珠光体耐热钢焊接工艺讨论

时间:2019-05-14 16:30:12下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《珠光体耐热钢焊接工艺讨论》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《珠光体耐热钢焊接工艺讨论》。

第一篇:珠光体耐热钢焊接工艺讨论

珠光体耐热钢焊接工艺讨论

摘要:主要介绍了珠光体耐热钢的焊接方法、焊接材料的选择、焊前预热温度、焊后热处理及其焊接性能等方面的内容材料的工艺评定、焊接工艺参数以及焊后热处理工艺等。

关键字: 珠光体耐热钢;工艺评定;焊接方法

一、珠光体耐热钢焊接特点及工艺要点(1)焊接特点

珠光体耐热钢属于低合金钢,主要合金元素是铬、钼,还含有少量钨、钒、铌等元素,加热后在空气中冷却具有明显的淬硬倾向,焊接时在焊缝及热影响区易产生硬脆的马氏体组织,这不仅影响焊接接头的力学性能,还会产生很大的内应力,常导致焊缝和热影响区出现冷裂纹。硬化倾向还与下列因素有关:钢中碳、铬含量,构件厚度、刚性及焊件拘束度等。焊接时预热是防止冷裂纹的有效措施,焊件未预热或预热温度太低,工件冷却速度加快都会加重焊缝及热影响区硬化。(2)工艺要点及焊料选择

① 焊接过程中,应保持焊件温度不低于预热温度(包括多层焊时的层间温度)。焊接过程中尽量避免中断,不得已中断时,应保证焊件缓慢冷却,重新施焊前仍需预热。

② 焊件厚度较大时,可采用短道焊,使被焊的这一段焊缝在较短时间内重复加热,目的是为了使焊缝及热影响区缓慢冷却。③ 焊缝正面的余高不宜太高。

④ 保持在自由状态下焊接。由于铬钼耐热钢裂纹倾向比较大,故在焊接时应严格遵守焊接程序,收缩量大的焊缝先焊,尽量减少拘束度。

⑤ 焊后缓冷。焊后缓冷是必须遵守原则,一般是焊后立即用石板布等保温材料覆盖在焊缝及近缝区,覆盖务必严实,确保缓冷。

⑥ 焊后热处理,防止延迟裂纹,消除应力,改善组织。对于厚壁容器及管道,焊后常进行高温回火。

⑦ 焊条选择,摘自钢制压力容器焊接规程JB/T 4709-92、工业金属管道施工规范GB 50236-1997

二、典型珠光体耐热钢的显微组织观察

本实验所采用的珠光体耐热钢为2.25Cr-1Mo、12CrMoV(C=0.15%,M=0.6%,Cr=1.2%,Mo=0.3%,V=0.3%)等。显微组织观察是研究材料内部组织最重要的方法,用光学显微镜观察研究任何材料的显微组织,一般要分三个步骤进行:抛光所截取试样的截面,采用适当的腐蚀剂显示显微组织,用显微镜观察和分析试样的显微组织。

采用气割或机械加工方法切下大块试样,取下的试样还要去除不必要的部分,之后进行试样的平整、磨光、抛光、浸蚀等一系列加工。试样用砂纸磨制后,除表面磨痕外还有一层变形的损伤层,最表层部分经受相当于冷轧量大于90%塑性变形,试样表面变形是不均匀的。因此,试样磨光时,每一道工序必须去除前一道工序造成的损伤层,同时,该道工序本身应造成最少的损伤,使下道工序易于进行。对磨光后的试样进行抛光处理,抛光的目的是要尽快把磨光工序留下来的损伤层除去,使抛光产生的损伤层不影响显微组织的观察。抛光最好分二步进行,先是粗抛,目的在于以最大抛光速率除去磨光时的损伤层;其次是精抛,目的是去粗抛所产生的表面损伤,抛光损伤减到最小程度。焊接接头进行抛光后,光滑的接头表面经过显示组织才能被清楚的看到,所以显示方法是制样过程中相当重要的一步,显示焊接金相的试样组织的方法有两种:一种是化学试剂显示法;另一种是用电解浸蚀剂显示。我们采用第一种方法。化学浸蚀的原理是:位于晶界上的原子排列的规律性较差,具有较高的自由能,所以晶界处受浸蚀深而成凹沟,金属原子的溶解大多是沿着原子排列最密的晶面进行,由于抛光面上每颗晶粒的原子排列的位相不同,所以每个晶粒的溶解速度不同,浸蚀后每个晶粒都以原子排列最密的面为表面,有些晶粒就相对与原来的抛光面倾斜了一定的角度,在垂直光线照射下,则显示出明暗不一的晶粒,由于晶粒与晶粒之间、晶粒与晶界之间溶解速度不同,所以组织就显示出来了。化学浸蚀前必须将试样冲洗干净,以防污垢、油膜存在,妨碍浸蚀作用,然后用夹子夹住试样,浸入浸蚀剂中,必须使磨面各部位同时地浸入浸蚀剂中,并不时摇动试样,以保证试样均匀浸蚀,或者用蘸有浸蚀剂的脱脂棉来擦拭试样的抛光面。完成了以上两个步骤后,就可以进入显微分析的第三步,即显微组织的观察。本试验中的显微组织观察是在光学金相显微镜上进行的。

(1)12CrMoV插撬+J507或J607焊接(图1 图2 图3)

2.25Cr-1Mo堆焊两层过渡区A307盖面层A002N6(图4 图5 图6)对其焊缝组织以及母材、过渡区的显微组织观察图(如下):

图1 图2 图3

图4 图5 图6

三、珠光体耐热钢焊接工艺分析

由于珠光体耐热钢中含有一定量的Cr、Mo和其它一些合金元素,所以热影响区会产生硬脆的马氏体组织,低温焊接或焊接刚性较大的结构时,易形成冷裂纹。因此在焊接时应采取以下几项工艺措施:

1、预热预热是焊接珠光体耐热钢的重要工艺措施。为了确保焊接质量,不论在定位焊或正式施焊过程中,焊件都应预热并保持为80~150℃用氩弧焊打底和CO2气体保护焊时,可以降低预热温度或不预热。

2、焊后缓冷焊后应立即用石棉布覆盖焊缝及热影响区,使其缓慢冷却。

3、焊后热处理焊后应立即进行高温回火,防止产生延迟裂纹、消除应力和改善组织。焊后热处理温度应避免在350~500℃温度区间内进行,因珠光体耐热钢在该温度区间内有强烈的加火脆性现象。

四、珠光体耐热钢焊接再热裂纹的防治 4.1 焊缝成形

由于焊缝成形影响应力集中的大小,再热裂纹易产生于应力集中的热影响区粗晶区,因而也影响再热裂纹的产生。焊缝与母材过渡不圆滑,焊缝余高过高或存在咬肉、未熔合、未焊透等缺陷,在焊后再热过程中均能诱发再热裂纹。因此焊接过程中应尽可能的控制焊缝成形,对成形不理想或存在缺陷的部位进行修补,以达到降低焊接应力的作用,从而控制再热裂纹的产生。4.2 组装应力

组装时采用强力组对等,都会使得焊缝处存在大的组装应力。焊后再热过程中,容易引发再热裂纹,因此组装珠光体耐热钢时要避免强力组装,以减少组装应力。4.3 预热

为防止再热裂纹的产生,焊前预热是十分有效的。预热可以降低残余应力,形成对裂纹不敏感的组织等。日本的焊接专家认为,预热可以提高热影响区粗晶区的强度。珠光体耐热钢焊前按要求进行预热,在很大程度上可以防止再热裂纹的产生。

4.4 焊后后热

实验证明,珠光体耐热钢焊后进行150~200℃的后热处理,可以有效地消除焊缝中的扩散氢,从而减少焊缝中残存的空穴,有利于防止再热裂纹的产生。同时焊后后热可以使得焊缝晶界的有害杂质S、P等进行一步弥散,减少因S、P等杂质偏析而导致的再热裂纹。焊后在不太高的温度下进行等温处理,也可以产生类似预热的效果,这样还可以降低焊前的预热温度。4.5 焊接线能量

焊接线能量对再热裂纹的影响有两个方面。首先大的线能量可以有利于降低拘束应力,降低粗晶区的硬度,使得晶内的沉淀增多,减弱焊后加热时析出的强化程度,有利于减少再热裂纹的倾向。但另一方面,大的焊接线能量却使过热区的晶粒更加粗大,晶界结合力更加脆弱,从而增加了再热裂纹的倾向。因此,在焊接珠光体耐热钢时,对焊接线能量的选择,应考虑线能量对晶粒长大的敏感程度,对某些晶粒长大敏感的钢种,焊接时应选较小的线能量,反之,可适当选择较大的焊接线能量。4.6 晶粒度

焊接热影响区粗晶区的晶粒大小对再热裂纹的敏感性也有影响。晶粒度大,裂纹敏感性大;晶粒度小,晶界所占的面积就大,在其它条件均相同的情况下,晶界所能承受的蠕变变形量相对大,产生再热裂纹的倾向也就相应变小。

焊接材料的选择通常有两种原则:一为“等成分原则”即选用焊接材料在化学成分上与母材相同;二为“等强度原则”即选用的焊接材料在化学成分上与母材成分相近,主要保证焊接接头的强度与母材相同。在进行珠光体耐热钢焊接时,一般采用“等强度原则”,甚至在使用条件允许的情况下,可以适当降低焊接接头的强度。实验证明,通过适当降低焊缝金属的强度,提高其塑性变形能力,从而降低焊接接头的应力集中程度,以降低再热裂纹的敏感性。仅仅焊缝表层采用低强度高塑性的焊接材料来盖面也是比较有效的。4.8 合金元素的影响

(1)碳 由于碳化物的形成,碳在热裂纹中有着重要的作用。在Cr-Mo钢中,当含碳量由0.05%增至0.20%时,裂纹倾向明显增加。在含V量高的钢种中,碳的影响更大。

(2)铬 Cr的影响是两个方面的。当钢中的含Cr量<1.5%时,随着含Cr量的增加,裂纹倾向增大;当含Cr量>2.0%时,随含Cr量的增加,裂纹倾向逐渐减小。当然,Cr对再热裂纹的影响在很大程度上还取决于钢种中Mo与V的含量。

(3)钼 Mo能够降低蠕变塑性,增加裂纹。其作用是通过对相变特性的影响及碳化钼的析出而实现的。模拟热循环试样缺口应力试验,当Mo的含量为0.21%时,627℃断裂的时间为1300min,而Mo的含量为0.54%时,断裂时间降为2min,说明Mo含量的增加,提高了钢的再热裂纹的敏感性。

(4)钒 V通常与Cr、Mo等元素同时加入,在同时含有其它元素时,增加V是极其有害的。V含量为0.73%,钢材应力—断裂塑性最低。当V含量<0.15%时,随其含量的增加裂纹率明显增大。如V含量由0增至0.08%时,Y型坡口拘束试样的裂纹率由0增至95%。V的影响主要是形成V4C3的析出,使应力松驰率下降。

(5)微量杂质元素 从金属材料主要元素成分含量相同,而再热裂纹倾向相差很大的事实来看,微量杂质元素起着很大的作用。这是因为这些杂质元素在晶界偏析,促使晶界空穴形成,大大降低金属的蠕变性能。如降低断裂应力和断裂塑性。

4.9 重熔焊道

在再热裂纹的预防上,焊后利用TIG对焊缝表面进行一次重熔,可以减少焊接接头的残余应力,因而也有利于减少再热裂纹的产生。

参考文献: 周振丰,张文钺.焊接冶金与金属焊接性.北京:机械工业出版社,1988 2 周振丰.金属熔焊原理及工艺.北京:机械工业出版社,1987 3 周顺深.低合金耐热钢.上海人民出版社,1976 4 美国焊接学会编,黄静文等译.焊接手册 第二册.北京:机械工业出版社,1988 5 美国焊接学会编,韩鸿硕等译.焊接新技术.宇航出版社,1987 6 王健安.金属学与热处理下册.北京:机械工业出版社,1987 7 丁启湛.钢的焊接脆化.北京:机械工业出版社,1992

第二篇:焊接压力容器耐热钢的注意事项

焊接压力容器耐热钢的注意事项

一、压力容器用耐热钢及其焊接性 在普通碳钢中加入一定量的合金元素,以提高钢的高温强度和持久强度,就形成了低合金耐热钢,对于压力容器用低合金耐热钢,为改善其焊接性能,常常把碳含量控制在0.2%以下。这类钢通常以退火态或正火+回火状态交货。由于合金含量在2.5%以下的低合金耐热钢具有珠光体+铁素体组织,故也经常称为珠光体耐热钢,如15CrMoR。合金含量在3% ~ 5%之间的低合金耐热钢供货状态为贝氏体+铁素体组织,故也称为贝氏体耐热钢,如12Cr2Mo1R。压力容器上使用的低合金耐热钢主要是以加入铬和钼元素或辅以加入少量的钒、钛等元素来提高钢的蠕变强度和组织稳定性,所以也经常称之为Cr-Mo耐热钢或Cr-Mo-V系耐热钢。也正由于这一类钢在耐高温的同时还具有良好的抗氢腐蚀性能,为此,Cr-Mo或Cr-Mo-V系的低合金耐热钢亦经常称为抗氢钢。

作为耐热钢,除上面已讲到的低合金耐热钢外,还有合金含量在在6% ~ 12%之间的中合金耐热钢,如1Cr5Mo、1Cr9Mo1,和合金大于13%的高合金耐热钢,如1Cr17。由于在压力容器中这两类耐热钢并不多见,本节以叙述低合金耐热钢为主。为保证耐热钢焊接接头在高温、高压和各种腐蚀介质条件下长期安全的运行,其焊接接头性能应满足下列几点要求。

① 接头的等强性 耐热钢接头不仅应具有与母材基本相等的室温和高温短时强度,而且更重要的是应具有与母材相近的高温持久强度。

② 接头的抗氢性和抗氧化性 耐热钢接头应具有与母材基本相同的抗氢性和高温抗氧化性。为此,焊缝金属的合金成分和含量应与母材基本一致。③ 接头的组织稳定性 耐热钢焊接接头在制造过程中,特别是厚壁接头将经受长时间多次热处理,在运行过程中将长期受高温高压的作用,接头各区不应产生明显的组织变化及由此引起的脆变或软化。

④ 接头的抗脆断性 虽然耐热钢压力容器大多数是在高温下工作,但当压力容器和管道制造完工后将在常温下进行设计压力1.25倍压力的水压试验。在安装检修完后,要经历水压试验及冷启动过程。因此,耐热钢焊接接头亦应具有一定的抗脆断性。

⑤ 接头的物理均一性 耐热钢焊接接头应具有与母材基本相同的物理性能。焊缝金属的热膨胀系数和热导率应基本一致,这样就可避免接头在高温运行过程中的热应力。

低合金耐热钢含有一定量的合金元素,因此它与低合金高强钢都具有一些相同的焊接特点,而又由于其含有一些特殊的微量元素及其不同的介质工作环境,所以也有其独特的焊接特点。(1)淬硬性 低合金耐热钢中的主要合金元素Cr和Mo等都能显著提高钢的淬硬性。其中Mo的作用比Cr大50倍。这些合金元素推迟了钢在冷却过程中的转变,提高了过冷奥氏体的稳定性,从而在较高的冷却速度下可能形成全马氏体组织,比如12Cr2Mo1R焊接时,如果焊接线能量较小,钢板厚度较大且不预热焊接时就有可能发生100%的马氏体转变。(2)冷裂纹 由于Cr-Mo钢极易产生淬硬的显微组织,再加上焊缝区足够高的扩散氢浓度和一定的焊接残余应力共同作用,焊接接头易产生氢致延迟裂纹。这种裂纹在热影响区和焊缝金属中都易发生。在热影响区大多是表面裂纹,在焊缝金属中通常表现为垂直于焊缝的的横向裂纹,也可能发生在多层焊的焊道下或焊根部位。冷裂纹是Cr-Mo钢焊接中存在的主要危险。(3)消除应力裂纹 因为这类裂纹是在消除应力热处理时,接头再次处于高温下所产生的裂纹,故又称为再热裂纹。Cr-Mo钢是再热裂纹敏感性钢种,敏感的温度范围一般在500 ~ 700℃之间。

大量试验结果表明,钢中Cr、Mo、V、Nb、Ti等强碳化物形成元素对再热裂纹形成有很大影响。通常以裂纹指数PSR粗略地评价钢的消除应力裂纹敏感性。PSR按下式计算: PSR=Cr% + Cu% + 2Mo% + 10V% + 7Nb% + 5Ti%-2 当PSR≥0时,就有可能产生消除应力裂纹。但对于碳含量低于0.1%的钢种,上式不适用。(4)热裂纹 对低合金耐热钢,人们往往注重冷裂纹的防止。实际上,当焊道的成形系数(熔宽与熔深比)小于1.2 ~ 1.3时,焊道中心易形成热裂纹。这是因为窄而深的梨形焊道,低熔点共晶聚集于焊道中心,在焊接应力作用下,导致焊道中心出现热裂纹。一切影响焊道成形系数的因素都会影响热裂纹的发生。(5)回火脆性 Cr-Mo钢及其焊接接头在350 ~ 500℃温度区间长期运行过程中发生脆变的现象称为回火脆性。例如某厂一台2.25Cr-1Mo钢制压力容器在332 ~ 432℃运行30000h后,钢的40J脆性转变温度从-37℃提高到了+60℃,并最终导致灾难性的脆性断裂事故。Cr-Mo钢及其焊接接头的回火脆性敏感性有两种评价方式: ①X系数和J系数

X=(10P+5Sb+4Sn+As)×10-2(式中元素以ppm含量代入,如0.01%应以100ppm代入)J=(Si+Mn)(P+Sn)×104(式中元素以百分数含量代入,如0.15%应以0.15代入)这两个系数的界定是随着工业的不断发展和进步一步步提高的,最早要求X≤25ppm,J≤200,后来达到X≤20ppm,J≤150,直至目前又提高了要求,要求X≤15ppm,J≤100。② 分步冷却试验法(步冷)

分步冷却试验法是将试件加热到规定的最高温度后分步冷却,温度每降一级,保温更长时间。步冷处理目的是在200 ~ 300 h内使钢产生最大的回火脆性,与350 ~ 500℃温度区间设备经过2000 ~ 5000 h才能产生的效果相同。按曲线加热,使钢材发生快速回火脆化。分别对步冷试验前后的钢材进行系列冲击,绘制出步冷试验前、后回火脆化程度的曲线,确定延脆性转变温度VTr54(试样经Min.PWHT处理后的夏比冲击功为54J时相应的转变温度)的变量ΔVTr54(试样经Min.PWHT + 步冷处理后的夏比冲击功为54J时相应的转变温度增量),按下式进行计算:

美国雪弗龙公司早期提出的指标: VTr54 +1.5ΔVTr54 ≤ 38℃(100℉)20世纪90年代普遍采用的指标: VTr54 +2.5ΔVTr54 ≤ 38℃

随着对设备安全性要求的提高及钢材、焊材性能的提高,对该指标的要求越来越高,2006年某工程公司为宁波和邦化学有限公司设计的两台加氢反应器提出的指标是: VTr54 +3ΔVTr54 ≤ 10℃

二、压力容器用耐热钢焊材选用

(1)与低合金高强钢相同,焊缝金属和母材等强度原则仍是低合金耐热钢焊材选用的基本原则,只不过此时不但要考虑焊缝金属与母材的常温强度等强,同时也要使其高温强度不低于母材标准值的下限要求。

(2)为使其焊缝金属具有与母材同样的使用性能,因此要求其焊缝金属的铬、钼含量不得低于母材标准值的下限。

(3)为保证焊缝金属有同样小的回火脆性,应严格限制焊材中的氧、硅、磷、锑、锡、砷等微量元素的含量。

(4)为提高焊缝金属的抗裂性,应控制焊材中的含碳量低于母材的碳含量,但应注意,含碳量过低时,经长时间的焊后热处理会促使铁素体形成,从而导致韧性下降,因此,对于低合金耐热钢的焊缝金属含碳量最好控制在0.08% ~ 0.12%范围内,这样才会使焊缝金属具有较高的冲击韧性和与母材相当的高温蠕变强度。

三、压力容器用耐热钢焊接要点

(1)预热与层间温度 在Cr-Mo钢的焊接特点中提到的冷裂纹、热裂纹及消除应力裂纹,都与预热及层间温度相关。一般来说,在条件许可下应适当提高预热及层间温度来避免冷裂纹和再热裂纹的产生。表10-2为对各种低合金耐热钢推荐选用的预热温度和层间温度,但在设备制造过程中还要结合实际选用。

表10-2 推荐选用的低合金耐热钢预热及层间温度 钢种

预热温度/℃

层间温度/℃ 15CrMoR

≥150

~ 250 12Cr1MoV

≥200

250左右

12Cr2Mo1R

200 ~ 250

200 ~ 300 在Cr-Mo钢上堆焊不锈钢

≥100

对于预热和层间温度,应注意以下几点:

① 整个焊接过程中的层间温度不应低于预热温度。② 要保证焊件内外表面均达到规定的预热温度。

③ 对于厚壁容器,必须注意焊前、焊接过程和焊接结束时的预热温度基本保持一致并将实测预热温度做好记录。

④ 若容器焊前进行整体预热不仅费时而且耗能。实际上,作局部预热可以取得与整体预热相近的效果,但必须保证预热区宽度大于所焊厚度的4倍,且至少不小于150mm。

⑤ 预热与层间温度必须低于母材的Mf点(马氏体转变结束点),否则当焊件经SR处理后,残留奥氏体可能发生马氏体转变,其中过饱和的氢逸出会促使钢材开裂,如对12Cr2Mo1R的预热和最高层间温度应低于300℃。

⑥ 钢材下料进行热切割时,类似焊接热影响区的热循环,切割边缘的淬硬层可能成为钢材卷制或冲压时的裂源。因此,也应适当预热。

(2)焊后热处理 对于低合金耐热钢,焊后热处理的目的不仅是消除焊接残余应力,而且更重要的是改善组织提高接头的综合力学性能,包括提高接头的高温蠕变强度和组织稳定性,降低焊缝及热影响区硬度,还有就是使氢进一步逸出以避免产生冷裂纹。因此,在拟定低合金耐热钢焊接接头的焊后热处理规范时,应综合考虑下列冶金和工艺特点。① 焊后热处理应保证近缝区组织的改善。

② 加热温度应保证焊接接头的焊接应力降到尽可能低的水平。

③ 焊后热处理不应使母材及焊接接头各项力学性能降低到设计规定的最低限度以下。这一点往往要通过对母材及焊接接头进行最大和最小模拟焊后热处理(Max.PWHT及Min.PWHT)后的各项力学性能检测来确定。

④ 由于耐热钢的回火脆性及再热裂纹倾向,焊后热处理应尽量避免在所处理钢材回火脆性敏感区及再热裂纹倾向敏感区的温度范围内进行。应规定在危险温度范围内要有较快的加热速度。

综合考虑以上4个特点,需要制定一个合适的耐热钢焊后热处理规范,经过大量的试验、研究,引出了一个指导性参数,即纳尔逊米勒(Rarson—Miller)参数 Tp,也称回火参数。Tp= T(20+log t)×10-3 式中:

T — 热处理绝对温度,K t — 热处理保温时间,h 从式中可以看出,热处理的温度和保温时间决定了Tp值的高低,也就影响了Cr-Mo钢焊接接头的强度和韧性。Tp值过低,接头的强度和硬度会过高而韧性较低,若Tp值太高,则强度和硬度会明显下降,同时由于碳化物的沉淀和聚集也会使韧性下降,因此,Tp值在18.2 ~ 21.4可以使接头具有较好的综合力学性能。当然,对于每一种Cr-Mo钢都有一个最佳的回火参数范围,如1.25Cr-0.5Mo钢焊缝金属的最佳Tp值为20.0 ~ 20.6之间,对于2.25Cr-1Mo钢而言,其最佳的Tp值在20.2 ~ 20.6之间。

(3)后热和中间热处理 Cr-Mo钢冷裂倾向大,导致生产裂纹的影响因素中,氢的影响居首位,因此,焊后(或中间停焊)必须立即消氢。一般说来,Cr-Mo钢容器的壁厚、刚性大、制造周期长,焊后不能很快进行热处理,为防裂并稳定焊件尺寸,在主焊缝(或主焊缝和壳体接管焊缝)完成后进行比最终热处理温度低的中间热处理。这类钢的后热温度一般为300 ~350℃,也有少数制造单位取350 ~ 400℃的。中间热处理规范随钢种、结构、制造单位的经验而异,一般中间热处理温度为(620 ~ 640℃)±15℃。

(4)焊接规范的选择 焊接线能量、预热温度和层间温度直接影响到焊接接头的冷却条件,一般来说,焊接线能量越大,冷却速度越慢,加之伴有较高的预热和层间温度,就会使接头各区的晶粒粗大,强度和韧性都会降低。对于低合金耐热钢而言,对焊接线能量在一定范围内变化并不敏感,也就是说,允许的焊接线能量范围较宽,只有当线能量过大时,才会对强度和韧性有明显的影响,所以为了防止冷裂纹的产生,希望焊接时线能量不要过小。

第三篇:电站阀门用高合金耐热钢焊接工艺的分析

概述

随着我国经济的高速发展,社会用电需求量不断增加,火力电站建设也在飞速发展。在火力发电汽轮机组中,超(超)临界汽轮机具有效率高、煤耗低和污染物排放量低等优点,被国内外火力发电厂大量而广泛地采用。超(超)临界汽轮机(1000MW)主蒸汽参数为压力25MPa,再热蒸汽温度600℃。火电机组主蒸汽管道、再热蒸汽管道热段的使用材料由珠光体耐热钢的10CrMo910(DIN17175)、ASTMA335-P22发展到使用X20CrMoV121(DIN17175)、ASTMA335-P91、10Cr9Mo1VNb(GB5310-1995)等含有马氏体的铁素体耐热钢。与珠光体耐热钢管对焊连接的电站阀门铸件是选用ZG20CrMoV、ZG15CrMo1V、WC6、WC9材料,通过机组常年运行证明,这些材料是完全可以满足各方面技术性能要求的。1984年,ASME和ASTM将P91引入标准后,国际上P91材料在火电厂大容量机组的主蒸汽管道、再热蒸汽热段管道逐步被广泛应用。P91材料的开发成功,使珠光体耐热钢和奥氏体耐热钢之间增加了新材料,填补了火电厂蒸汽管道在590~650℃温度范围内的材料空缺,使超临界机组和超超临界机组的发展有了相应的材料基础。P91钢相比珠光体耐热钢主要是减小了管道壁厚,如主蒸汽管道、再热蒸汽管道壁厚减小约一半,电站阀门受压件壁厚减小40%以上,产品自重减小65%以上,提高发电效率8%左右。

早在70年代初,美国开始着手研究9Cr-1Mo钢,且在不断改进,直到1983年研制出改进型的9Cr-1Mo钢,这是一种在9Cr-1Mo的基础上加一定量的Nb、V、N等元素的合金。同年P91钢被美国材料试验学会(ASTM)和美国机械工程师学会(ASME)正式接受为锅炉管道用材料。其材料级别为ASTM213-T91和ASME/SA335-P91。随着P91材料的广泛应用,我国的相关标准也进行了相应的补充和完善。如JB/T5263-2005中电站阀门铸钢件材料增加了C12A,GB5310-2008中增加了10Cr9Mo1VNbN和10Cr9MoW2VNbBN等。

低合金耐热钢(15CrMo、20CrMo、12CrMoV、WC6、WC9等)在我国应用比较广泛,其焊接性良好,只要采取合适的预热温度和焊后消除应力热处理,可以得到满足要求的优质焊缝。而P91/F91、P92/F92材料合金元素较高,焊接性明显下降。电站阀门主要零部件采用C12A、P91/F91、P92/F92材料给阀门制造中的焊接工序带来一定难度,选用合适的焊接工艺方法,适宜的填充材料,合理的焊接工艺规范是电站阀门制造的重要环节。本文仅就这类材料的铸件补焊、结构焊接及耐磨堆焊等实施要点加以阐述。2 铸件的补焊

在JB/T5263-2005和ASTMA217标准中均明确了可以采用补焊的方法对C12A铸件的缺陷进行修复,并规定了具体的要求。

①补焊前应根据合同、图样或工艺要求对铸件进行磁粉、渗透、射线或超声波检测,对检测到的缺陷应进行清除,清除后方可对铸件实施补焊。

②铸件的补焊应在铸件热处理前按有关补焊工艺进行。

③补焊时应选用焊缝金属与母材成分一致或相近的、力学性能等级相同的焊条进行补焊。

④当补焊是用来修补铸件的水压试验泄漏或修补处的凹坑深度超过铸件壁厚的20%或25mm(1in.)两者中的较小值,或者该凹坑的面积超过65cm2(10in.2)时。补焊后应进行消除应力热处理,并明确记录焊后热处理工艺。补焊后应对补焊部位采用检验铸件的相同标准进行射线检验。

⑤铸件同一部位缺陷的补焊次数不得超过2次。表1为ASTMA217-2002和JB/T5263-2005中C12A材料的化学成分与力学性能的比较。由表1可以看出,JB/T5263-2005中C12A铸件的化学成分、力学性能与ASTMA217-2002中C12A铸件的要求基本一致,只是S的含量有些偏差。

表1 C12A铸钢件化学成分及力学性能

C12A铸件的补焊一般采用焊条电弧焊的方法。由于细晶粒钢的晶粒长大的驱动力较大,必然导致焊接热影响区(HAZ)晶粒严重粗化和软化,这将影响整个接头性能与母材性能相匹配性。焊接冷裂纹是焊缝在焊后冷却过程中,在Ms点以下的温度范围内形成的一种裂纹,危害性极大。

为获得与母材相等性能的焊接接头,需要对焊接材料、焊接方法及焊接工艺进行合理选择。防止晶粒粗化和软化的措施是控制焊接线能量,一般焊接线能量不超过20kJ/cm。铸件焊后热处理是消除较大缺陷补焊后造成的内应力的有效方法,是电站阀门铸钢件在长期使用中保持稳定的组织状态的必要手段,有助于控制铸件内在质量。选择合适的焊接材料也是非常重要的,国内焊条牌号R717和符合美国AWSSFA5.5中的E9015-B9电焊条均能满足要求。3 轧锻件结构焊接

阀门的结构焊接是指阀门主体(阀体)与接管、阀体与阀座的连接焊缝或其他阀件之间的连接焊缝。电站阀门的结构焊接与铸件补焊相比,结构焊接增加了P91/F91、P92/F92等锻件材料,铸件补焊注重于补焊部分与原材料的均质性,而结构焊接更注重于连接焊缝的力学性能满足于使用要求。

由于铸件补焊受补焊位置所限只能采用焊条电弧焊,而结构焊接是设计的焊缝结构,可采用熔化极(GMAW)气体保护焊、非熔化极(GTAW)气体保护焊及埋弧自动焊(SAW)等高效率的焊接方法。

表2中10Cr9Mo1VNbN、10Cr9MoW2VNbBN钢管材料与F91、F92锻件材料的化学成分和力学性能的对比,其化学成分基本一致。GB5310给出了冲击韧性指标,而ASTMA182无此项要求。

表2 10Cr9Mo1VNbN等锻件材料的化学成分和力学性能

在10Cr9Mo1VNbN类钢的焊接中,首先考虑的是焊缝金属与母材的一致性。一般说,在所有冷却条件下,10Cr9Mo1VNbN类钢焊缝金属组织均为马氏体(或少量的铁素体),其焊态硬度可达450HV。因此,应特别注意焊缝氢致裂纹的产生。所以,焊接过程中选择正确的预热温度和层间温度。对一些厚大工件,可采用手工钨极氩弧焊封底+焊条电弧焊+埋弧自动焊的组合工艺方法,并注意焊接要点的控制。

①钨极氩弧焊封底焊时,采用ER90S-B9焊丝,工件预热≥160℃。为保证封底焊透、成型好、不氧化,焊接时背面应充氩气保护。焊后缓冷至室温进行渗透检查。

②封底焊后,采用焊条电弧焊焊2~3层以便采用埋弧自动焊。焊条电弧焊施焊时,采用E9Mo-15或E9015-B9电焊条,工件预热≥205℃。施焊时,层间清理焊渣,并控制层间温度在205~300℃之间。

③埋弧焊接时,采用ER90S-B9焊丝。施焊过程中应控制层间温度,当工件温度低于205℃时,必须加热至205~300℃之间方可施焊。

当10Cr9Mo1VNbN类钢的焊接完成后,由于工序的限制,往往不能立即进行焊后热处理,为了保证扩散氢有足够的时间逸出,避免裂纹产生,焊后应立即进行焊缝消氢热处理,温度为375±5℃,保温2h,缓冷至室温。焊缝冷却到室温,消除焊缝中未转变的奥氏体,使奥氏体-马氏体转变充分。因为转变的奥氏体内能滞留相当量的扩散氢。

同时,残余奥氏体不受回火处理的影响,而在冷却后转变成新的未经回火的马氏体。此外,如果最终热处理温度选择不当,会引起冲击韧性下降。对于10Cr9Mo1VNbN类钢的焊缝,焊后消除应力热处理温度为740~760℃。

表3 10Cr9Mo1VNbN类钢焊接用焊条、焊丝的化学成分 Wt%

密封面耐磨堆焊 4.1 堆焊材料

电站阀门密封面常用堆焊材料有司特立合金(stellite)、D547Mo、SF-5T及SF-6T等。

司特立合金是国内外阀门密封面较为常用的堆焊材料,是以钴为基本成分,加入铬、钨等元素组成的合金。合金的组织一般是奥氏体加碳化物加共晶组织,根据成分不同可以是亚共晶、共晶或过共晶组织。具有优良的耐腐蚀、耐磨损、耐冲蚀和高温抗蠕变性能,满足了作为阀门密封面的使用性能的需要。

司特立合金的组织与含碳量密切相关,当含碳量较低时,其组织是由树枝状结晶的铬、钨初晶和奥氏体与铬、钨复合碳化物的共晶体组成。随着含碳量的增加,奥氏体数量减少,共晶体增多,这种组织属于亚共晶型。当含碳量较高时,则显现为过共晶组织,由粗大的一次铬、钨复合碳化物加固溶体与碳化物的共晶体组成。通常司特立合金可以通过调整碳和钨的含量来改变其硬度和韧性,以适应不同的用途。由于司特立合金作为阀门密封面材料具有耐冲蚀、耐腐蚀、耐擦伤、耐磨损和高温红硬性等一系列优良使用性能,长期以来应用在电站阀门密封面上,实现了其安全性、可靠性要求。D547Mo焊条是在D557、D547等焊条的基础上发展起来的,D547Mo焊条适用于温度低于570℃、压力小于14MPa、介质为过热蒸汽的电站阀门密封面堆焊。其合金组成除采用一定量的硅元素强化外,还加入钼、钨、钒和铌等元素进行强化。钼、钨、钒和铌等元素能提高堆焊金属的热硬性,具有较强的时效硬化作用,同时钼还能改善材料的耐蚀性,铌可提高材料的抗晶间腐蚀性能。D547Mo焊条堆焊金属具有良好的高温抗擦伤、抗腐蚀等性能,有较高的高温硬度和良好的热稳定性和抗热疲劳性。堆焊金属时效硬化效果显著,随着时效时间的增加,硬度和抗擦伤性能有进一步提高。

SF-5T是一种新型电站阀门用堆焊焊条,其合金组织以铬和锰为基础,加入钨、钼、钒和硼元素强化。金相组织是以奥氏体为基体并含有少量的铁素体,第二相硬质项是Fe2B和Cr2B以骨络状或网状分布的共晶硼化物,并有一定量的条状M23(C、B)6碳硼化物和豆状碳化物分布在晶界,形成耐磨骨架。合金中钨、钼和钒元素提高了堆焊层的红硬性和高温二次硬化效应。适用于介质温度低于500℃、压力小于6.4MPa的阀门密封面堆焊。SF-6T也是一种新型电站阀门用堆焊焊条,其合金组织以碳、铬、锰为基础,加入钼、硼元素强化。金相组织是以奥氏体为基体,二次相是碳化物、硼化物硬质项,碳化物类型为M23C6、M7C3、和M7(C、B)3碳硼化物,呈片状分布在枝晶间形成耐磨骨架。硬质相占焊层平均面积的13.5%,堆焊层高温组织稳定。硬质相的数量、结构、形态及分布对提高堆焊合金的各种高温使用性能和抗裂性起决定性作用。适用于介质温度低于555℃、压力小于17.0MPa的阀门密封面堆焊。

表4 电站阀门密封面材料堆焊金属化学成分 Wt%

常用工艺方法有焊条电弧焊(SMAW)、钨极气体保护焊(GTAW)、埋弧焊(SAW)和等离子弧焊(PAW)等。堆焊金属的稀释率是评价堆焊层质量的重要指标。稀释率大,基体材料混入焊层熔敷金属的量多,改变了堆焊合金的化学成分,严重影响堆焊合金的性能,如硬度、耐蚀性、耐磨性和耐热性等。由于各种堆焊工艺方法的特点不同,亦产生不同的稀释率,且不同的堆焊材料堆焊在不同的基体母材上,由稀释率所产生的作用也不尽相同。欲获得低稀释率或无稀释率的表面工作层,则需根据堆焊材料和堆焊方法,合理地选择堆焊层数和厚度。4.2 堆焊工艺

(1)焊前准备

工件表面粗糙度Ra值应在12.5μm以下,并应严格清除表面的水、锈及油等污物,基体不得有裂纹、气孔或包砂等缺陷,棱角处应倒成圆角。焊前应根据基体材料和工件的刚度进行预热。在基体表面堆焊奥氏体不锈钢过渡层,加工平整后再进行耐磨堆焊,以提高抗裂性,避免产生裂纹。

(2)操作要点

尽量采用平焊位置。焊条摆动幅度不宜过大,一般不超过焊条直径的3倍。为减小基体熔深,堆焊时尽量采用规定电流的下限。多层堆焊,控制每层堆焊厚度在2mm左右,须堆焊3层以上。各层须用砂轮或钢丝刷进行清渣处理,并控制层间温度不低于预热的温度。堆焊结束时,逐渐熄灭电弧,以免在熄弧处熔池金属急冷而产生“火口”裂纹。焊后应进行消除应力热处理,或缓冷处理。

(3)堆焊返修

如堆焊层有局部“缺肉”等缺陷,可以局部补焊,但需按堆焊工艺(包括焊前预热、焊后处理等)进行补焊。如堆焊层有裂纹或缺陷面积较大,可将堆焊层全部加工去除,重新堆焊。同一部位缺陷补焊次数不得超过两次。5 结语

电站阀门高温耐热钢的焊接无论是铸件毛坯的补焊还是轧锻件的结构焊以及密封面堆焊,在焊接实施前均应进行焊接工艺评定。为验证所拟定的焊接工艺的正确性所进行的验证过程及结果的评价,工艺评定应根据图样的规定或技术规格书的要求按照相应的标准进行。评定合格的工艺评定报告是编制指导生产的工艺文件依据之一,并作为产品的交工验证文件备查。

堆焊工艺评定的一般过程是编制焊接工艺评定指导书,按照拟定的工艺参数堆焊工艺评定试件,试件外观和无损检验,试件破坏性检验(化学成分、金相检验及硬度检验等),检验结果评价,编制工艺评定报告。任一焊接工艺评定标准,都规定了所作的工艺评定可以有条件的覆盖一定范围,包括基体材料、填充材料以及焊接参数中的一些非重要变素等,当产品工件的基体材料或焊接工艺方法及一些焊接参数的改变超出了工艺评定标准规定的范围时必须重新进行工艺评定。

参考文献:http://www.xiexiebang.com/

第四篇:电力行业新型耐热钢的焊接现状

电力行业新型耐热钢的焊接现状

一、前言

锅炉机组参数的提高依赖于新型钢材的出现。世界各国在六十年代有过提高机组参数的尝试,后因为钢材问题又都陆续将参数退回到了540℃左右这一典型参数。直到九十年代,以T/P91钢为标志的新型耐热钢的出现,机组参数的提高才成为可能。这些新型耐热钢的出现,是焊接工作者的新课题。

二、我国超超临界机组新型耐热钢的焊接

我国电站中应用新型9Cr-1MoVNb钢(P91)在九十年代中期,经过十余年的摸索,对该钢材的焊接有了较深刻的了解,据此也认识到新型耐热钢的一些焊接特点,为我国锅炉机组参数的提高积累了一些经验。2006年投产的华能浙江玉环发电厂单机容量1000MW超超临界火力发电机组中,除去T/P91钢外,还使用了P92钢、Super304H钢、HR3C钢等,其中,Super304H钢和HR3C钢属于奥氏体耐热钢,其焊接只局限在锅炉制造厂,锅炉安装现场焊接工作中焊接T/P91钢和P92钢都属于铁素体耐热钢,是目前电力行业焊接工艺进步和取得突破的重点,以下简单介绍它们的焊接。

1、T/P91钢的焊接

T/P91钢是ASME标准SA213-T91/SA335-P91钢的简称,是八十年代美国的树岭试验室开发的新型耐热钢,称为9Cr-1MoVNb钢。9Cr-1MoVNb钢的焊接经我国电力行业多年的研究与应用,其性能与焊接特点有以下几点:

(1)对焊接热输入极为敏感。

9Cr-1MoVNb钢的焊接过程的热输入包括两方面,即预热和层间温度、焊接热输入量。①预热和层间温度,理论上应保证在300℃以下,实际焊接中控制得更低些为好。有资料证明,预热和层间温度对焊接接头的室温冲击韧性关系密切,当保持在350~380℃时,室温冲击值在28~50J之间;而保持在250℃左右时,室温冲击值可以达到60~100J(标准值为41J)。②焊接热输入量(旧称焊接线能量),应该控制在25J/cm以下,当焊接热输入量大于此值或更高时,室温冲击值将不会达到41J的标准。

(2)对焊接热处理敏感。

9Cr-1MoVNb钢的合金元素含量较高,需要进行焊后热处理,标准规定热处理温度为760℃±10℃。由于9Cr-1MoVNb钢是多元素强化,该钢理论AC1温度在800~830℃之间,其下限距标准规定热处理温度上限比较接近,热处理过程的允许偏差就有可能超过钢材的AC1温度。与此同时,在9Cr-1MoVNb钢焊接接头的热处理工作中,还有焊接材料的AC1温度问题同样影响接头性能,现有的焊接材料为了获得较好的工艺性能和较好的接头塑韧性,都在材料中加入镍,镍元素是扩大奥氏体区元素,会降低焊缝的AC1温度,使热处理更具危险。实践证明,当焊后热处理温度超过AC1温度时,室温冲击韧性急剧下降,冲击值甚至有不到10J的情况。

(3)不同焊接材料获得的结果悬殊。电力行业应用9Cr-1MoVNb钢已经多年,前期使用的焊接材料几乎都靠进口,主要有英国的曼彻特、德国的蒂森、日本的神钢、法国的萨福、瑞士的奥林康和奥地利的伯乐等,近年来,国家电力建设研究生产的“科建牌”也在应用,上海电力修造总厂也生产出9Cr-1MoVNb钢使用的焊接材料。经验证明,这些焊接材料的性能悬殊很大,特别是AC1温度差别很大,这就要求焊接工作者一定要关注这一点,特别是选定焊接材料后,一定要研究厂家的说明书,否则,焊接接头发生问题的责任将要自己承担。如某进口焊接材料热处理温度在 760℃时,恒温4小时;750℃时,恒温8小时,这一参数与DL/T869-2004 火力发电厂焊接技术规程推荐的参数相差很多。

(4)改变了焊接观念。

在焊接常规耐热钢时,预热和层间温度和焊接热输入量是重要参数,但对材料冲击韧性的影响,远不如新型耐热钢这样大。这种情况的出现,使焊接工艺的概念有了根本性的变化。过去谈到焊接工艺,往往指焊接操作工艺,今天的新型耐热钢焊接工艺,往往与操作工艺无关,而主要指对焊接参数和工艺要求。与此同时,焊接检验的观念也带来变化,即:经过焊接检验合格的焊接接头,其性能不见得是合格的。也就是说,当焊接或焊后热处理参数出现问题时,导致的焊接接头室温冲击韧性不合格是不能被现有的焊接检验手段在现场检测出来的。所以,新型耐热钢的焊接过程在现代质量管理中被称为“需要确认的过程”,这种过程的实现必须进行焊接质量影响因素的预先鉴定和确认,包括人、机、料、法、环诸方面,这种“预先”也就是指焊接质量控制的时机必须提前,必须实施全过程控制。

9Cr-1MoVNb钢的焊接在电力行业有较为完整的依据和标准,即:二○○二年十月国家电力公司电源建设部颁发的《T91/P91钢焊接工艺导则》和DL/T869-2004火力发电厂焊接技术规程。

2、P92钢的焊接

继T/P91钢以后,日本于九十年代开始对T/P91钢实施改进,以期进一步提高蠕变断裂强度和使用温度,1996年至1998年开发出了9Cr-0.5Mo-2W为主要成分的NF616钢,后纳入ASTM和ASME标准。在ASTM中,NF616钢的编号为ASMESA213T92、ASMESA335P92,在欧洲的编号为X10CrMoWVNb9-2,在日本的编号为STBA29和STPA-29。

与T/P91钢相比,它们的抗腐蚀性和抗氧化性相同,但是具有更高的高温强度和蠕变性能。与TP347H相比,价格低廉,且热膨胀系数小、导热率高和抗疲劳性能强,可加工性和可焊性好。

自P92钢纳入ASME并进入火力发电设备领域以来,世界范围内应用并不是很广,欧洲九十年代只在丹麦和德国的5个发电厂有应用,而日本则只在三个发电厂应用。国内第一台采用P92钢的火力发电机组是浙江玉环发电厂,自此拉开我国应用P92钢的序幕。截至今天,我国超超临界火力发电机组的锅炉联箱和蒸汽管道几乎都使用了P92钢,国内的火电建设单位也有十几家完成了焊接工艺评定。

由于合金元素含量近似,T/P92钢的焊接特点、要求与T/P91钢近似,但从目前进行的焊接工艺评定过程发现,T/P92钢的焊接工艺裕度比T/P91钢要小,对焊接参数的要求比T/P91钢还要严格,也更要注意焊接和焊后热处理参数的严格控制及焊接材料厂家的选定。

电力行业对T/P92钢的进入给予了高度重视,由焊接学会组织的研讨会议召开多次,并准备制定T/P92钢的焊接工艺导则指导安装现场的焊接工作。现将T/P92钢的焊接要求大大致介绍如下:

1、坡口制备及组对要求

(1)对于壁厚不小于40mm且不大于的78mm焊口推荐采用DL/T869表1序号4的双V形坡口;对于壁厚超过78mm的焊口,推荐采用DL/T869表1序号6的综合形坡口。

(2)对口间隙宜小不宜大。

(3)应采取措施确保对口的错口值不超过1mm。

(4)对口定位焊可采用普通钢材表面堆焊不少于4mm厚的P92钢焊材的定位块,定位焊应该在预定的预热条件下进行。

2、焊接工艺

(1)预热温度推荐为(150~200)℃。

(2)采用焊条电弧焊的施焊过程中,层间温度不宜超过250℃;采用埋弧焊方法焊接时,其道间温度也不宜超过250℃,否则应在焊后采用部件整体炉内调质处理,调质处理参数应与钢材的调质处理参数相同。

(3)对于壁厚超过40mm的焊口的根层焊接推荐采用钨极氩弧焊方法,焊接2层,总厚度为(3~5.5)mm。

(4)采用焊条电弧焊进行填充和盖面的,推荐采用直径为3.2mm的焊条焊接,焊接电流为(110~125)A。每根完整的焊条所焊接的焊缝长度与该焊条的熔化长度之比应大于50%。

(5)除非确有必要,不推荐安排后热处理。后热处理应该在焊件温度降至100℃,保温1小时进行。

(6)焊后热处理应该在焊件温度降至100℃,保温1小时后立即进行。推荐焊后热处理参数为:

a)以200℃/h的加热速度升温至500℃,此后按照100℃/h升温至770(+0,-5)℃; b)保温时间的计时时刻为任一测温热电偶达到设定的温度值。恒温时间以壁厚每8mm,1小时计算,且不少于1.5小时。

c)降温速度为150℃/h,当焊件温度降到300℃时可不控制,自然冷却至室温。

3、质量控制与检验

(1)P92钢的焊接施工应该根据规程、标准和本规定制定详细的作业指导文件,并对工作所涉及岗位人员进行技术交底。

(2)推荐采用加强焊工培训,严格工艺纪律,杜绝焊工随意调整工艺的情况,以旁站监督的方式,严格控制焊接工艺来确保焊接接头的质量。

(3)对于壁厚超过70mm的焊口,在满足(2)的规定,并得到工程焊接监理的确认的条件下,推荐采用从预热到焊接热处理一次连续完成的作业程序,否则,应该安排中间无损检验。

(4)P92钢的焊接施工应该具备紧急预案和措施,防止意外失电导致焊接或焊接热处理中断。

三、现场T/P91和T/P92钢焊接要点

综合上述T/P91和T/P92钢焊接要求,现将这类铁素体耐热钢的焊接要点总结分析如下:

1、钢材的焊接性

这类铁素体耐热钢都采用先进的冶炼和轧制技术,钢材的纯净度得到极大提高(如S、P含量在千分级);多元素强化,成分控制严格;在强化机理方面采用了固溶强化、高位错密度强化、铁素体晶内的析出强化、晶界强化、加入防止M23C6的粗大化和防止向M6C转变元素等多种手段,钢的高温性能、常温冲击韧性与焊接性较早期的P9、F11、F12好得多。但是毕竟属高合金钢,还是要预热到150℃以上再开始焊接。

2、焊后热处理的要点

这类铁素体耐热钢希望获得全部的回火马氏体组织,焊后热处理参数极为重要,要从两方面注意。

(1)冷却到100-150℃,保持1-2小时,保证过冷奥氏体完全转变为马氏体后再升温开始焊后热处理,这与早期的P9、F11、F12的要求是一样的。

(2)在采用多元素强化的过程中,往往添加Ni来提高室温塑韧性,而Ni与钢材中必有的Mn共同作用下回使焊缝金属的AC1下降,有时会下降到危险的程度(DL/T869推荐值为760℃±10℃),如:某进口焊接材料AC1的实测值已经下降到768℃,因此,在制定焊后热处理参数时必须要参照焊接材料制造商的说明书。

3、焊接热输入量(焊接线能量)

由于采用多种方法使钢材的综合性能获得极大提高,使这类钢的焊接形成全新的局面,即①无论采用何种措施,焊缝金属的综合性能都将达不到母材的性能指标;②现有的焊后检验手段(无损检测)无法证明焊缝金属综合性能合格。因此,必须严格控制焊接过程。

(1)焊接规范参数。必须采用小的焊接热输入量,经验证明,T/P91钢不超过25J/cm、T/P92钢不超过20J/cm为好。此时特别要注意,小的焊接热输入量不单指小的焊接电流,如果一味采用小的焊接电流,将会在焊缝中形成未熔合等缺陷,反而不好,国内就有电力行业单位吃过亏。正确有效的做法是提高焊接速度减薄单道焊厚度。

(2)预热和层间温度。这类钢的MS点在400℃左右,控制焊接热输入量也包括控制预热和层间温度。必须使每一焊道的温度降至300℃以下时,才可以焊接下一道焊缝。经验证明,如果降到更低温度,可以获得更好的室温冲击韧性,但要与生产效率综合考虑。这一现象的机理至今还不很清楚,这是许多单位的经验证明,也被波兰焊接工作者所报道。附《T91/P91钢焊接工艺导则》

1、制订依据

本导则是根据电力工业焊接有关规程、规范、技术条件和相关资料,以国家电力公司火电建设部制订的“T91/P91钢管焊接工艺暂行规定”为版本,结合近年来积累的实践经验进行了修订。

2、适用范围

2.1本导则适用于火力发电设备,以T91/P91钢管及与其它钢种相连接的各类焊接接头的制作、安装、检修工程的焊接工作。

2.2 适用于手工钨极氩弧焊和焊条电弧焊的焊接方法。

3、总则

3.1 T91/P91钢的焊接工艺评定,应遵守SD340-89《火力发电厂焊接工艺评定规程》(现为DL/T868-2004焊接工艺评定规程,下同。编者注)的规定,并以确定焊接工艺,编制作业指导书。

3.2 焊接T91/P91钢焊工技术能力的验证,应按DL/T679-1999《焊工技术考核规程》的规定考核,取得合格证书后,方可参加焊接工作。

3.3 焊接接头质量检验应遵照DL/T820-2002和DL/T821-2002两本检验规程的规定进行,其质量标准应符合DL5007-92(现为DL/T869-2004火力发电厂焊接技术规程,下同。编者注)规定。

3.4 对国外引进设备的T91/P91钢焊接工作,应按合同规定进行,如无规定时,其焊接工艺评定、焊工技术考核、焊接工程的技术规定和焊接质量检验等均应执行电力工业焊接相关规程和本导则规定。

3.5 焊接T91/P91钢的场所其环境温度和条件以及防护设施应符合DL5007-92的规定。3.6 实施T91/P91钢焊接工作应遵守国家和电力工业安全、防火、环保和施焊中其它相关条件的有关规定。

4、焊接机具和焊接材料

4.1 焊接T91/P91钢的焊接设备,应选用焊接特性良好、稳定可靠的逆变式或整流式焊机。其容量应满足焊接规范参数的要求。4.2 氩弧焊工器具

4.2.1 氩弧焊枪选用气冷式。

4.2.2 氩气减压流量计应选择气压稳定、调节灵活的表计,其产品质量和特性应符合国家或部颁标准。

4.2.3 输送氩气的管线应选用质地柔软、耐磨和无裂痕的胶管,且无漏气现象。

4.2.4 氩弧焊导电线应采用柔软多股铜线,其坏蛋夹具应接触良好。4.3 焊条电弧焊工器具

4.3.1 焊机引出电缆线可选用截面为50mm2焊接专用铜芯多股橡皮电缆;连接焊钳的把线,可选用截面为25mm2焊接专用铜芯多股橡皮软电缆。电缆线外皮绝缘应良好、无破损。4.3.2 选用的焊钳应轻巧、接触良好不易发热,且便于焊条的更换。4.3.3 测量坡口和焊缝尺寸时,应采用专用的焊口检测器。

4.3.4 修整接头和清理焊渣、飞溅,宜采用小型轻便的砂轮机。4.4 焊接材料

4.4.1 选用的氩弧焊丝、焊条应与钢材匹配。选用中应注意化学成分的合理性,以获得优良的焊缝金属成分、组织和力学性能,并要求工艺性能良好。

4.4.2 氩弧焊丝、焊条、氩气和钨极等焊接材料的质量,应符合国家标准或有关标准的规定。如需考察其工艺性能,必要时,可进行焊接材料的工艺性能试验。

4.4.3 氩弧焊丝使用前应除去表面油、垢等脏物。焊条除按国家标准规定保管外,于使用前按使用说明书规定,置于专用的烘焙箱内进行烘焙。推荐的烘焙参数为:温度350~400℃,时间或~2小时,使用时,应放在80~120℃的便携式保温筒内随用随取。

4.4.4 氩气使用前应检查瓶体上有无出厂合格证明,以验证其纯度是否符合国家或部颁标准规定。

4.4.5 氩弧焊用的钨极宜选用铈钨极或镧钨极,直径为Ф2.5mm。钨极于使用前切成短段,并在其端头处磨成适于焊接的尖锥体。

5、焊前准备 5.1 坡口制备

5.1.1 坡口形状和尺寸按设计图纸和供货方提供的资料加工。

5.1.2 坡口加工应采用机械法,坡口修整时,可使用角向砂轮机等轻便工具。

5.1.3 坡口及其内外壁两侧15~20mm范围内应将油、漆、垢和氧化皮等杂物清理干净,直至露出金属光泽。

5.1.4 为保持管子内壁齐平,遇有管子内壁错口值超过1mm或两侧壁厚不同时,应按DL5007-92规定处理。5.2 对口装配

5.2.1 对口装配前应认真检查被焊接部位及其边缘20mm范围内有无不允许缺陷(裂纹、重皮等),确认无缺陷后方可组装。5.2.2 对口装配时,应选定管子的支撑点,并垫置牢固,以防焊接过程中产生位移和变形。5.2.3 对接管口端面应与管子中心线垂直,其偏斜度△f不得超表1的规定。5.2.4 严禁在管子上焊接临时支撑物。

5.3 对口点固焊

5.3.1 点固焊用的焊接材料、焊接工艺和选定的焊工技术条件应与正式焊接时相同。5.3.2 点固焊和施焊过程中,不得在管子表面引燃电弧试验电流。

5.3.3 小径薄壁管点固焊时,可在坡口内直接点固,点固焊不少于2点;大径厚壁管点固焊时,可采用“定位块”法点固在坡口内,见图书馆,点固焊不少于3点,点固焊用的“定位块”应选用含碳量小于0.25%钢材为宜。

5.3.4 焊接过程中,施焊至“定位块”处时,应将“定位块”除掉,并将焊点用砂轮机磨掉,不得留有焊疤等痕迹。并以肉眼或低倍放大镜检查,确认无裂纹等缺陷后,方可继续施焊。

6、焊接工艺

6.1 T91/P91钢必须严格执行经评定合格的工艺所编制的作业指导书规定进行施焊。为使焊接作业指导书严格实施,强化工艺纪律,必要时,应对该类钢材焊接全过程进行完整的监控,以保证焊接质量。

6.2 T91钢管及P91小径薄壁钢管推荐采用全氩弧焊方法;P91钢大径厚壁管采用氩弧焊打底、焊条电弧焊填充及盖面的组合焊接方法。6.3 氩弧焊(Ws)打底焊接

6.3.1 为防止根层焊缝金属氧化,氩弧焊打底及焊条填充第一层焊道时,应在管子内壁充氩气保护。

6.3.2 充氩保护可参照下列要求进行:

a、充氩保护范围以坡口中心为准,每侧各200~300mm处,以可溶纸或其它可溶材料,用耐高温胶带粘牢,做成密封气室。

b、采用“气针”从坡口间隙或“探伤孔”中插入进行充氩,开始时流量可为10~20L/min,施焊过程中流量应保持在8~10L/min。

6.3.3 氩弧焊打底时,焊接规范参数推荐如下:

焊丝选用Ф2.5mm,钨极为Ф2.5mm,氩气流量为10~15L/min。

焊前预热温度为100~150℃,焊接电弧电压为10~14V,焊接电流为80~110A,焊接速度为55~60mm/min。

6.3.4 氩弧焊打底的焊层厚度控制在2.8~3.2mm范围内。6.4 焊条电弧焊(Ds)填充、盖面焊接

6.4.1 施焊前的预热温度推荐为200~300℃。宽度以坡口边缘算起每侧不少于壁厚的3倍,预热力求均匀。对于壁厚大于10mm的管子应采用电加热方法进行。

6.4.2 小径薄壁管最低焊接层数为2层,大径厚壁管应采取多层多道焊接。6.4.3 施工过程中,应注意层间温度的保持,推荐的层间温度为200~300℃。6.4.4 为保证后一焊道对前一焊道起到回火作用,焊接时每层焊道厚度的控制约为焊条直径。6.4.5 焊条摆动的幅度,最宽不得超过焊条直径的4倍。6.4.6 大径厚壁管水平固定焊盖面层的焊道布置,焊接一层至少三道焊缝,中间以有一“退火时道”为宜,以利于改善焊缝金属组织和性能,焊道布置见图2。6.4.7 焊条电弧焊各层焊道的主要工艺参数参考值见表2。

6.4.8 为减少焊接应力与变形,直径>194mm的管道和锅炉密集排管(管子间距≤30mm)的焊口,宜采用两人对称焊接。同时,注意到不得两人同时在一处收头,以免局部温度过度影响施焊质量。

6.4.9 焊接中应将每层焊道接头错开10~15mm,同时注意尽量焊得平滑,便于清渣和避免出现“死角”。

6.4.10 焊工操作技术要熟练,认真观察熔化状态,注意熔池和收尾接头质量,以避免出现弧坑裂纹。

6.4.11 每层每道焊缝焊接完毕后,应用砂轮机或钢丝刷将焊渣、飞溅等杂物清理干净(尤其注意中间接头和坡口边缘),经自检合格后,方可焊接次层。6.4.12 焊缝整体焊接完毕,应将焊缝表面焊焊渣、飞溅清理干净,自检合格后,做出代表焊工本人的标记,并应按工艺规定要求进行焊后热处理。

7、焊后热处理

7.1 当焊缝整体焊接完毕,对T91钢和P91钢小径薄壁管的焊接接头可冷却至室温,而对P91钢大径厚壁管的焊接接头冷却到100~200℃时,应及时进行焊后热处理。

7.2 当焊接接头不能及时进行热处理时,应于焊后立即做加热温度为350℃、恒温时间为1小时的焊后热处理。

7.3 焊接接头的焊后热处理,应采用高温回火。

7.4 焊后热处理的升、降温速度以≤150℃/h为宜,降温至300℃以下时,可不控制,在保温层内冷却至室温。

7.5 T91/P91钢焊后热处理加热温度为760±10℃。对于T91/P91钢与珠光体、贝氏体负的异种焊接接头,加热温度应按两侧钢材及所用焊丝、焊条等综合确定,不应超过合金成分含量低材料的下临界点AC1。

7.6 恒温时间:P91钢焊接接头按壁厚每25mm,1小时计算,但最少不得小于4小时;对T91钢焊接接头可按壁每毫米,5分钟计算,且不小于0.5小时。

7.7 为保证焊后热处理质量,热处理的加热宽度、保温层宽度和厚度应符合DL/T819-2002的规定。

7.8 焊接热处理过程曲线(P、W、H、T)参见图形。

8、质量检验和标准

8.1 焊工自检和专检均应重视焊接接头外观质量,除焊缝均整、尺寸符合规定外,应尽量消除咬边缺陷,以减缓焊接接头应力水平。

8.2 外观符合规定的焊接接头,方可按规定比例进行无损检验。

8.3 壁厚≥70mm管子焊口,焊至20~25mm时,应停止焊接,立即进行后热处理,然后做“RT ”或“UT”探伤检验,确认合格后,再按作业指导书规定程序施焊完毕。

8.4 管道上开有探伤孔做100%“RT”检验,如无探伤孔则做100%“UT”检验。

8.5 焊接接头热处理完毕,应做100%硬度测定,测定部位为焊缝区和热影响区(异种钢为两侧,同种钢可选一侧),每个部位测定不少于三点。硬度测定平均值的标准不超过母材的布氏硬度加100HB,且应≤350HB为合格。

9、焊缝返修

9.1 焊接接头外观检查不符合标准时,轻者打磨焊补,严重者应割掉重新焊接。

9.2 经无损检验不合格的焊接接头,其缺陷可进行焊补,但必须在确认缺陷已经彻底消除的基础上,按正常焊接工艺或焊补工艺规定进行。

9.3 返修焊补的焊接接头,一般同一焊口不得超过两次,否则应割掉重新对口焊接。9.4 返修焊补的焊接接头,必须重新进行焊后热处理和无损检验。

第五篇:焊接工艺指导书

焊接工艺指导书 下载此文本文档

第1页/共2页 下一页>

文本预览:

湖北鄂东长江公路大桥 A、D 匝道 钢箱梁制作与安装 焊接工艺指导书

中国十五冶金建设有限公司 湖北鄂东长江大桥项目经理部 湖北鄂东长江大桥项目经理部 二 OO 九年五月

一、编制依据

二、焊接质保体系程序

三、焊接工艺规程 录

目前进场焊接 焊接设备技术参数及操作细

四、目前进场 焊接 设备技术参数及操作细 则 附件: 附件:

1、焊接人员证件复印件、2、焊接工艺评定报告、编制依据

本质保资料按《公路桥涵施工技术规范》 本质保资料按《公路桥涵施工技术规范》JTJ041-2000、施工技术规范、《铁路钢桥制造规范》TB10212-98、低合金高强度结构钢》 铁路钢桥制造规范》、低合金高强度结构钢》 《 GB/T1591-94、《 金 属 材 料 室温拉伸试验方法》

GB/T228-2002、金 属 材 料 夏 比 摆 锤 冲 击 试 验 方 法 》 《 GB/T229-2006、金属材料 弯曲试验方法》、《 弯曲试验方法》 GB232-1999、承、《 压设备无损检测第二部分:射线检测》 《钢 压设备无损检测第二部分 射线检测》JB/T4763.2-2005、钢 射线检测、《 焊缝手工超声波探伤方法和探伤结果分级》 焊缝手工超声波探伤方法和探伤结果分级》GB11345-89 等 编制。编制。焊接质保体系程序

1、优化生产管理体系和质量保证体系的人员组成,建立健全责任制。建立了以项目经理为组长、项目总工程师为副组长、项目经理部各部 门负责人、各施工主任、技术负责人为主要成员的质量管理领导小组,建立健全岗位责任制,完善质量监督控制网络,实行全面质量管理,使焊接的每个环节都得到控制。

2、宣传教育,改变人们对质量的陈旧观念,提高质量意识。加强了 宣传教育力度,严格执行质量管理制度,实行科学管理,召开多种形 式的评比会、现场会、分析会、宣传会。在项目施工中做到“三工教 育”(工前教育、工中指导、工后讲评);“三不交接”(无自检记录不 交接、无施工记录不交接、无专职质检员签字不交接);

3、增加自检与抽检频率。对每道切割切口严格把关,保证自检频率。由项目总工组织项目经理部工程部和质检部对施工队伍的原材料、机 械设备、人员数量质量、焊接工艺方法、关键工序和焊接质量进行抽 检。

4、建立健全对各岗位人员在岗及责任落实情况的检查制度,即上级 对下级检查,监理对承包人的检查等。建立健全项目经理、项目副经理、总工程师、项目经理部各部门 及负责人、施工技术负责人、检测员的岗位责任制,加强岗位责任制 的落实工作的检查,项目经理部检查各部、各施工队的质量保证体系,施工队检查各施工组乃至各序操作人的质量保证体系。

6、加强工地检测的管理,确保仪器设备符合规定、检测操作符合标

准、检测结果数据可信。配备齐全的检测、测量仪器设备。仪器设备均经过国家计量部门 标定。操作人员熟悉检测规程、操作步骤和注意事项,并对所使用的 仪器设备性能完全了解,操作过程中检测人员应在规定范围操作,保 证检测数据真实可信,严禁伪造修改数据。

7、完善科技文件的管理制度,所有科技文件、科技材料及时归档,确保所提交的科技文件、材料(质量保证资料)全面、真实、完整。建立健全完善的资料管理体系和资料流程,按照流程和分类对质量保 证资料进行上报、收集、整理、归档,上述过程,由工程部、质检部 组织人员对质量保证资料的全面性、真实性、完整性、及时性进行检 查。焊 接 工 艺 规 程

1、基本要求: 1.1 钢箱梁结构件的所有焊缝必须严格按照焊接工艺评定报告所制定 的焊接工艺执行。1.2 焊工应经过考试并取得合格证后方能从事焊接工作。焊工停焊时 间超过六个月,应重新考核。1.3 焊缝金属表面焊波均匀,无裂纹。不允许有沿边缘或角顶的未熔 合溢流、烧穿、未填满的火口和超出允许限度的气孔、夹渣咬肉等缺 陷。焊接后应等焊缝稍冷却后再敲去熔渣。1.4、所有对接焊缝均为I级焊缝,必须焊透,咬合部分不小于0.2 mm。腹板与面板及底板之间贴角焊缝,并开坡口焊透,焊缝标准为I级,支座处横隔板与面底板及腹板为贴角焊缝,必须焊透,焊缝标准为I 级焊缝。其它横隔板与腹板必须焊透,焊缝均为II级焊缝。1.5、所有 I、II 级焊缝都应进行外观检查,内部质量检验以超声波和

射线探伤为主。

2、焊接用材料: 2.1、所有水平对接焊缝用埋弧自动焊,焊丝用 H08MnA,规格: φ4。焊剂 HJ350。《熔化焊用钢丝》GB/T14957-94。2.2、腹板与顶板、底板,隔板与顶板、底板及加劲肋与各板的焊接 均采用 C02 气保焊,焊丝为 ER50-6,焊丝直径为φ1.2。执行标准《焊 丝选用指南》 《气体保护电弧焊用碳钢、低合金钢焊丝》。GB/T8110-1995。2.3 CO2 气体保护焊的气体纯度应大于 99.5%。

3、焊缝质量要求: 3.1 试板焊接后对焊缝进行外观检查,不得有裂纹、未熔合、夹渣、焊瘤等缺陷,外观质量符合 TB10212-98 中表 4.7.11-1 的规定。3.2 焊缝无损检验 3.3 无损检验在焊接 24 小时后进行。3.4 对接焊缝及熔透角焊缝应符合 GB11345-89Ⅰ级标准; 顶板、底板、腹板的对接焊缝应符合 GB11345-89Ⅰ级标准,腹板与顶板、底 板坡口角焊缝应符合 GB11345-89Ⅰ级标准,横隔板与腹板间坡 口角焊缝应符合 JB/T6061-92Ⅱ级标准。3.5 接头力学性能试样的制取及试验 3.5.1 接头力学性能试验项目及试样数量按 TB10212-98 的规定执行,即: 试件型式 对接接头试件 验 试验项目 接头拉伸(拉板)试 1 试样数量(个)

焊缝金属拉伸试验 接头侧弯试验① 低温冲击试验② 接头硬度试验 熔透角焊缝、坡口角焊 缝、T 型接头试件 焊缝金属拉伸试验 接头硬度试验 1 1 6 1 1 1 注:①侧弯试验弯曲角度 α=180o。板厚≤16mm°时,d=2a,板厚 >16mm 时,d=3a。②低温冲击试验缺口开在焊缝中心及热影响区(熔合线外 1mm)处各 3 个。3.5.2 焊接接头力学性能的试样的制取和试验按照 GB2649~2655-89 执行。3.5.3 每一组试板进行一次宏观断面酸蚀试验,试验方法应符合《钢 的低倍组织及缺陷酸蚀试验方法》(GB226)的规定。另外,通 过断面检查,还应满足以下要求: 1)等厚或不等厚板对接焊缝,必须全熔透。2)熔透角焊缝必须全熔透。3)坡口角焊缝的熔深达到设计要求。

4、工艺要求 4.1、钢箱梁零部件制作的切割、焊接设备其使用性能必须满足要求。4.2、焊接时,不得使用生锈的焊丝和受潮结块的焊剂及熔烧过的渣 壳。4.3、焊丝在使用前应清除油污、铁锈,焊剂的粒度埋弧自动焊宜用 1.0~3.0mm,埋弧半自动焊宜用 0.5~1.5mm。4.4、为防止气孔和裂纹的产生,焊条使用前应按产品说明书规定的 烘焙时间和温度进行烘焙,低氢型焊条经烘焙后应放入保温桶内,随 用随取。4.5、施焊前,焊工应复查焊件接头质量和焊区处理情况,当不符合 要求时应经修整合格后方可施焊。4.6 施焊前应对焊缝边缘 30~50mm 范围内的铁锈、油污、水分等杂 质进行清除和烘烤。4.7、对接接头、T 型接头、角接接头及对接焊缝及对接和角接配合焊 缝,应在焊缝两端设置引弧板和引出板,其材质和坡口形式应与焊件 相同,引弧和引出的焊缝长度:埋弧焊应为 80mm 以上,手工焊和气 保焊为 50mm 以上,焊接完毕应采用气割切除引弧和引出板,并应磨平整,不得用锤击落。4.8、为防止起弧坑缺陷出现在应力集中的端部,角焊缝转角处宜连 续绕角施焊,起落弧点距焊缝端全部宜大于 10 mm。4.9、每层焊接宜连续施焊,每一层焊道焊完后应及时清理检查清除 缺陷后再焊。施焊时母材的非焊接部位严禁引弧。4.10、总体组装时,则先将各小构件焊接校正后再与底板和腹板焊接,对于底板、腹板之间焊接则需采用分段退焊法和合理的焊接顺序等措 施,防止焊接变形。有顶紧要求的肋板,应从顶紧端开始向另一端施 焊。4.11、定位焊缝所采用的焊接材料型号应与焊件材质相匹配,焊脚尺 寸不得大于设计焊脚尺寸的 1/

2、焊缝长度为 50~100 mm 并应在距 端部 30 mm 以上。4.12、焊缝出现裂纹时,焊工不得擅自处理,应查清原因,定出修补 工艺并经批准后方可处理。

4.13、焊接完毕,焊工应清理焊缝表面的熔渣及两侧的飞溅物,检查 焊缝外观质量,检查合格后应在两端明显部位打上焊工钢印。其内部 质量的检查应在焊后 24 小时进行。4.14、埋弧自动焊焊接中不应断弧,如有断弧则必须将停弧处刨成 1: 5 斜坡后在继续搭接 50 mm 施焊。4.15、埋弧自动焊焊剂覆盖厚度不应小于 20mm,埋弧半自动焊不应 小于 10 mm,焊接后应稍冷却再敲去熔渣。

5、工艺要点: 5.1 本工程的接头形式 5.1.1 对接焊缝 a.板单元制造中对接焊缝 1)底板对接; 2)顶板对接; b.工地连接对接焊缝 1)节段间顶、底板横向对接焊缝; 2)边腹板、中腹板对接焊缝。3)边纵腹板肋板嵌补段对接焊缝; 4)底板及顶板 T 型肋嵌补段对接焊缝。5.1.2 熔透角焊缝 a.节段整体焊接中熔透角焊缝 1)顶板与腹板间熔透角焊缝; 2)底板与腹板间熔透角焊缝; 3)横隔板与腹板间熔透角焊缝; b 工地连接融透角焊缝 1)腹板与顶板及底板熔透角焊缝; 5.1.3 坡口角焊缝 a.节段整体焊接中坡口角焊缝 1)横隔板与顶板间坡口角焊缝。2)横隔板与底板间坡口角焊缝。3)挑梁与顶板、腹板及堵板角焊缝。5.1.4T 型角焊缝 a.板单元制造中 T 型角焊缝 1)T 型加劲肋角焊缝 b .梁段整体焊接和梁段间焊接 T 型角焊缝 1)横隔板与底板间角焊缝; 2)T 型肋与底板间角焊缝; 3)T 型肋与底板角间焊缝; 4)腹板与纵向加劲板间角焊缝: 5)顶板与加劲板间间角焊缝: 6)支点处加劲板与底板间角焊缝: 7)支点处加劲板与腹板间角焊缝: 8)支点处加劲板与隔板间角焊缝 C 工地连接 T 型角焊缝 1)T 型肋嵌补段与顶板、底板角焊缝 2)腹板加劲肋嵌补段角焊缝 5.2 本工程拟采用的焊接方法 焊接方法 手工电弧焊 CO2 气体保 护焊(底)板的组合焊 埋弧自动焊平顶板、底板、适用位置平、横、立、仰 施焊部位 附属设施焊接 顶板、底板、对接缝组合焊的打底、平、横、立、仰 腹板对接、横隔板对接焊,腹板与顶 对接缝组合焊等

6、熔化焊缝缺陷返修: 6.1、焊缝表面缺陷超过相应的质量验收标准时,对气孔、夹渣、焊 瘤、余高过大等缺陷应用砂轮打磨、铲凿、钻等方法去除,必要时应 进行焊补;对焊缝尺寸不足、咬边、弧坑未填满等缺陷应进行焊补。6.2、经无损检测确定焊缝内部存在超标缺陷时,应进行返修,返修 应符合下列规定:

1、返修前应由施工企业编写返修方案;

2、应根据无损检测确定的缺陷位置、深度,用砂轮打磨或碳弧 气刨清除缺陷。

3、清除缺陷时应将刨槽加工成四侧边斜面角大于 10°的坡口,并应修整表面、磨除气刨渗碳层。

4、焊补时应在坡口内引弧,熄弧时应填满弧坑;多层焊的焊层 之间接头应错开,焊缝长度不小于 100mm。

5、返修部位应连续焊成。如中断焊接时,应采取后热、保温措 施,防止产生裂纹。再次焊接前宜用磁粉或渗透探伤方法检查,确认 无裂纹后方可继续补焊;

6、焊缝 正、反面各作为一个部位,同一部位返修不宜超过两次;

7、对两次返修后仍不合格的部位应重新制订返修方案,经工程 技负责人审批并报监理工程师认可后方可执行;

8、返修焊接应填报返修施工记录及返修前后的无损检测报告,作为工程验收及存档资料。6.3、碳弧气刨应符合下列规定:

1、碳弧气刨工必须经过培训合格后方可上岗操作;

2、如发现“夹碳”,应在夹碳边缘 5~10mm 处重新起刨,所刨 深度应比夹碳处深 2~3mm;发生“粘渣”时可用砂轮打磨。

7、钢箱梁焊接顺序: 7.1、焊缝标准和位置及焊角高度按设计焊接图纸进行焊接 7.2、根据以上质量要求,总体装配的焊接顺序为: 腹板与底板 板、顶板

8、焊接工艺 8.1、对接接头埋弧自动焊工艺参数见下表: 腹板与顶板 支点处加劲板 横隔板与腹板 装饰板 挑梁与腹 板厚

下载珠光体耐热钢焊接工艺讨论word格式文档
下载珠光体耐热钢焊接工艺讨论.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    焊接工艺规程

    焊接工艺规程一、材料介绍1.Q345化学成分如下表(%):元素C≤MnSi≤P≤S≤Al≥VNbTi含量0.21.0-1.60.550.0350.0350.0150.02-0.150.015-0.060.02-0.2Q345C力学性能如下表(%):机械性......

    焊接工艺纪律

    关于在项目部严格执行焊接施工工艺纪律的通知 山东振远建设工程有限公司: 签发: 根据现场焊接管理需要和实际施工情况,为控制低温再热器及省煤器的焊接质量,严格按照公司作业指......

    焊接工艺工程师要求

    1. 负责组织焊装生产的工艺文件的完善、更改、和审核。保证《物料数据单》、《标准化作业单》、《岗位指导书》100%正确。 2.负责涂装材料定额的审查。 3.负责组织处理焊装生产......

    焊接工艺计划书(5篇)

    焊接工艺计划书(pWPS)Preliminary welding procedure specification工作控制号:基本参数*如有必要时 *If requiredPreliminary welding procedure specification(continued)*......

    ★焊接工艺方法总结

    焊接工艺方法总结 焊接电源极性类 1. 微束等离子弧焊应采用具有垂直陡降外特性的电源。 2. 焊机型号ZXG-200中的Z表示弧焊整流器,X表示下降特性,G表示硅整流器,200表示额定焊接......

    焊接工艺计划书TFJX-82

    焊接工艺评定指导书(TFJX-82)( 304LN不锈钢管板平角接钨极氩弧焊工艺评定)同方工业有限公司(同方江新造船有限公司具体实施)2014年7月4日......

    焊接工艺评定规则

    焊接工艺评定规则目次1.总则2.引用的标准、法规3.焊接工艺评定的程序及要求4.焊接工艺评定失败的处理5.焊接工艺评定的保存6.附录《焊接工艺评定》管理规则1.总则1.1根据〈......

    电子焊接工艺实习报告

    电子焊接工艺实习报告 实习名称:单片机温度控制装置 学 院: 专业名称: 班 级: 学 号: 姓 名:时 间: 一、实习名称 单片机温度控制装置 二、实习时间和地点 时间: 地点: 三、 实习......