第一篇:《分数除以分数》的教学反思
《分数除以分数》的教学反思: 教学意向:
今天教学的是整数除以分数,这个内容是以学生已经掌握了分数乘法以及分数除以整数的计算方法为基础的,我尝试以“猜想—验证—质疑—释疑得出结论”这一教学模式进行教学。老师注意引导学生质疑,让学生带着疑问进行反思。教学片断: 上课开始,我提问谁能猜想18÷2/5怎样计算?有一学生很快回答18÷2/5=18×5/2=45,我再问,这种方法可行吗?学生借助旧知发现了多种验证整数除以分数等于乘这个分数的倒数的方法。如: 18÷2/5=18÷2×5=9×5=45,18÷2/5=(18×5)÷(2/5×5)=90÷2=45,18÷2/5=18×1/2×5=45,18÷2/5=18×5/2=45,18÷2/5=18÷0.4=45,学生们一副老师还没教就会做的得意样。到此,可能很多人会以为经过这样的验证同学们都理解了为什么要乘2/5的倒数的算理,但是我却在得意之时质疑,提问学生:“为什么要乘它的倒数呢?”学生一下子被老师的质疑问住了。是的,整数除以分数是等于乘这个数的倒数,但是为什么呢?
带着这样的疑问,同学们重新反思刚才出现的题目,这时有的学生发现上面几个同学们验证的这几种方法并没有充分说明问题。此时,老师对这些题目重新进行了沟通,联系,将上面的验证方法引导学生都转化成如下形式: 18÷2/5=18÷2×5=18×1/2×5=18×5/2=45,18÷2/5=(18×5)÷(2/5×5)=18×5÷2=18×5/2=45,18÷2/5=18×1/2×5=18×5/2=45,这下学生对为什么要乘分数的倒数就明白了.这样“充分展示猜想—验证--质疑--反思-释疑得出结论”的教学效果要比直接告诉他们更容易掌握。教学反思:
在对“整数除以分数”的教学中,我注意把学生当作真正的学习主人,将更多的时间、空间留给学生,先让学生充分发挥自己的聪明才能,展示在老师还没有教学的情况下,自己却能做对的优姿。老师再主动根据教学内容来设疑,引导学生反思,激发学生主动探索积极学习,通过学生经历的自主探究的过程,对问题进行反思,老师的释疑。探究不同的计算方法,使学生对“整数除以分数”的算理和算法有初步的感悟。在数学课堂教学中,通过让学生对问题的反思,使学生的数学思维能力得到大大的发展与锻炼。
第二篇:分数除以分数教学反思
分数除以分数教学反思
分数除以分数,是学生掌握了分数乘法和倒数的基础上学习的。通过这一内容的学习可以为以后的学习打下坚实的基础。设计本课时主要突出以下几点:
1、在注重算理和算法教学的同时,体现估算。
2、以探索为主线,鼓励学生算法多样化。
3、让学生充分评价和反思。如在本节教学中,书本的例题是列式计算“14/15÷3/10”接着又问:“会计算吗?”学生们又说:“会。”接下来先请学生独立计算,然后再四人小组合作交流自己的计算方法。汇报结果时,有的小组说因为整数除以分数,分数除以整数的计算方法都是等于乘以这个数倒数。我们认为分数除以分数的计算方法也等于乘以这个数倒数。所以 14/15÷3/10=14/15×10/3=28/9(平方米)有的小组说我们把除数是分数的转化成整数,然后再进行计算,14/15÷3/10=(14/15× 10/3)÷(3/10×3/10)=28/9÷1=28/9(平方米)„„
通过交流讨论,最后得出分数除以分数的计算方法是除以分数等于乘以这个分数的倒数。然后,再和前面学的整数除以分数,分数除以整数联系起来,得出统一适用的分数除法的法则是甲数除以乙数(0除外),等于乘以乙数的倒数。
整个数学是成功的:具体表现在学生始终以积极的态度投入到每一个环节的学习中、在主动进行探究,并总结出计算法则。而对新知识的学习,不是老师去讲解。而是让学生自主探求解决问题的方法,这为学生提供了充分的学习空间。学生的思维是发散的。学生的方法是多样的。体现了学生的主动性。
第三篇:分数除以整数教学反思
分数除以整数教学反思
织金一小 彭元静
分数除以整数是在学生学过分数乘法以后进行教学的,之前学生已经认识了倒数,这是本节课的知识基础。同时,本课的学习也为后续的整数除以分数、分数除以分数并进而总结分数除法的计算法则铺垫。
为此,我设计了如下的教学目标:
1.使学生理解和掌握分数除以整数的计算法则,能灵活采用合适的方法进行分数除以整数的计算,并能运用所学知识解决一些简单的实际问题。
2.通过探究分数除以整数的计算方法,培养学生尝试计算、迁移说理、比较分析、抽象概括等方面的能力。
3.引导学生探索知识间的内在联系,让学生在探究中体验成功的喜悦,激发学生的学习兴趣。
教学重点:理解和掌握分数除以整数的计算方法。教学难点:对分数除以整数计算方法算理的理解。
(前面教材分析,目标以及重难点是按说课稿的内容来写的,呵呵,温故而知新矣)当时的思考:
一、根据需要调整、整合教材
分数除以整数看似内容简单,其实其思维要求还是很高的,尤其是对算理的理解是本课的一个难点。为了降低并突破难点,课前我布置学生自学,理解两种方法的算理,并思考还有没有另外的方法计算?因为前面学生已经自学过了,如果再将其作为例题教学,会降低学生学习兴趣。因此,我将练一练第一题修改后作为例题呈现,既解决了练一练中的题目,又实现了教材内容的整合。
二、动手操作,将算理直观呈现。
第一次操作:我设计的例题是“将6/7张纸平均分成2份,每份是多少张纸?”配合例题我制作了教具,在学生列式、猜想结果后,我让学生上来演示,直观呈现平均分的结果,这是验证猜想,同时为底下算理的理解呈现直观的素材,学生对照黑板上平均分的结果来理解算理自然比较容易。
第二次操作:学生用三种方法计算,并分别说了算理后,我设计了试一试题目:将6/7张纸平均分成3份,每份是多少张?让学生任选一种方法计算。由于有前面知识基础,学生很容易计算出得数。通过学生所选方法情况统计,自然淘汰第三种方法——用商不变的方法计算比较麻烦。这时我让学生再来分一分,这是验证方法的正确性。
三、精心设计,实现方法的自然优化
通过试一试的计算,已经实现了初步淘汰,其后我又设计了一题:将6/7张纸平均分成11份,每份是多少张纸?之所以选择11份也经过了几次思考,最初想平均分成4份,可6能被4除尽,用第一种方法还是能解决;其后想到平均分成7份,可又担心学生会将两个7约分,给学习计算带来不必要的干扰;最终还是选择了11。一开始也有学生用第一种方法,可发现不能整除,计算无法继续,这时自然只能用第二种方法,通过比较第二种方法的普遍性价值得到体现。这时我让学生重点研究第二种方法中的变与不变,掌握其计算特点,并总结计算法则。
之后的思考:
一、例题的设计有利于学生的操作,直观形象,也有助于学生对算理的理解,但我总觉得与原例题相比缺少了些生活味,显得数学味更浓些,有点枯燥。如何实现数学化与生活化的有机结合,看来还需再思考。
二、在比较得出第二种方法更普遍后,我让学生重点研究第二种方法中的变与不变,黑板上只出示了例题中的第二种方法,张迎春老师认为这样的比较缺乏足够的依据。有道理。如果此时我们把用第二种方法解决的三道题目用多媒体展示出来,让学生去观察、比较,应该更有说服力,可作这一调整。
三、巩固练习部分,先让学生填空,体会分数除法与分数乘法中的关系,再让学生自由选择算法,体现算法的多样性,培养学生灵活选择方法的能力;其次是两组题目,计算后比较,总结规律;最后是运用知识解决简单实际问题。虽说基本达标,可最初我想通过解决实际问题与下一节课内容发生联系,将学生从课堂引到课外,可思考后仍不得要领,故而退求其次。现今仍不知如何实现,还需思考。
第四篇:分数除以分数教学反思(原)
分数除以分数教学反思
新课标把学生的学习方式的改变放在了相当重要的位置,动手实践,自主探究,合作交流是学生学习数学的重要方式,分数除以分数教学反思(原),教学反思《分数除以分数教学反思(原)》。因此在教学中,我们就应该创设平台,创造和谐、轻松的课堂氛围。
在教学分数除以分数时出示例题:量杯里有9/10升果汁,茶杯的容量是3/10升。这个量杯里的果汁能倒满几个茶杯?学生读题。师:这是已知什么?要求什么数量?怎样列式?学生列式:9/10÷3/10师:这题你会算吗?想想我们前面学习的分数除以整数和整数除以分数都是怎样计算的? 先通过学生的独立思考,再与同桌交流。大多数学生都能想到等于被除数乘除数的倒数来计算,是否正确呢?然后再通过画图来进行验证。但只通过这一题的解答来总结分数除以分数的计算方法说服力不是很强,于是我又将练一练第一题进行了计算从而证实分数除以分数也可以按被除数乘除数的倒数来计算,得出了分数除以分数的计算方法。
在这一教学过程中,学生的主体地位得到了尊重,他们从被动的接受知识变成了主动探索,合作探索新知。使每个学生都有机会参与,在猜想验证中得出自己的观点,使学生在更深层次上认识所学的内容,真正成为学习的主人。
第五篇:《分数除以整数》教学反思
《分数除以整数》课后反思
在教学中,学生始终以积极的态度投入每一个环节的学习中,在主动进行探究的过程中,对“÷2”的算法有了具体的认识,并且分析思考出分数除以整数的一般性计算法则。
这节课中,选择了生活中打毛衣用的红毛线,用它作为研究问题的着眼点,让学生主动地进行观察、猜测和思考,创设了富有挑战性的问题情景。看的出来,学生对红毛线的实际长度大胆地进行估测的过程,是极感兴趣的,参与的热情破高;教师借此,用分数表示这根红毛线的实际长度,并动手操作把它截成相等的两段,让学生提出数学问题,同时再一次让学生估计“÷2”的结果,充分体现了《新课程标准》要求的“学生的数学学习内容应当是现实的、有意义的、富有挑战性的”这一理念。
面对新知识的学习,不是教师去讲解,而是让学生自主探求解决问题的方法。这为学生提供了充分的学习空间,学生的思维是发散的,学生的方法是多样的。学习活动中,学生自己去思考、去经历、去交流,对“÷2”的研究确实很到位,想出了画图的方法和计算的方法,而且计算的方法不是唯一的。从研究的结果看,说明学生有很强的求知欲,有去经历学习过程、探索过程的强烈热情,这是学生个体的需要,也是张扬学生个性的过程。这一过程恰恰体现了学生们具有学习的主动性和主体意识。