第一篇:采矿工程毕业设计图纸及抄写质量要求
采矿工程毕业设计图纸及抄写质量要求
五、毕业设计图纸和说明书的规定
(一)毕业设计图纸
总纲:
图例比例化,比例规范化,汉字仿宋化、数字罗马化、图名专业化、线条清晰、图纸整洁、绘图正确、出图标准。
鼓励计算机绘图,但采煤方法图必须用钢笔手工或上墨手工绘制。亦可采用铅笔或上墨绘图,但至少要有一张由计算机绘制的图。五张大图技术标准和要求:
1、矿井开拓开面图:
1)比例为1:5000或1:10000,个别小矿可用1:2000。
2)初期工程量中,用实线表示煤巷,用点划线表示岩巷;后期工程量一律用虚线表示煤巷和岩巷。
3)初期工程量为矿井达到设计生产能力时所开掘的巷道及硐室的工程量,否则为后期工程量。
4)后期工程量(尤其是第二开采水平和以后开采水平)需画出井底车场、运输大巷等主要开拓巷道及各采区的下部车场或上部车场。如为带区布置,则只需画出各开采水平主要开拓巷道。
5)生产采区的上山及车场、以及它们与运输大巷及回风大巷的关系,可简化处理。
6)不可缺少下列线条:矿井边界线、不可采区域线、煤层底板等高线、采区分界线、经纬线、指北标记、煤层露头线、井筒保护煤柱线、开拓剖面线。
7)煤层底板等高线只画主采煤层,且只画一层。
8)剖面线必须标明,且需经过主副井筒,可为折线。
9)必须标明矿井达到生产能力时的工作面数目及位置,如不在同一主采煤层,则应按比例投影到平面图上。
10)平面图与剖面图上的巷道标号应统一,并以巷道名称表的形式写在平面图或剖面图上。
2、矿井开拓剖面图 1)采用的比例原则上同矿井开拓平面图。
2)初期工程时用实线表示,后期工程时用虚线表示。
3)必须形成完整的生产系统,风井应投影到剖面图适当的位置。4)不可缺少井筒保护煤柱边界线。
5)如为煤层群开采,应标出煤层序号。
3、采煤方法图
1)工作面层面图比例为1:50。
2)除工作面布置层面图外,在采煤方法图上还应有下列图表:工作面最大、最小控顶距剖面图、工作面上、下平巷超前支护段的巷道剖面图,该图应显示巷道与煤层顶底板的相对位置关系、工作面劳动组织表、工作面技术经济指标表。
3)在工作面布置层面或相关剖面图上,应标明下列参数:
超前工作面加强支护段距离、切口尺寸、最大、最小控顶距、煤层厚度、单体支柱的柱距、排距。
如为倾斜长壁工作面,在相关剖面图上还应标出煤层倾角。
4)在工作面布置层面图上,上下平巷的宽度应按巷道底板宽度。5)应以设备明细表标明工作面的主要设备。
4、采区或带区巷道布置平面图和剖面图
1)比例为1:2000,对小型矿井可用1:1000的比例。2)要按实际采区或带区的尺寸由开拓图放大。
3)必须形成完事的采区或带区生产系统,不能缺少主要硐室及通风构筑物。4)采区上、中、下部车场或带区的车场不能简化,尺寸要大致接近实际的图上尺寸。
5)采区或带区的主要设备不仅要按标准图例画出,而且在要放置在适当的地点。
6)要标明剖面线的位置。
7)按比例画出采区走向长、倾斜长和倾斜投影长、上山间距、煤层间距、煤柱尺寸、上山到煤层底板垂距等参数,但不需标出。带区的参数要求参照采区的参数。
8)必须画出接替的工作面即正在掘进的巷道。9)不可缺少煤层底板等高线。
10)如采区尺寸过大,大于零号图纸很多时,可用断开线省略,经纬网和煤层底板等高线也要相应断开。也可缩小比例画出采区全貌。
11)采区或带区巷道平面图与剖面图中的巷道标号应统一,并以巷道名称表的形式标明在平面图或剖面图上。
12)必须画出工作面停采线。
二、说明书
鼓励计算机打印,亦可采用钢笔手工抄写说明书,不许用圆珠笔抄写。1)采用法定计算单位。
2)文字要抄写认真,手工抄写或计算机打印的页面布置均要美观。
3)说明书中的巷道断面及井底车场所有插图不准出现复印件和透明纸图。4)专题部分应按科技论文格式独立完成。5)翻译部分:采矿科技方面文章不少于3000中文字。原文及译文都须装订到说明书中。
6)中、英文摘要:中文400字左右,并译成英文。
第二篇:采矿工程毕业设计
只要记分牌上的时间还跳动,就不能轻言放弃。目录
前言 1 1 矿区概述及井田特征 2 1.1 概述 2 1.1.1 矿区的地理位置及行政隶属关系 2 1.1.2 地形、地貌、交通等情况 2 1.1.3 气候地震等情况 3 1.2 井田及其附近的地质特征 3 1.2.1 井田的地层层位关系及地质构造 3 1.2.2 含煤系及地层特征 4 1.2.3 水文地质 5 1.3 煤质及煤层特征 5 1.3.1 井田内煤层及埋藏条件 5 1.3.2 煤层的含瓦斯性、自燃性、爆炸性 7 1.3.3 井田的勘探程度及进一步勘探要求 7 2 井田境界及储量 8 2.1 井田境界 8 2.1.1 井田范围 8 2.1.2 边界煤柱留设 8 2.1.3工业广场保护煤柱留设 8 2.1.4 边界的合理性 9 2.2 井田的储量 9 2.2.1 井田储量的计算原则 9 2.2.2 矿井工业储量 10 3 矿井的年产量、服务年限及一般工作制度 12 3.1 矿井年产量及服务年限 12 3.1.1 矿井的年产量 12 3.1.2 服务年限 12 3.1.3 矿井的增产期和减产期 产量增加的可能性 13 3.2 矿井的工作制度 13 4 井田开拓 14 4.1 井筒形式、位置和数目的确定 14 4.1.1 井筒形式的确定 14 4.1.2 井筒位置及数目的确定 15 4.2 开采水平的设计 19 4.2.1 水平划分的原则 19 4.2.2 开采水平的划分 20 4.2.3 设计水平储量及服务年限 23 4.2.4 设计水平的巷道布置 23 4.2.5 大巷的位置、数目、用途和规格 23 4.3 采区划分及开采顺序 24 4.3.1 采区形式及尺寸的确定 24 4.3.2 开采顺序 25 4.4 开采水平井底车场形式的选择 26 4.4.1 开采水平井底车场选择的依据 26 4.4.2 井底车场主要硐室 27 4.5 开拓系统综述 30 4.5.1 系统概况 30 4.5.2 移交生产时井巷的开凿位置、初期工程量 31 5 采准巷道布置 33 5.1 设计采区的地质概况及煤层特征 33 5.1.1 采区概况 33 5.1.2 煤层地质特征及工业储量 33 5.1.3 采区生产能力及服务年限 33 5.2 采区形式、采区主要参数的确定 34 5.2.1 采区形式 34 5.2.2 采区上山数目、位置及用途 34 5.2.3 区段划分 34 5.3 采区车场及硐室 35 5.3.1 车场形式 35 5.3.2 采区煤仓 35 5.4 采准系统、通风系统、运输系统 36 5.4.1 采准系统 36 5.4.2 通风系统 36 5.4.3 运输系统 36 5.5 采区开采顺序 36 5.6 采区巷道断面 37 6 采煤方法 39 6.1 采煤方法的选择 39 6.1.1 选择的要求 39 6.1.2 采煤方法 39 6.2 开采技术条件 39 6.3 工作面长度的确定 40 6.3.1 按通风能力确定工作面长度 40 6.3.2 根据采煤机能力确定工作面长度 41 6.3.3 按刮板输送机能力校验工作面长度 6.4 采煤机械选择和回采工艺确定 42 6.4.1 采煤机械的选择 42 6.4.2 配套设备选型 44 6.4.3 回采工艺方式的确定 44 6.5 循环方式选择及循环图表的编制 47 6.5.1 确定循环方式 47 6.5.2 劳动组织表 48 6.5.3 机电设备表 49 6.5.4 技术经济指标表 50 7 建井工期及开采计划 51
7.1 建井工期及施工组织 51 7.1.1 建井工期 51 7.1.2 工程排队及施工组织排队 52 7.2 开采计划 53 7.2.1 开采顺序及配产原则 53 7.2.2 开采计划 53 8 矿井通风 55 8.1 概述 55 8.2 矿井通风系统的选择 55 8.2.1 通风方式的选择 56 8.2.2 通风方法的选择 57 8.3 矿井风量的计算与风量分配 57 8.3.1 矿井总进风量 57 8.3.2 回采工作面所需风量的计算 58 8.3.3 掘进工作面所需风量 59 8.3.4 硐室所需风量的∑Qd的计算 60 8.3.5 其他巷道所需风量 61 8.3.6 风量的分配[17] 62 8.4 矿井总风压及等积孔的计算 62 8.4.1 计算原则 62 8.4.2 计算方法 64 8.4.3 计算等积孔 65 8.5 通风设备的选择 66 8.5.1 矿井主要扇风机选型计算 66 8.5.2 电动机选型计算 68 8.5.3 耗电量 68 8.6 灾害防治综述[13] 69 8.6.1 井底火灾及煤层自然发火的防治措施 69 8.6.2 预防煤尘爆炸措施 70 8.6.3 预防瓦斯爆炸的措施 70 8.6.4 避灾路线 70 9 矿井运输与提升 71 9.1 概述 71 9.2 采区运输设备的选择 71 9.2.1 采区运输上山皮带的选择 71 9.2.2 采区轨道上山运输设备的选择 72 9.2.3 运输顺槽转载机和皮带机选择 72 9.2.4 回风顺槽中运输设备的选择 73 9.2.5 工作面刮板输送机的选择 73 9.3 主要巷道运输设备的选择 74 9.4 提升 74 9.4.1 提升系统的合理确定 74 9.4.2 主井提升设备的选择 75 9.4.3 副井提升设备的选择 76 10 矿井排水 77 10.1 矿井涌水 77 10.1.1 概述 77 10.1.2 矿山技术条件 78 10.2 排水设备的选型计算 78 10.2.1 水泵选型 78 10.3 水泵房的设计 80 10.3.1 水泵房支护方式和起重设备 80 10.3.2 水泵房的位置 80 10.3.3 水泵房规格尺寸的计算 80 10.4 水仓设计 81 10.4.1 水仓的位置及作用 81 10.4.2 水仓容量计算 81 11 技术经济指标 83 11.1 全矿人员编制 83 11.1.1 井下工人定员 83 11.1.2 井上工人定员 83 11.1.3 管理人员 83 11.1.4 全矿人员 84 11.2 劳动生产率 84 11.2.1 采煤工效 84 11.2.2 井下工效 84 11.2.3 生产工效 84 11.2.4 全员工效 84 11.3 成本 85 11.4 全矿主要技术经济指标 86 结论 92 参考文献 93 附录A 94 附录B 97 前言
中国是世界最大产煤国
煤炭在中国经济社会发展中占有极重要的地位 煤炭是工业的粮食 我国一次能量消费中 煤炭占75%以上 煤炭发展的快慢
将直接关系到国计民生 作为采矿专业的一名学生
我很荣幸能够为祖国煤炭事业尽一份力
毕业设计是毕业生把大学所学专业理论知识和实践相结合的重要环节 使所学知识一体化
是我们踏入工作岗位的过度环节 设计过程中的所学知识很可能被直接带到马上的工作岗位上 所以显得尤为重要
学生通过设计能够全面系统的运用和巩固所学的知识 掌握矿井设计的方法、步骤及内容
培养实事求是、理论联系实际的工作作风和严谨的工作态度 培养自己的科学研究能力
提高了编写技术文件和运算的能力
同时也提高了计算机应用能力及其他方面的能力
该说明书为刘官屯矿0.90Mt/a井田初步设计说明书 在所收集地质材料的前提下 由指导教师给予指导
并合理运用平时及课堂上积累的知识 查找有关资料
力求设计出一个高产、高效、安全的现代化矿井
本设计说明书从矿井的开拓、开采、运输、通风、提升及工作面的采煤方法等各个环节进行了详细的叙述
并进行了技术和经济比较 论述了本设计的合理性 完成了毕业设计要求的内容 同时说明书图文并茂
使设计的内容更容易被理解和接受 在设计过程中
得到了指导老师的详细指导和同学的悉心帮助 在此表示感谢
由于设计时间和本人能力有限 难免有错误和疏漏之处 望老师给予批评指正矿区概述及井田特征 1.1 概述
1.1.1 矿区的地理位置及行政隶属关系
矿区位于唐山市东北约13km处的荆各庄村附近在开平煤田凤山西北侧 矿井走向长5km 倾斜长2.2km 井田面积11km2 南与马家沟矿业公司相距6km 中间有陡河相隔
北与陡河电厂相距3.5km 行政属开平区管辖
1.1.2 地形、地貌、交通等情况
1)地形地貌
为一平坦的冲积平原 北部山区为燕山山脉的余脉 井田北、东、南三面被低山包围
颇有山前扇状地景观 井田地面标高-100m
2)交通
该矿区的交通十分方便
铁路:一条通往用煤大户陡河电厂的专用线
并与吕陡线在井田上方交汇;另一条经马家沟矿业公司与老京山线的开平站相联 公路:北距10km与京沈高速公路、102国道相联 南距7km经开平与205国道、津秦高速公路相联 形成了比较完整的交通网 四通八达
井田内共有8个自然村 主要从事农业
除东新庄外其它7个村庄已搬迁完毕
图1-1 刘官屯矿交通位置图
Fig.1-1 Liuguantun Mining traffic and location
3)水文
本区东南的陡河 发源于北部山地 下游集入石榴河 向南流入渤海 主流全长100km 河水终年不固 不冻
在双桥村一带有水库
水库大坝距井田东端最近距离2.2km 陡河最高水位+219.5m 低于地面标高40m左右 冬季水位介于+216~+217m
1.1.3 气候地震等情况
本区系于半大陆性气候 夏季炎热多雨
多东南风;冬季严寒凛冽 秋冬多西北风
雨季集中在七、八、九三个月 年平均降雨量648.8毫升 最高气温38.50C 最低气温-22.6℃ 年平均气温10.6℃
冻结期由11月二旬至次年3月上旬 冻结深0.66m 地震烈度六级
1.2 井田及其附近的地质特征
1.2.1 井田的地层层位关系及地质构造
开平煤田位于燕山南麓
在大地构造上位于中朝地台燕山沉降带的东南侧
燕山南麓煤田在地质力学体系上处于天山~阴山纬向构造带、新华夏系构造带和祁吕~贺兰山山字形的三个巨型构造体系的交汇部位 开平煤田受新华夏构造体系的影响 以一系列NNE向的褶曲及逆断层组成
北部受纬向构造的影响逐渐向南弯转成走向近东西向 煤系地层由石炭系中统唐山组
上统开平组、赵各庄组及下二叠系大苗庄组、唐家庄组等组成 岩性以砂岩、泥岩为主
基底地层为中奥陶系马家沟组石灰岩 分布于煤田周边地带 与煤系地层呈不整合接触 见井田地质特征表1-1 煤田向南倾伏
其南部界限可能跨过宝坻~奔城大断层伸入另一个二级构造单元--华北断陷 经钻口和电测曲线对比推断 本区主要断层共有2条 分别为F1 和F2 区内尚未发现有大面积岩浆活动 所见分布于煤田西侧和南侧
区内未发现区域变质或侵入变质现象
说明:据2001全国地层委员会和2004国际地层委员会发布的时代划分方案 石炭纪二分 二叠纪三分
但为了与矿上其他资料吻合方便起见 本次仍沿用旧的时代划分方案
本井田西部以I号勘探线和F1断层为界 东部以VI号勘探线为界 北部以-300m等高线为界 南部以-750等高线
井田内赋存有9、12-2号两个可采煤层
表1-1 井田地质特征表
Tab.1-1 Well field geological feature table
界
系
统
年代
组
厚度/m
新生界 第四系
Q
~~~~~~不整合~~~~~~
洼里组
0~890
上
古
生
界 二叠系
上统
P22
2800
P21
古冶组
346
下统
P12
唐家庄组
180
P11
大苗庄组
石 炭 系 上统 C32 赵各庄组 74
C31 开平组 70
中统 C2 唐山组
-------平行不整合------马家沟组 65 下 古 生 界 奥 陶 系 中统 O2 345
下统 O12 亮甲山组 115
O11
冶里组 203 寒 武 系 上统 ?33 凤山组 68
?32 长山组 48
?31 崮山组 82
中统 ?2 张夏组 120
下统 ?12 馒头组 150
?11 景儿峪组 263 元 古 界 震
旦
系
上统
Z2W
迷雾山组
1200
Z2Y
杨庄组
400
下统
Z1K
高于庄组
600
Z1T+H
大红峪黄崖关组
~~~~~~不整合~~~~~~
五台群
450
太古界
前震旦
Ar
1.2.2 含煤系及地层特征
开平煤田构造形式以褶皱为主 线型排列比较明显
向斜背斜多呈相间平行排列
区内由西至东有:蓟玉向斜及其两侧的窝洛沽向斜、丰登坞背斜、车轴山向斜、卑子院背斜、弯道山~西缸窑向斜、凤山~缸窑背斜、开平向斜 本设计的十组煤分四个分层 走向中部厚
沿走向往两侧逐渐变薄 但从钻孔看 变化不大
整个十组煤厚度均匀 从全矿井看
煤层角度东部较小 西部边界偏大 深部角度小 浅部角度大
1)表土层及风化层的深度
矿井田内地势平坦 为第四系冲积层所覆盖 冲 积层较厚
井田浅部以风积细粉砂岩为主 颗粒细而均匀
表土层厚度平均在100m 且有流沙
2)煤层总数及可采层数
本区煤层岩性变化不大 煤层结构相对简单 有少量夹矸 共含十一个煤组
本设计的十组煤全区发育 9、12-2均为可采煤层
1.2.3 水文地质
荆东四矿的水文地质条件属一般型 有八个含水层 自下而上分别为:
1)奥陶系石灰岩岩溶裂隙承压含水层(Ⅰ)
2)K2~K6砂岩裂隙承压含水层(Ⅱ)
3)K6~煤12砂岩裂隙承压含水层(Ⅲ)
4)煤9~煤7砂岩裂隙承压含水层(Ⅳ)
5)煤5以上砂岩裂隙承压含水层(Ⅴ)
6)风化带裂隙、孔隙承压含水层(Ⅵ)
7)第四系底部卵石孔隙承压含水层(Ⅶ)
8)第四系中上部砂卵砾孔隙承压和孔隙潜水含水层(Ⅷ)
其中与矿井生产较密切的为Ⅰ、Ⅳ、Ⅶ
全矿预测涌水量:
最大涌水量 419.6 m3/h
正常涌水量 256.3 m3/h 1.3 煤质及煤层特征
1.3.1 井田内煤层及埋藏条件
煤层走向主体为东西走向 整体近似于长方形 煤层赋存比较稳定 全区发育
平均倾角为14°左右 可采煤层间距见表1-2
表 1-2 煤层间距见表
Tab.1-2 Seam pitch table
煤层
平均厚度(m)
煤层间距(m)
12-2 3
煤层赋存状态十煤组共分9、12-2分层 全区发育 见煤层柱状图 如图1-2
图1-2 综合柱状图
Fig.1-2 Synthesis column map
本区煤层中夹石在井田中部最薄 往南北两翼逐渐变厚 沿倾向方向变化小
沿走向方向向南北变化稍大 本组地层一般厚度72.60m 以粉砂岩为主 粘土岩含量减少
各种岩石所占的百分比为:粘土岩10.1% 粉砂岩类占52.6% 砂岩类占31.4% 石灰岩占2.9%
岩相组合上为浅海相薄层泥质碳酸盐岩和泻湖海湾相粉砂岩及砂岩沉积物的交替沉积 煤的容重见表1-3
表 1-3 煤的容重
Tab.1-3 Bulk density of coal
容重
最小
最大
平均
t/m3
1.19
1.46
1.30
本组内赋存三层石灰岩 由下而上命名为K4、K5、K6 其中K5石灰岩为深灰色泥质生物碎屑岩 时而接近钙质粘土岩
特点是含灰白色的动物介壳 富集成层
与深灰色泥质灰岩交替成细带状 形成明显的水平层理和水平波状层理 极易区别于其它石灰岩 厚度薄但比较稳定
本组比较突出的特点是出现了含煤沉积 是典型的海陆交互相沉积序列
井田内各煤层的伪顶多为薄层泥岩 直接顶一般为粘土岩或粉砂岩 底板多为粉砂岩次之 区内虽然岩性变化大 但有一定规律 即由东往西
由下向上岩性逐渐由细变粗 北部和中部较稳定 各类砂岩层理不甚发育 破碎易风化
具有较强的膨胀性 遇水后即软化
断裂带附近层间滑动发育 其内的巷道围岩不稳定 易冒落变形
位于煤层间的巷道有不同程度的移动和破坏
1.3.2 煤层的含瓦斯性、自燃性、爆炸性
本井田煤层瓦斯含量均很低 属低沼矿井 据化验资料
瓦斯绝对涌出量为:1.27~5.56m3/min平均4.75 m3/min 相对涌出量为:0.39~3.38m3/t平均1.17 m3/t 煤尘爆炸指数为:为38.42%~64.20%;本区由于煤燃点低 易自燃发火
煤尘试验结果为火焰长度40mm 岩粉量55% 具有爆炸性
自燃发火期为3-6个月
1.3.3 井田的勘探程度及进一步勘探要求
目前
勘探程度已达到精查
确定了高级储量为50%以上 但为了满足以后生产要求 应提高一水平的勘探程度 使高级储量达到70%以上井田境界及储量 2.1 井田境界 2.1.1 井田范围
本井田西部以I号勘探线和F1断层为界 东部以VI号勘探线为界 北部以-300等高线为界 南部以-750等高线为界
井田内赋存有9、12-2号两个可采煤层
2.1.2 边界煤柱留设
矿井走向长5km 倾斜长2.2km 井田面积11km2 井田内地形比较完整
井田四周依据相关规定和安全考虑分别留设20m的边界煤柱 由于井田西面和南面为断层所包围
故西部和南部的井田边界即为断层保护煤柱和井田境界保护煤柱 按《煤矿安全规程》[2]规定 边界煤柱的留法及尺寸:
1)井田边界煤柱留30m;
2)阶段煤柱斜长60m 若在两阶段留设
则上下阶段各留30m;
3)断层煤柱每侧各为20m;
4)采区边界煤柱留10m
根据参考《煤炭工业设计规范》[1]和《矿井安全规程》[2]的相关数据要求和规定 本井田所留的各种保护煤柱均合理 符合规定
2.1.3工业广场保护煤柱留设
由《设计规范》规定:工业场地占地面积:45-90万t/年 1.2~1.3公顷/10万t;120-180万t/年 0.9~1.0公顷/10万t;240-300万t/年 0.7~0.8公顷/10万t 400-600万t/年
0.45-0.6公顷/10万t 本矿井设计年产90万t 则工业广场占地面积为S=(90/10)*1.2=10.8公顷=108000m2 则工业广场设计成长380m 宽290m的矩形
在确定地面保护面积后 用移动角圈定煤柱范围
工业场地地面受保护面积应包括保护对象及宽度15m的围护带
在工业场地内的井筒 圈定保护煤柱时
地面受保护对象应包括绞车房、井口房或通风机房、风道等 围护带宽度为15m
2.1.4 边界的合理性
在本井田的划分中 充分的利用到现有条件 既降低了煤柱的损失
也减少了开采技术上的困难 使工作面的部署较为简易 同时
本井田的划分使储量与生产相适应
矿井生产能力与煤层赋存条件、开采技术装备条件相适应 井田有合理的尺寸
条带尺寸满足《煤炭工业设计规范》[1]的要求 走向长度划分合理
使矿井的开采有足够的储量和足够的服务年限 避免矿井生产接替紧张
根据《煤炭工业设计规范》[1]的规定 采区开采顺序必须遵守先近后远 逐步向边界扩展的原则 并应符合下列规定:
1)首采采区应布置在构造简单 储量可靠
开采条件好的块段
并宜靠近工业广场保护煤柱边界线
2)开采煤层群时 采区宜集中或分组布置 有煤和瓦斯突出的危险煤层
突然涌水威胁的煤层或煤层间距大的煤层 单独布置采区
3)开采多种煤类的煤层 应合理搭配开采
综上所述
矿井首采区定在靠近工业广场的西北部 采区储量丰富
有利于运输的集中和减少巷道的开拓费用 所以井田划分是合理的 因此 综上来看
本井田的划分是合理的
也就是说本井田设计的边界是合理的
2.2 井田的储量
2.2.1 井田储量的计算原则
1)按照地下实际埋藏的煤炭储量计算 不考虑开采、选矿及加工时的损失;
2)储量计算的最大垂深与勘探深度一致 对于大、中型矿井 一般不超过1000m;
3)精查阶段的煤炭储量计算范围 应与所划定的井田边界范围相一致;
4)凡是分水平开采的井田 在计算储量时
也应该分水平计算储量;
5)由于某种技术条件的限制不能采出的煤炭 如在铁路、大河流、重要建筑物等两侧的保安煤柱 要分别计算储量;
6)煤层倾角不大于15度时
可用煤层的伪厚度和水平投影面积计算储量;
7)煤层中所夹的大于0.05m厚的高灰煤(夹矸)不参与储量的计算;
8)参与储量计算的各煤层原煤干燥时的灰分不大于40%
2.2.2 矿井工业储量
矿井的工业储量:勘探地质报告中提供的能利用储量中的A、B、C三级储量 本井田的工业储量的计算:
1)工业储量
井田煤层埋藏深度为-300~--750标高之间
工业储量为:
Eg=11000000×(4+3)×1.3/cos14=103195876.3t
2)井田永久煤柱
井田永久煤柱损失包括铁路、井田境界、断层防护煤柱 和浅部矿井水下开采防水煤柱
a断层煤柱损失
断层的两侧各留20m的保护煤柱 此断层的面积为1188×40=47520m2
故此断层保护煤柱损失为:47520×(3+4)×1.3=43.2万t
b井田境界煤柱损失
井田境界留设30m的边界煤柱
总长为13528m;井田境界保护煤柱所占面积为405840m2 经计算
故境界保护煤柱损失为:405840×7×1.3=369.31万t
P1=43.2+369.31=412.51万t
3)矿井设计储量
Es= Eg-P1=10319.58-412.51=9907.07万t
4)采区回采率
矿井采区回采率
应该符合下列规定:厚煤层不应小于75﹪;中厚煤层不应小于80﹪;薄煤层不应小于85﹪ 全矿采区回采率按下式计算:
==0.77
5)矿井设计可采储量
Ek=(Es-Pz)×(2-1)
式中
Ek--设计可采储量
Es--井田设计储量
Pz--煤柱损失
--采区平均回采率
煤柱损失Pz主要包括工业广场压煤、阶段间煤柱等
工业广场压煤Y
9煤层压煤量=(828+905)×683÷2×4×1.3=307.75万t
12-2煤层压煤量=(840+926)×704÷2×3×1.3=242.44万t
Y=307.75+242.44=550.19万t
阶段煤柱=(2851 +1861)×(4+3)×1.3÷cos14= 4.42 t
Pz=550.19+4.42=554.61
设计可采储量:Ek =(Es-Pz)
=(9907.07-554.61)0.77= 7201.4万t 矿井的年产量、服务年限及一般工作制度 3.1 矿井年产量及服务年限 3.1.1 矿井的年产量
矿井的年产量(生产能力)确定的合理与否
对保证矿井能否迅速投产、达产和产生效益至关重要
而矿井生产能力与井田地质构造、水文地质条件、煤炭储量及质量、煤层赋存条件、建井条件、采掘机械化装备水平及市场销售量等许多因素有关 经分析比较
设计矿井的生产能力确定为0.9 Mt/a 合理可行 理由如下:
1)储量丰富
煤炭储量是决定矿井生产能力的主要因素之一 本井田内可采的煤层达到2层 保有工业储量为1.03亿t 按照0.9Mt/a的生产能力 能够满足矿井服务年限的要求
而且投入少、效率高、成本低、效益好
2)开采技术条件好
本井田煤层赋存稳定 井田面积大 煤层埋藏适中 倾角小 结构简单
水文地质条件及地质构造简单 煤层结构单一
适宜综合机械化开采 可采煤层均为厚煤层
3)建井及外运条件
本井田内良好的煤层赋存条件为提高建井速度、缩短建井工期提供了良好的地质条件 本井田内交通十分便利
刘官屯矿井田大部位于河北省丰南市境内 地处交通要塞
是华北通往东北的咽喉地带
京沈、京秦、大秦三大铁路横贯全境 津山、京沈干线km横跨东西 东有秦皇岛港 西邻天津港
新建的唐山港位于津秦两港之间 境内铁路公路交织成网 交通发达
为煤炭资源的运输提供了便利条件
综上所述
由于矿井优越的条件及外部运输条件
矿井的生产能力为90万t是可行的、合理的
并且符合《煤矿安全规程》和《设计规范》的相关要求
3.1.2 服务年限
矿井保有工业储量1.03亿t 设计可采储量7201.4万t 按0.9Mt/a的生产能力 考虑1.4的储量备用系数 则
式中: K--矿井备用系数 取1.4
A--矿井生产能力 0.9Mt/a
Zk--矿井可采储量 万t
P--矿井服务年限 年
代入数据得
P= 7201.4 /(90×1.4)=57.15年
因为服务年限大于45年 所以符合《设计规范》要求
3.1.3 矿井的增产期和减产期 产量增加的可能性
建井后产量出现变化 其可能性为:
3-1)(1)地质条件勘探存在一定的误差 有可能出现新的断层
2)由于国民经济发展对煤炭的需求变化 导致矿井产量增减
3)矿井的各个生产环节有一定的储备能力 矿井投产后
迅速突破设计能力 提高了工作面生产能力
4)工作面的回采率提高 导致在相同的条件下 矿井服务年限增加
5)采区地质构造简单 储量可靠
因此投产后有可靠的储量及较好的开采条件
3.2 矿井的工作制度
结合本矿井煤层条件、储量情况、以及达成产量所需要的时间;同时考虑设备检修以及工人工作时间等实际的因素
在满足《煤矿安全规程》的条件之下 本矿井工作制度安排如下:
矿井工作日为330天
本矿井工作制度采用“三八”制 两班采煤 一班检修
日提升工作时间为16小时井田开拓
井田开拓方式应该通过对矿井设计生产能力 地形地貌条件 井田地质条件 煤层赋存条件
开采技术及装备设施等综合因素进行方案比较以及系统优化之后确定 因此
在解决井田开拓问题时 应遵循以下原则:
1)贯彻执行有关煤炭工业的技术政策
为多出煤、早出煤、出好煤、投资少、成本低效率高创造条件 要使生产系统完善、有效、可靠
在保证生产可高和安全的条件下减少开拓工程量;尤其是初期建设工程量 节约基建投资 加快矿井建设
2)合理集中开拓部署 简化生产系统 避免生产分散
为集中生产创造条件
3)合理开发国家资源 减少煤炭损失
4)必须贯彻执行有关煤矿安全生产的有关规定 要建立完善的通风系统 创造良好的生产条件 减少巷道维护量
使主要巷道经常保持良好状态
5)要适应当前国家的技术水平和设备供应情况
并为采用新技术、新工艺、发展采煤机械化、综合机械化、自动化创造条件
6)根据用户需要
应照顾到不同煤质、煤种的煤层分别开采 以及其他有益矿物的综合开采
4.1 井筒形式、位置和数目的确定 4.1.1 井筒形式的确定
井筒是联系地面与井下的咽喉 是全矿的枢纽
井筒选择应综合考虑建井期限 基建投资
矿井劳动生产率及煤的生产成本 并结合开拓的具体条件选择井筒
矿井开拓 就其井筒形式来说
一般有以下几种形式:平硐、斜井、立井和混合式 下面就几种形式进行技术分析 然后进行确定采用哪种开拓方式
平硐:一般就是适合于煤层埋藏较浅 而且要有适合于开掘平硐的高地势 例如山地或丘陵 也就是要有高于工业广场以上具有一定煤炭储量 本井田地势比较平缓
高低地的最大高差也不过几十米 而且煤层埋藏较深 很显然
利用平硐开拓对于本井田来说是没有可行性的
斜井:利用斜井开拓首先要求煤层埋藏较浅、倾角较大的倾斜煤层 且当地地表冲积层较厚 利用竖井开拓困难时 即便是煤层埋藏较深
不惜打较长的斜井井峒的条件下才可能使用 而本井田的条件却不尽如此
全部的可采煤层均赋存于-50m以下 最深达-500m 这样一来
如果按照皮带斜井设计时 倾角不超过17度的话
此时斜井的井筒长度将是很大的 太长的斜井提升几乎是不可能的 而且工程量也是非常巨大的
跟着相关的维护和运输等费用也会大幅度的增加
以上种种因素决定了本井田使用斜井开拓也是不可行的
立井:适用于开采煤层埋藏较深且地表附近冲积层不厚的情况 而且越是这种情况就越显示出立井的优越性
混合式:对于本矿井来说 由于利用平硐和斜井都是不可行的 所以混合式也就不予考虑
本井田的煤层埋藏较深 地表附近的冲积层又比较薄 它对井筒的开凿将不会造成影响 而且立井开拓的一大好处就是 如果基岩赋存较稳定时 开凿以后
其维护费用几乎为零 本井田采用立井开拓时 对于煤炭的提升也较合适
根据《煤炭工业设计规范》[1]规定:煤层埋藏较深、表土层较厚、水文地质条件复杂及主要可采煤层赋存比较稳定.储量比较丰富等特点.本设计采用立井开拓. 4.1.2 井筒位置及数目的确定
1)井筒的数目
a 根据本矿区煤层的埋藏的具体条件 各井筒均采用立井
b主井、副井、风井各一个(见图4-
1、4-
2、4-3)
c井筒参数 表4-1井筒参数
Tab.4-7 Well chamber parameter 井筒名称
用途 井筒长度/m 提升方法
断面尺寸
直径/m 净断面积/㎡
主井 提升煤炭
520 箕斗提升
5.5
23.75
副井
进风、进人、运料排矸
480 罐笼提升
7.0
34.46
风井
回风兼作
安全出口
200
6.0
28.30
该设计采用三个井筒的井田开拓方式:主井、副井、风井 通风方式为中央边界式通风
2)井筒的位置
选择井筒位置的原则:
a 有利于第一开采水平的开采 并兼顾其它水平
有利于井底车场的布置和主要运输大巷位置的选择 石门工程量小
b有利于首采采区不只在井筒附近的富煤块段 首采采区少迁村或不迁村
井田两翼储量基本平衡
c 井筒不易穿过厚表土层、厚含水层、断层破碎带、煤与瓦斯突出煤层或较弱岩层
d 工业广场应充分利用地形 有良好的工程地质条件 且避开高山 低洼地和采空区 不受滑坡和洪水威胁
e工业广场宜少占农田少压煤
f 水源 电源较近
矿井设在铁路专用线路短 道路布置合理点
便于布置工业场地的位置 主要是根据以下一些原则:
a有足够的场地
便于布置矿井地面生产系统及其工业建筑物和构筑物
b有较好的工程、水文地质条件
尽可能避开滑坡、崩岩、溶洞、流沙层等不良地段 这样既便于施工
又可以防止自然灾害的侵袭
c便于矿井供电、给水、运输
并使附近有便于建设居住区、排矸设施的地点
d避免井筒和工业场地遭受水患、井筒位置要高于当地最高洪水位
e充分利用地形、使地面生产系统 工业场地总平面布置及其地面运输合理 并尽可能是平整场地的工程量少
对井田开采有利的井筒位置 确定依据:
倾斜方向的位置:
从保护井筒和工业场地繁荣煤柱损失看 愈靠近浅部
煤柱的尺寸愈小;愈靠近深部 煤柱的损失愈大 因此
井筒沿倾斜方向位于井田中上
走向的位置
a)井筒沿井田走向的位置应在井田中央 当井田储量不均匀分布时 应在储量分布的中央
以次形成两翼储量比较均衡的双翼井田
应该避免井筒偏于一侧造成单翼开采的不利局面
b)井筒设在井田中央时 可以使沿井田走向运输工作量小
而井田偏于一侧的相应井下运输工作量比前者要大
c)井筒设在井田中央时 两翼分配产量比较均衡
两翼开采结束的时间比较接近
d)井筒设在井田中央时 两翼风量分配比较均衡 通风线路短 通风阻力小
综合考虑
主副井筒位置选在井田走向中央位置 位于倾向中上部
风井井口位置的选择:
风井井口位置的选择 应在满足通风要求的前提下 与提升井筒的贯通距离较短 并应利用各种煤柱
有条件时风井的井口也可以布置在煤层露头以后
综合考虑
本矿井的风井沿走向布置在井田的边界中部
图4-1主井断面图
Fig.4-1 Main shaft cross-section fig
主井净直径5.5m 提升容器为9t箕斗一对
采用Jkm4×4(Ⅱ)型多绳磨擦轮提升机 配JRZ170/49-16型绕线式异步电动机两台 每台1000KW 最大提升速度为7.38m/s 该提升设备担负本矿全部煤炭提升
图 4-2副井断面图
Fig.4-2 Auxiliary shaft cross-section fig
副井净直径7.0m 提升容器为一吨双层四车多绳罐笼一对(一宽一窄)采用Jk.25×4(Ⅱ)型多磨擦轮提升机 配JRZ500-12型绕线异步电动机两台 每台500KW 最大提升速度8.02m/s
副井每次提升或下放四辆重车时 另一侧必须配四辆空车
下放液压支架时其重量限制在10.5t以内(包括平板车重)另一侧必须配两辆重车
图4-3风井断面图
Fig.4-3Air shaft cross-section fig
风井位于井田上部边界中部 净直径6.0m用于排风 同时做为安全出口
4.2 开采水平的设计 4.2.1 水平划分的原则
确定原则:
1)根据《煤炭工业设计规范》规定:
(1)90万t的矿井第一水平服务年限不得小于20年 缓倾斜煤层的阶段垂高为200-350m;
(2)条件适宜的缓倾斜煤层 宜采用上下山开采相结合的方式;
(3)近水平多煤层开采 当层间距不大时 宜采用单一水平开拓
2)根据煤层赋存条件及地质构造
煤层的倾角不同对阶段高度的影响较大 本井田的属于缓倾斜煤层 其平均倾角为14°
煤层标高从-750m标高到-300m标高
根据《煤炭工业设计规范》规定缓倾斜煤层的阶段垂高为200~350m 故划分为两个阶段
再结合本井田的煤层标高差较小 阶段斜长较短的实际情况 宜采用单水平上下山开采
3)根据生产成本
阶段高度增大 全矿井水平数目减少 水平储量增加
分配到每t煤的折旧费减少
但阶段长度大会使一部分经营费相应增加
其中随着阶段增大而减少的费用有:井底车场及硐室、运输大巷、回风大巷、石门及采区车场掘进费、设备购置及安装费用等;相应增加的费用有:沿上山的运输费、通风费、提升费、倾斜巷道的维修费
此外还延长生产时间、增加初期投资
因此要针对矿井的具体条件提出几个方案进行经济技术比较 选择经济上合理的方案
4)根据水平接替关系
在上一水平减产前 新水平即作好准备
因此一个水平从投产到减产为止的时间 必须大于新水平的准备时间 正常情况下
大型矿井的准备时间要1.5~2年
井底车场、石门及主要运输大巷亦需要1.5~2年 延伸井筒需要1年
合计需要4~5年的时间
开拓延伸加上水平过渡需要7~9年 所以每个矿井在确定水平高度时
必须使开采时间大于开拓延伸加上水平过渡所需要的时间
根据《煤炭工业矿井设计规范》:当煤层倾角大于12度时 宜采用走向长壁采煤法
本矿井煤层倾角平均为14度 故采用走向长壁采煤法
4.2.2 开采水平的划分
根据本井田的实际情况 以及煤层赋存的条件
提出两个在技术上可行的方案 :
方案一:采用立井单水平上下山开采
总的来说
两个方案再在技术术上均可行 各有优缺点
需要通过经济比较 才能确定其优劣
首先对下阶段的巷道布置在技术上比较两方案的优缺点 详见表4-2
表4-2两种开拓方案的技术分析表
Tab.4-2 two kind of development plan technical analytical table
方案
方案一:采用立井单水平上下山开采
方案二:采用立井双水平加暗斜井上山开采
优
点
(1)开拓巷道工程量小 两阶段共用一组大巷和平巷 掘进率较低
(2)提升运输距离较短(3)保护煤柱损失少 可以提高回采率
(4)下山阶段辅助运输容易
(1)采准巷道施工容易 工艺简单
(2)对工作面通风有利 可以避免下行风带来的缺点 通风费用较少
(3)对于煤炭的回采有利
(4)延伸井筒的施工比较方便
缺
点
(1)施工技术复杂 设备要求多
(2)掘进速度慢 掘进费用高(3)下山开采
工作面生产难度增加 排水困难
(4)顺槽内运输费用较高 生产费用较高
(5)两顺槽间风压差别较大 通风困难
(1)开拓巷道工程量大 增加准备时间
(2)提升能力小 动力消耗大 提升费用高
(3)风路长 风阻大 通风费用高
(4)暗斜井的维护较为困难 维护费用高
对于两个方案进行经济比较:
因两个方案划分的采区基本相同 所以采区上山的经济比较可以忽略不计 具体比较如下:
图4-4立井开拓方案一
Fig.4-4 vertical shaft development planNo.1
图4-5立井开拓方案二
Fig.4-5 Vertical shaft development plan No.2
表4-3案一 单水平上下山开采
Table 4-3 pioneering single-level downhill
项目
工程量
单价
费用
运输提升 万t
1520万t
0.669元/t
1016.8万元
排水 万m3
404.3万m3
0.1525元/m3
61.65万元
合计
1078.4万元
表4-4方案二:暗斜井延伸 两水平开采
Table 4-4 Option 2: Inclined Shaft extension the two levels of exploitation
名 称
掘 进 费 用
长度
(m)
费用
(元/m)
总费用
(万元)
运输暗
斜 井
922
3000
276.6
回风暗
斜 井
922
3000
276.6
井底车场
1100
3000
330
运输大巷
1269
3000
380.7
合计
1263.9万元
通过两个方案进行经济比较 很显而易见
方案二比方案一明显增加两条912m的暗斜井 以及增加相应的采准巷道 掘进费用明显高于方案一
而且相应的运煤、提升费用尚未计入表中 使得方案一的优势更加突出 所以方案一为最优方案
综上所述
本设计采用单水平上下山联合的方式
4.2.3 设计水平储量及服务年限
本井田设计水平为-580水平
第一阶段的设计可采储量为3900.5万t 设计水平的服务年限为34.1年
表4-5 水平储量及服务年限
Tab.4-5 Horizontal reserves and service life
水平序号
可采储量/万t
服务年限/年
第一阶段
3900.5
30.96
第二阶段
3300.9
26.19 4.2.4 设计水平的巷道布置
由于本井田煤层间距较近层间距<80m 故采用集中大巷布置 为便于维护
将大巷布置到12-2煤层底板岩层中 又由于设计中通风方式为边界式 所以采用两条大巷布置
大巷距煤层底板间距一般30m
大巷支护方式掘进时期及时支护采用锚杆支护 后期采用混凝土砌碹 巷道断面特征见图4-6
4.2.5 大巷的位置、数目、用途和规格
1)大巷的位置
选择大巷位置的原则:掘进量少 费用少 维护条件好 煤柱损失少
有利于通风和防火 运输方便
本矿井的可采煤层有两层
双轨大巷布置在12-2号煤层底板岩层的-580m水平处 距煤层底板30m
2)大巷的数目和用途
根据运输和通风条件 本矿井共布置一条双轨大巷
承担整个水平运煤、进风、运料、排水、排矸、行人等任务
3)大巷的规格
因为大巷的服务年限都较长 所以都采用锚喷支护 各大巷具体断面如下:
图 4-6 双轨大巷断面图
Fig.4-6 Transport the big lane sectional drawing
大巷运输方式采用矿车运输 轨型为18公斤/m 轨道大巷轨距600 mm 对大巷运输方式选择的依据是:
1)由于设计生产能力小 采用此种运输方式能满足要求
2)吨公里运输费较低
3)运输能力大 机动性强
随着运距和运量的变化可以增加列车数
4)矿车运煤可同时统一解决煤炭、矸石、物料和人员的运输问题
5)对巷道直线度要求不高 能适应长距离运输 4.3 采区划分及开采顺序 4.3.1 采区形式及尺寸的确定
根据井田地质情况 煤层赋存较稳定 煤层厚度在4左右 井田走向长度5km 井田内两条大的断层构造
以上条件很适合布置综合机械化采煤
而设计规范规定综采工作面双翼采区走向长度应超过1500~2000m 因此将井田共划分四个采区 其中一阶段两个上山采区 北一采区和北二采区 均为双翼采区
二阶段两个下上采区:南一采区 南二采区
表4-6 井田各采区技术特征表
Table 4-6 Mine technical characteristics of the mining area Table 采区
走向长度/m 倾斜长度/m 工业储量/万t 采煤方式 落煤方式 准备方式 N1 2416 1197 2869.2 走向长壁 综采
双翼上山采区 N2 1846 1038 1720.2 走向长壁 综采
双翼上山采区 S1 2281 756 2043.6 走向长壁 综采
双翼下山采区 S2 2226 904 1686.6 走向长壁 综采
双翼下山采区 合计 8769 3895 8319.6
4.3.2 开采顺序
合理的开采顺序是在考虑煤层采动影响的前提下 有步骤、有计划的按照一定的顺序进行 保证采区、工作面的正常接替 以保证安全、均衡、高效的生产 并且有利于提高技术经济指标
合理的开采顺序可以保证开采水平、采区、回采工作面的正常接替 保证矿井持续稳定生产 最大限度地采出煤炭资源
减少巷道掘进率及维护工程量;合理的集中生产 充分发挥设备能力 提高技术经济效益 便于防止灾害 保证生产安全可靠
根据《矿井设计规范》规定
新建矿井采区开采顺序必须遵循先近后远 逐步向井田边界扩展的前进式开采 多煤层开采时 一般先采上层
后采下层的下行式开采
还应厚、薄煤层合理搭配开采;开采有煤与瓦斯突出煤层时 应按开采保护层、抽放瓦斯及单独开采等技术措施要求 顺序开采
为保证均衡生产 一个采区开始减产
另一个采区即应投入生产 为此
必须准备好一个新的采区 所以
一个采区的服务年限应大于一个采区的开拓准备时间
由于双翼两个采区条件相近大巷长度又大致相等
所以采区开采顺序可任选一个先采 本设计开采顺序为:N1采区 S1采区 N2采区 S2采区
煤层间下行式 区段内后退式回采
4.4 开采水平井底车场形式的选择 4.4.1 开采水平井底车场选择的依据
井底车场是连接井筒和井下主要运输巷道的一组巷道和硐室的总称 是连接井下运输和提升的枢纽 是矿井生产的咽喉 因此
井底车场设计是否合理
直接影响着矿井的安全和生产
根据《矿井设计规范》规定
井底车场布置形式应根据大巷运输方式、通过井底车场的货载运量、井筒提升方式、井筒与主要运输大巷的相互位置、地面生产系统布置和井底车场巷道及主要硐室处围岩条件等因素 经技术经济比较确定
由于本设计中主井提升方式为箕斗提升 大巷采用矿车运输
井底车场与大巷距离较远且需用石门联系 从主副井井底车场到大巷均与石门联系 所以井底车场型式选为立式车场 如图4-7
1――主井
2――副井
3――井底煤仓
4――水仓
5――水泵房 6――中央变电所 7――清煤斜巷 图 4-7 井底车场示意图
Fig.4-7 Shaft station abridged general view cross-section distinction 4.4.2 井底车场主要硐室
根据《矿井设计规范》规定 井下硐室应根据设备安装尺寸进行布置 并应便于操作、检修和设备更换 符合防水、防火等安全要求 井下主要硐室位置的选择 应符合下列规定:
a应选择在稳定坚硬岩层中 应避开断层、破碎带、含水岩层;
b井下硐室不布置在煤与瓦斯突出危险煤层中和冲击地压煤层中
井底车场的主要硐室包括煤仓、箕斗装载硐室、中央变电所、中央水泵房及火药库
1)井底煤仓及装载硐室
井底煤仓位置应根据大巷运输方式、装载硐室位置、围岩条件及装载胶带机巷与装载硐室相互联系等因素比较确定
井底煤仓宜选用圆形直仓 井底煤仓的有效容量按下式计算:
(4-1)
式中:
Qmc--井底煤仓有效容量(t)
Amc--矿井日产量(t)
0.15~0.25--系数 大型矿井取大值 小型矿井取小值 本设计取0.15
则井底煤仓容量为:
Qmc=0.15×900000/330=410t
煤仓为圆形垂直煤仓 见图4-8
图4-8垂直煤仓结构图
Fig.4-8 The diagram of coal Depot
1--上部收口;2--仓身;3--下口漏斗及溜口闸门基础;4--溜口及闸门
2)中央变电所、中央水泵房和水仓
中央变电所和中央水泵房联合布置
以便使中央变电所向中央水泵房供电距离最短 一般布置在副井井筒与井底车场连接处附近当矿井突然发生火灾时 仍能继续供电、照明和排水 为便于设备的检修及运输 水泵房应靠近副井空车线一侧
水泵房与变电所之间用耐火材料砌筑隔墙 并设置铁板门为防止井下突然涌水淹没矿井 变电所与水泵房的底板标高应高出井筒与井底车场连接处巷道轨面标高0.5m 水泵房及变电所通往井底车场的通道应设置密闭门 水仓入口
一般设在空车线 井底车场标高最低处 确定水仓入口时 应注意水仓装满水
中央变电所和中央水泵房建成联合硐室 具体见图4-9:
图 4-9 中央变电所和中央水泵房联合硐室
Fig.4-9 Substation capacity and water pump house union booth
3)火药库
由于本矿井采用全部机械化采煤 所以相对用火药较少
选用储量较小的壁槽式火药库就可以满足井下正常工作的需要
库房与巷道的关系:
a库房距井筒、井底车场、主要运输巷道、主要硐室和影响全矿井大部分采区通风的风门的直线距离应不小于80m;
b库房距地面或上下巷道的直线距离不小于15m
根据本设计井底车场的实际位置 采用容重2400kg壁槽式标准爆破材料库 该材料库具有独立的通风系统
打一条通风钻孔直接与地面直接相连 火药库的具体结构见图4-10:
图 4-10 壁槽式爆破材料库
Fig.4-10 Blast material storage
序号
巷道名称
序号
巷道名称
1
轨道大巷 2
库房巷道
3
炸药壁槽
4
雷管壁槽
5
电气壁槽
6
消防器材
7
放炮工具室
8
发炮室
9
防火门 10
回风立眼
4.5 开拓系统综述 4.5.1 系统概况 1)开拓方式
本设计矿井采用“立井多水平、集中运输大巷、走向长壁相结合”的开拓方式 采用立井开拓 共3个井筒
主箕斗立井、副罐笼立井、边界风井 采用中央边界式通风方式
矿井开采水平在-580m标高位置 矿井正常生产时
一个采区一个综采工作面保证年产量
2)生产系统:
a 通风系统:由副井进风 主回风井回风
一采区通风路线是:副井 轨道石门 轨道大巷 采区轨道上山 区段轨道石门 区段运输平巷 工作面
区段回风平巷 区段回风石门 采区运输上山 回风大巷 最后由主回风井排出地面
火药库通风:副井入风 采用钻孔立眼回风
b 运煤系统:工作面落煤 区段运输平巷 区段运输石门 溜煤眼下溜 采区运输上山 采区煤仓 运输大巷 运输石门 井底煤仓
最后由主井箕斗提升至地面
c 运矸系统:掘进工作面 区段轨道平巷 采区回风石门 采区轨道上山 轨道大巷 副井 地面
d 运料运人系统:地面 副井 轨道大巷 采区轨道上山 区段回风石门 区段轨道平巷 直至工作面
e 排水系统:采掘工作面 区段平巷 区段轨道石门 采区轨道上山 轨道大巷 井底车场 水仓 副井 地面
4.5.2 移交生产时井巷的开凿位置、初期工程量
1)矿井移交生产时的标准
a 井上、下各生产系统基本完成 并能进行正常的安全的生产;
b “三个煤量”达到规定标准;
c 回采工作面长度一般不少于设计回采工作面长度的50﹪;
d 工业广场内的行政、公共设施基本完成;
e 居住区及其设施基本完成
根据以上标准确定井巷的开凿位置
2)移交生产时井巷开凿的位置
在矿井设计中
全矿年产量由一个综采工作面保证达产 移交生产时
运输上山、轨道上山已经掘进到开采位置
煤层运输平巷、回风平巷已掘完并通过区段石门与上山相连 然后掘开切眼 贯通上下顺槽
3)初期工程量
初期移交工程量是指移交时掘进的各类巷道硐室、井筒等为生产服务的设施的总的掘进体积
初期移交开拓工程量见表4-7:
表4-7交初期工程量表
Tab.4-7 Erealy transfer engineering amount table
名称
长度/m
掘进断面面积/ m2
掘进体积/
主井
520
23.75
12350
副井
480
34.46
16540..8
风井
200
28.30
5660
井底车场
1100
18.4 20240 主要运输石门 130 16.9 2197 主要轨道石门 130 16.9 2197 运输大巷 1600 16.9 27040 运输上山 1170 16.9 19773 轨道上山 1170 16.9 19773 轨道石门 80 16.9 1352 回风石门 259 16.9 4377.1 运输顺槽 1430 16.1 24167 回风顺槽 1430 12.6 18018 回风大巷 1170 16.4 19188 开切眼 180
12.6
2268
总计
195320.9 采准巷道布置
5.1 设计采区的地质概况及煤层特征 5.1.1 采区概况
设计采区为一采区 该采区位于井田西翼 西至井田勘探线
东部边界到工业广场保护煤柱线 大巷布置在-580水平采区平均走向长2416m 倾斜长1256m 采区内共发育两个个可采煤层 煤厚分别为3m、4m 煤层赋存简单
无断层及火成岩侵入等地质构造 煤层倾角平均为14度 煤变质程度高 煤质好
绝对涌出量为10.5m3/min 发火期短
煤层直接顶较厚并且软弱
5.1.2 煤层地质特征及工业储量
一采区做为首采区 是上山开采 采区开采两层煤
煤层平均倾角为14° 属于缓倾斜煤层 采区内地质构造简单 无断层 煤质较好
水分含量0.56~15.54% 瓦斯相对涌出量为10.5m3/t 煤尘无爆炸性危险自然发火期为3-6个月 煤层顶底板较为稳定
采区工业储量为3369.2万t
5.1.3 采区生产能力及服务年限
采区生产能力的基础是采煤工作面生产能力
而采煤工作面的产量取决于煤层厚度、工作面长度及推进度
1)采区生产能力A:
(5-1)
式中:L-回采工作面长度 取180m
V-工作面年推进度 工作面每日进4刀 截深0.8m 因此年推度为1056m
M-采高 4m
r-煤的容重 1.3t/
C-工作面回采率 厚煤层0.93
则: A=180×1188×4×1.3×0.93
=90.92万t/a
同时考虑5%的掘进出煤 则采区的生产能力为:
A总= A×(1+5%)=103.4×1.05=95.47万t/a;
再将上面计算出来的生产能力通过通风能力、风速和风量限制要求计算式中检验 得出符合要求
2)采区服务年限T:
(5-2)
式中: Z-本采区设计可采储量 2351.16万t
A-本区生产能力 90万t/a
=2351.16/90×1.4=18.65年
5.2 采区形式、采区主要参数的确定 5.2.1 采区形式
按照煤层群开采的联系为联合准备 即各煤层共用两个岩石上山和区段石门 煤层倾角平均为14°
瓦斯量低、顶底板均无较大涌水 根据煤层赋存条件
本设计采用走向长壁采煤法
5.2.2 采区上山数目、位置及用途
设计的上山在最下部煤层的底板开掘 运输上山作为采区的主运输 其内铺设皮带
运输采区工作面的出煤
轨道上山铺设轨道作为采区的辅助运输 运送矸石、设备、材料、兼作行人
5.2.3 区段划分
采区倾向长1256m 其中留4m的区段平巷 区段间保护煤柱留10m宽 井田境界煤柱30m 阶段煤柱30m 则本采区可以划分为6个区段 工作面长180m
5.3 采区车场及硐室 5.3.1 车场形式
区段上部车场为顺向平车场 中部为单向甩车场 下部为直向平车场
每个采区只有一个综采工作面 运输量不大
所以只设材料绕道车场 运料斜巷在大巷入口处取平由大巷进入车场绕道存车线 然后直接进入轨道上山 这种布置方式使用方便 运行可靠
1)上部车场:车场形式为顺向平车场(与回风道在同一水平)矿车或材料车经轨道上山提至平车场平台
然后沿着矿车行进方向经回风石门运至工作面或所需材料地点
2)车场:车场形式为石门甩车场形式 单道起坡方式
由轨道上山提升上来的矿车 通过甩车道甩到中部轨道石门中 再进到区段轨道平巷
3)下部车场:本下部车场的绕道属于顶板绕道 从上山来看
通过竖曲线落平后摘钩
沿车场的高道自动滑行到下部车场存车线 由井底来车
则进入车场的底道
自动滑行到下部车场的低道存车线后 挂钩由绞车房提升上去
根据轨道上山起坡点到大巷的距离 本车场属于斜式顶板绕道 [8] 5.3.2 采区煤仓
在采区煤仓的尺寸确定之前 首先对煤仓的容量进行确定:
按循环产量计算煤仓容量Q
Q=L×l×h×r
式中:L--工作面长度 m
l--截深 m
h--采高 m
r--煤的容重 1.3t/ m3
所以Q =180×0.8×4×1.3=748.8t
由以上计算作为依据 选择煤仓容量为800t
由经验
R=2.96≈3 h=25m
采区煤仓用混凝土收口 在煤仓上口设铁箅子 煤仓溜口与装车方向相同 闸门的形式为单扇闸门 开启方式为气动
5.4 采准系统、通风系统、运输系统 5.4.1 采准系统
由运输大巷开掘采区下部车场 向上开掘采区岩石集中运输上山 采区集中轨道上山 与回风大巷贯通 形成通风系统后
在区段上部开掘采区回风石门
在区段下部开掘区段运输石门与区段轨道石门分别与上层煤贯通
在上层煤开掘区段运输平巷
5-4)5-3)((区段回风平巷至采区边界开掘开切眼 形成工作面即可回采
掘进过程中同时开掘中部车场 上部车场及采区各种硐室
5.4.2 通风系统
新鲜风流副井→井底车场→轨道大巷→轨道上山→区段运输平巷→工作面→污风→区段回风平巷→采区回风石门→回风大巷→风井排出地面
5.4.3 运输系统
运煤系统:工作面出煤→区段运输平巷→运煤上山→采区煤仓→运输大巷→井底煤仓→从主井提到地面;
排矸系统:掘进巷道时所出的矸石由轨道上山运到轨道大巷之后到井底车场 然后从副井提至地面;
运料系统:副井→井底车场→轨道大巷→轨道上山→区段回风平巷→使用地点 [6] 5.5 采区开采顺序
本设计采区同一煤层采用区段顺序依次开采 工作面沿走向推进 采区内共有四个煤层 分别都是由远及近开采 由于顶底板岩性较好
受采动影响较小.先采上层煤 再采下层煤
工作面沿走向推进
5.6 采区巷道断面
根据《设计规范》规定
综采工作面胶带输送机顺槽巷道净断面不宜小于12㎡ 回风顺槽净断面不宜小于10㎡
输送机上下山的净断面不宜小于12㎡ 运料、通风、和行人上山的净断面 不宜小于10㎡
采区准备巷道工程量是指从区段石门起的所有巷道和硐室的工程量总和 具体见下表5-1:
表5-1采区准备工程量
Tab.5-1 Ready engineering amount of mining section 巷道 支护形式 断面大小 长度/m 体积
净/m2 掘/m2
净/m3 掘/m3 运输上山 锚喷 16.4 20.2 1170 19188 23634 轨道上山 锚喷 15.3 19.0 1170 17901 22230 绞车房 锚喷 13.5 15 35 472.5 525 采区下部车场 锚喷 13.1 14.9 150 1965 2235 采区煤仓 混凝土 15.9 19.6 21 333.9 411.6 区段运输石门 锚喷 16.4 20.2 145 2378 2929 区段回风石门 锚喷 15.3 19.0 145 2218.5 2755 运输顺槽 梯形棚子 12.3 13.7 1430 17589 19591 回风顺槽 梯形棚子 11.6 13.1 1430 16588 18733 开切眼 锚网 10.1 10.1 180 1848.3 1848.3
图5-1.运输顺槽巷道断面图
Fig.5-1 Transport trough tunnel section
图5-2 回风顺槽断面及特征
Fig.5-2 Returns to the wind to break the chart along the trough and charactic 6 采煤方法
6.1 采煤方法的选择 6.1.1 选择的要求
1)煤炭资源损失少 采用正规采煤方法
2)安全及劳动条件好
3)便于生产管理
4)材料消耗少
5)尽可能采用机械化采煤 达到工作面高产高效
6.1.2 采煤方法
本矿井的两层煤均属于缓倾斜煤层 根据本采区的形状特点
采用走向长壁后退垮落采煤法
表6-1 全井田各采区采煤方法
Table 6-1 entire mining area of the mine mining method
采区
采煤方法
落煤方式
顶板管理
一采区
走向长壁采煤法
综采局部普采
全部垮落法
二采区
走向长壁采煤法
综采局部普采
全部垮落法
三采区
走向长壁采煤法
综采局部炮采
全部垮落法
四采区
走向长壁采煤法
综采局部炮采
全部垮落法
第三篇:采矿工程毕业设计开题报告写作要求
采矿工程毕业设计开题报告写作要求
总体要求
(1)基本格式要求:正文字体、字号、行间距等一致,分段书写,段落开头空两格这是最基本的格式。
(2)严禁直接从网上、往届学长处拷贝及抄袭。
(3)开题报告的写作,实在参考、综述前人的文献基础上,根据开题报告书写内容,围绕毕业设计题目及设计和研究内容,独立完成!
(4)开题报告通常在实习完成后1-2周内完成。
(3)同学们在独立完成开题报告初稿后,发给指导教师,指导教师指出错误,同学们修改,如此反复多次(一般不超过3次),直到指导教师同意定稿为止。
开题报告各部分写作要求如下:
一、选题背景及依据
这一部分通常分为四部分书写:
(1)设计部分
分段简述国内外研究现状及生产需求状况
具体写作如下:
第一段总论;
然后分别从石灰石矿山开采理念(无废开采,节能减排)、使用大型化、先进行的开采设备;先进、安全的爆破技术(微差爆破、逐孔起爆、炸药混装车等,靠近居民区及重要建构筑物的矿山,应经常加强爆破振动、冲击波等有害效应的监测与评估)来改善爆破效果,提高安全等级等
(2)专题部分:
围绕任务书所给专题题目及研究设计内容,论述国内外研究现状及存在的问题。
(3)选题目的及意义
1)所做设计和专题的目的及意义
主要从好的设计可以改善矿山安全条件、提高生产效率、简化管理程序等方面分析
2)从对学生个人方面分析选题目的及意义
设计部分锻炼学生综合应用所学知识的能力;
专题部分学生通过围绕某一主题的研究,锻炼和培养学生分析问题的能力,培养学生查阅、分析、综述和引用文献的能力以及写作论文的能力。
(4)参考文献
设计部分和专题部分的参考文献合起来写,格式规范,书籍及期刊的参考文献格式必须规范,并在引用位置标注出来。
由于学校要求毕业设计必须引用几篇英文参考文献,同学们如果找得到相关的英文参考文献,可以引用出来。
二、主要研究(设计)内容、研究(设计)思想及工作方法或工作流程
(1)主要研究(设计)内容
1)设计部分的主要设计内容
2)专题部分的主要研究内容
将任务书的内容复制过来即可。
(2)研究(设计)思想
1)设计部分的设计思想:
2)专题部分的研究思想:
这一部分个人根据自己的想法写作。
(3)工作方法或工作流程
根据自己的习惯写,设计部分和专题部分可合起来写,可分开写。
三、毕业设计(论文)工作进度安排
写作原则,就是我开学的时候给大家提的要求,大家可以有小的改动,一般第16周答辩,所以所有的安排必须在这之前完成。
第周某年月日-某年月日完成工作:
第周某年月日-某年月日完成工作:
………
第四篇:风景园林专业毕业设计图纸类型及内容要求
风景园林专业毕业设计图纸类型及内容要求
一、现状分析图
根据已掌握的全部资料,经分析、整理、归纳后,形成若干空间,对现状作综合评述。可用圆圈或抽象图型将其粗略地表示出来。如对四周道路、环境分析后,可划定出入口的范围;再如,某一方向居住区集中、人流多、四通八达,则可划为比较开放、活动内容比较多的区。
二、功能分区图 根据规划设计原则和现状图分析,根据不同年龄段游人活动规划,不同兴趣爱好游人的需要,确定不同的分区,划出不同的空间,使不同的空间和区域满足不同的功能要求,并使功能与形式尽可能统一。另外,分区图可以反映不同空间、分区之间的关系。该图属于示意说明性质,可以用抽象图形或圆圈等图案予以表示。
三、总平面图(园林总体规划设计图)。包括总平面图、总立面图、剖视图、整体或重要景区局部鸟瞰透视图。
总平面图是表现规划范围内的各种造园要素(如地形、山石、水体、建筑及植物等)布局位置的水平投影图,它是反映园林工程总体设计意图的主要图纸,也是绘制其它图纸及造园施工的依据。其绘制内容与要求如下:
1.园林要素表示法
(1)地形:地形的高低变化及其分布情况通常用等高线表示。设计地形等高线用细实线绘制,总平面图中等高线可以不注高程。
(2)园林建筑:在小比例图纸中(1:1000以上),只须用粗实线画出水平投影外轮廓线。建筑小品可不画。
(3)水体:水体一般用两条线表示,外面的一条表示水体边界线(即驳岸线),用特粗实线绘制;里面的一条表示水面,用细实线绘制。
(4)山石:山石均采用其水平投影轮廓线概括表示,以粗实线绘出边缘轮廓,以细实线概括绘出皴纹。
(5)园路:园路用细实线画出路缘,对铺装路面也可按设计图案简略示出。
(6)植物:园林植物由于种类繁多,姿态各异,平面图中无法详尽地表达,一般采用“图例”作概括地表示,所绘图例应区分出针叶树、阔叶树;常绿树、落叶树、乔木、灌木、绿篱、花卉、草坪、水生植物等。
2.编制图例说明
图例,应在图纸中适当位置画出并注明其含义。为了使图面清晰,便于阅读,对图中的建筑应予以编号,然后再注明相应的名称。
3.标注定位尺寸或坐标网
采用坐标网格法标定工程的平面位置时,应用细实线绘出定位轴线,在其一端部绘制出直径为8mm的圆圈。定位轴线的编号横向用阿拉伯数字,从左至右顺序编号,竖向用大写拉丁字母(除I、O、Z不采用,以避免误解为1、0、3数字),从下至上顺序编写。每一网格边长可为5m、lOm、20m(也可为30-100),按需要而定。并按测量基准点的坐标,标注出纵横第一网格坐标。
4.绘制比例、风玫瑰图或指北针,注写标题栏
5.绘制立面、剖面、鸟瞰图。
6.书写设计说明书
总体设计方案除图纸外,还要求完成设计说明书。设计说明全面地介绍设计者的构思、设计要点,是用文字来进一步表达设计思想及艺术效果的,或者作为图纸内容的补充,对于图中需要强调的部分及未尽事宜也可用文字说明。具体包括以下几方面:
(1)用地位置、现状、面积。
(2)工程性质、规划设计原则。
(3)功能分区(各区内容)。
(4)用地面积比例(土地使用平衡表)。
(5)设计主要内容(山体地形、空间围合,河湖水系,出入口、道路系统、建筑布局、种植规划、园林小品等)。
(6)管线、电讯规划说明。
四、地形设计图
地形设计图是根据设计平面图及原地形图绘制的地形详图,它借助标注高程的方法,表示地形在竖直方向上的变化情况,它是造园时地形处理的依据。其绘制要求为:
1.绘制等高线
根据地形设计,选定等高距,用细实线绘出设计地形等高线,用细虚线绘出原地形等高线。等高线上应标注高程,高程数字处等高线应断开,高程数字的字头应朝向山头,数字要排列整齐。高程单位为m,要求保留两位小数。
对于水体,用特粗实线表示水体边界线(即驳岸线)。当湖底为缓坡时,用细实线绘出湖底等高线,同时均需标注高程,并在标注高程数字处将等高线断开。当湖底为平面时,用标高符号标注湖底高程,标高符号下面应加画短横线和45°线表示湖底。
2.标注建筑、山石、道路高程
将设计平面图中的建筑、山石、道路、广场等位置按外形水平投影轮廓绘制到地形设计图中,其中建筑用中实线,山石用粗实线,广场、道路用细实线。建筑应标注室内地坪标高,以箭头指向所在位置。山石用标高符号标注最高部位的标高。道路高程,一般标注在交汇、转向、变坡处。
3.标注排水方向
根据坡度,用单箭头标注雨水排除方向。
4.绘制方格网
为了便于施工放线,地形设计图中应设置方格网。设置时尽可能使方格某一边落在某一固定建筑设施边线上(目的是便于将方格网测设到施工现场)。
5.绘制比例、指北针;注写标题栏、技术要求等。
6.局部断面图
必要时,可绘制出某一剖面的断面图,以便直观地表达该剖面上竖向变化情况。
六、假山工程施工图
假山施工图主要包括平面图、立面图、剖(断)面图、基础平面图,对于要求较高的细部,还应绘制详图说明。
1.平面图表示假山的平面布置、各部的平面形状、周围地形和假山所在总平面图中的位置。
2.立面图表现山体的立面造型及主要部位高度,与平面图配合,可反映出峰、峦、洞、壑的相互位置。为了完整地表现山体各面形态,便于施工,一般应绘出前、后、左、右四个方向立面图。
3.剖面图表示假山某处内部构造及结构形式,断面形状,材料、做法和施工要求。
假山施工图中,由于山石素材形态奇特,施工中难以完全符合设计尺寸要求。因此,没有必要也不可能将各部尺寸一一标注,一般采用坐标方格网法控制。
4.绘制比例、注写标题栏、技术要求等。
七、水系设计图
表明水体的平面位置、水体形状、大小、深浅及工程做法。图纸内容包括:
1.平面位置图:依竖向规划以施工总图为依据,画出泉、小溪、河湖等水体及其附属物的平面位置。用细线画出坐标网,按水体形状画出各种水体的驳岸线、水底线和山石、汀步、小桥等位置,并分段注明岸边及池底的设计高程。2.纵横剖面图:水体平面及高程有变化的地方都要画出剖面图。通过这些图表示出水体的驳岸、池底、山石、汀步及岸边处理的关系。3.进水口、溢水口、泄水口大样图:如暗沟、窨井、厕所粪池等,还有池岸、池底工程做法图。4.水池循环管道平面图:在水池平面位置图的基础上,用粗线将循环管道走向、位置画出,注明管径、每段长度、标高。
5、绘制比例、注写标题栏、技术要求等。
八、园路广场施工图
园路广场施工图主要包括平面图、断面图和详图。
1.平面图主要表示园路、广场的平面状况(包括:形状、线型、大小、位置、铺设状况、高程、园路纵坡等)及其周围的地形、地貌。
自然式园路,平面曲线复杂,交点和曲线半径都难以确定,不便单独绘制平曲线,其平面形状可由平面图中方格网控制,其轴线编号应与总平面图相符,以表示它在总平面图中的位置。园路高程一般用路面中心标高(按其长向约每10~30m处标出高程);各转折点标高及路面纵向坡度表示。(主路纵坡宜在1~8%,横坡宜在1~4%间,超过8%应作防滑处理;支路及小路纵坡宜在18%以下,超过10%应作防滑处理,超过22%时,应设台阶)。
2.园路广场横断面图是假设用铅垂切平面垂直园路中心轴线剖切而形成的断面图。一般与局部平面图配合,表示园路广场的断面形状、尺寸、各层材料、做法、施工要求,路面与广场面布置形式及艺术效果。
3.绘制比例、注写标题栏、技术要求等。
九、园林植物种植设计图
园林植物种植设计图是表示植物位置、种类、数量、规格及种植类型的平面图,是组织种植施工和养护管理、编制预算的重要依据。其绘制内容与要求为:
1.种植设计平面图
水体边界宜用粗、细两实线表示,建筑用中实线,道路用细实线,地下管道或构筑物用中虚线。
种植设计图,宜将各种植物按平面图中的图例,绘制在所设计的种植位置上。树冠大小按成龄后冠幅绘制,(孤立树冠径10-15m、高大乔木5-10m、中小乔木3-7m、花灌木1-3m、绿篱宽1-1.5m、球形树直径1-1.5m)。为了便于区别树种,计算株数,应将不同树种统一编号,标注在树冠图例内。
对单株或丛植的植物宜以圆点表示种植位置,对蔓生和成片种植的植物,用细实线绘出种植范围,草坪用小圆点表示,小圆点应绘得有疏有密,凡在道路、建筑物、山石、水体等边缘处应密,然后逐渐疏稀。对同一树种在可能的情况下尽量以粗实线连接起来,并用索引符号逐树种编号,索引符号用细实线绘制,圆圈的上半部注写植物编号,下半部注写数量,尽量排列整齐使图面清晰。2.编制苗木统计表
在图中适当位置或单列出苗木统计表说明所设计的植物编号、树种名称、拉丁文名称、单位、数量、规格、出圃年龄等。
3.编写种植设计说明
如影响植物种植设计的因素,如土壤、气象、水位等情况的说明,种植施工说明等等。
4.绘制比例、风玫瑰图或指北针,主要技术要求及标题栏。
十、园林建筑设计图 表现各景区园林建筑的位置及建筑物本身的组合、尺寸、式样、大小、高矮、颜色及做法等。如以施工总图为基础画出建筑物的平面位置、建筑底面平面、建筑物各方向的剖面、屋顶平面、必要的大样图、建筑结构图及建筑庭园中活动设施工程、设备、装修设计。画这些图时,可参照“建筑制图标准”。
十一、管线设计图在管线规划图的基础上,表现出上水(消防、生活、绿化用水)、下水(雨水、污水)、暖气、煤气等各种管网的位置、规格、埋深等。图纸内容包括:1.平面图:在种植设计图的基础上,表示管线及各种井(如雨水井)的具体位置、座标,并注明每段管的长度、管径、高程以及如何接头等,每个井都要有编号。原有干管用红线或黑色细线表示,新设计的管线及检查井,则用不同符号的黑色粗线表示。
2.剖面图:画出各号检查井,用黑色粗线表示井内管线及截门等交接情况。(这次可不画)
第五篇:2013年机电工程学院毕业设计分类图纸要求
2013届机电工程学院毕业设计分类图纸要求
1.机械工程设计类题型:
设计图纸应包括:①总装图或部件装配图折合A0号图1张;②零件图4-5张, 折合A1号图2张。
2.液压气动设计类题型:
设计图纸应包括:液压气动系统原理图、装配图,主要部件的分装图和典型零件的零件图等,折合A1号图2张。
3.电气控制类题型:
设计图纸应包括:电气控制原理图、元器件布置图、控制柜的结构图和操作面板图等,折合A1图1张。
4.模具设计类题型:
设计图纸应包括:①模具或模架装配图折合A0号1张;②零件图4-5张,折合A1号图2张。
5.科研实验类题型:
设计图纸应包括:相关实验设备图纸3-4张,折合A1号图1张。
注意:工程设计类型必须有一张A3以上的正式手绘图(包括A3)