⑧绑扎顶板钢筋,设置控制砼面顶面标高点,经驻地监理工程师检查合格后,浇注第二次砼。浇注顶板砼时在顶板钢筋上布设行夯轨道,控制顶板标高,顶板表面一定要进行二次收浆抹面,拉毛,及时养生,防止大面积裂缝。
⑨在箱梁砼达到80%设计强度以后,拆除内外模板支架体系。最后对于天窗采用吊模板,焊接钢筋网,用砼封死天窗口。