抽屉原理评课稿

时间:2019-05-14 19:58:37下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《抽屉原理评课稿》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《抽屉原理评课稿》。

第一篇:抽屉原理评课稿

《抽屉原理》评课稿

东兴镇中心小学

四年级数学组

廖老师上的《抽屉原理》一课结构完整,过程清晰,学生参与性高,充分体现了学生的主体地位,为学生提供了足够的自主探索的空间,引导学生在观察、猜测、操作、推理和交流等数学活动中初步了解“抽屉原理”,并学会了用“抽屉原理”解决简单的实际问题。

1、激发了学生的学习兴趣,引发了学生的求知欲。

首先,廖老师课前采用抽扑克牌魔术的游戏导入,为学生学习新的教学内容埋下了伏笔,激发了学生的学习兴趣,游戏中提出有关抽屉原理的第一个问题:为什么总有两张扑克是同一种花色?接着老师问“知道老师为什么能做出如此准确的判断吗?道理是什么?这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究这个原理。”不但使学生带着兴趣去学习,而且给予学生思维的导向,引发了学生的求知欲,为学好抽屉原理作好了铺垫。”

2、借助直观操作经历探究过程。

本节课教师组织的教学结构紧凑,实施过程层层推进,上得扎实有效。先用枚举举法,让学生把自己动手摆铅笔,并把所有情况记录下来,运用直观的方式,发现并描述,理解最简单的“抽屉原理”,体现了“做中学”的教学理念。接着让学生探究解决问题的简便方法即“平均分”的方法。在大量的举例后使学生感知理解“铅笔比文具盒数多1时,不管怎么放,总有一个文具盒里至少有2枝铅笔。

3、体现学生的主体地位。

在教学过程 中充分发挥了学生的主体性,在抽屉原理的学习过程中,首先让学生动手摆,然后口头汇报自己摆出来的种类,然后让学生自己发现至少是“商+余数”,还是“商+1”个物体放进同一个抽屉,让学生在小组内充分讨论、互相争辩,使学生更好的理解了抽屉原理。

4、小组合作学习效果好、注重实效

在学习《抽屉原理》时,把4枝我铅笔放进3个文具盒里,先让学生根据生活经验进行猜测,再小组动手摆放进行学习和验证。因为有了前边的猜测,学生心中有了疑问再加上老师对合作学习要求明确,使的小组合作学习效果很好,每个学生都能参与进去。

5、注意渗透数学和生活的联系。

学了“抽屉原理”有什么用?能解决生活中的什么问题?教学中教师注重了联系学生的生活实际。课中老师设置的教学例子如:在文具盒中摆放铅笔、鸽子回舍等,都是现实生活中实实在在的东西,并反复强调“总有一个盒子里至少有2枝铅笔”。事例中都是数学与生活的有效关联。

6、注重向学生渗透数学学习方法:枚举法、假设法之间的比较,让学生甄别。

7、廖老师的教学注重教给学生学习方法,让学生自己运用方法去解决数学问题,正是体现了我国古代道学派《老子》所说的“供人以鱼,只解一餐;授人以渔,终身受用。”的思想。

本节课稍有不足的是教师的儿童语言相对少了一些,若能再给学生一些鼓励,我想学生的学习兴趣会更浓些。

第二篇:抽屉原理评课稿

《抽屉原理》评课稿

石嘴山市育才学校 罗海玉

抽屉原理这堂课很抽象,通过几个直观例子,借助游戏,实验操作向学生介绍了“抽屉原理”。在学生初步理解的基础上,对一些简单的实际问题加以“模式化”,使学生会用“抽屉原理”解决实际问题。

在《抽屉原理》中,“总有一个”、“至少”这两个关键词的解读和为了达到“至少”而进行“平均分”的思路,以及把什么看做物体,把什么看做抽屉,这样一个数学模型的建立,学生学起来颇具难度。例1是学好例2的基础,只有通过例1的教学,让全体学生真实地经历“抽屉原理”的探究过程,把他们在学习中可能会遇到的几个困难,弄懂、弄通,建立清晰的基本概念、思路、方法,才能更好地学习抽屉原理例题2,才能灵活运用这一原理解决各种实际问题。

在导入部分,通过设计“抢板凳”的有趣猜测,拉近数学与生活的关系,激发学生的兴趣,引起探究的愿望,为今天的探究埋下伏笔。

在实物操作部分,抓住最能体现结论的一种情况,引导学生理解怎样很快知道总有一个杯子里至少是几个的方法——就是按照个数平均分,只有这样才能让最多的杯子里个数尽可能少。

在抽象概括部分,通过“4个放入3个杯子”、”5个放入4个杯子”和练习题“6个放入5个杯子”等几个不同的实例让学生较充分地感受、体验、发现相同的现象,让学生抽象概括出“当物体数比抽屉数多1时,不管怎么放,总有一个抽屉至少放入2个物体”,初步认识抽屉原理。然后设下疑问:“如果物体数不止比抽屉数多1,不管怎样放,总有一个抽屉中至少放进几个物体?”这一层次请学生理解当余数不是1时,要经历两次平均分,第一次是按抽屉的平均分,第二次是按余下的个数平均分,只有这样才能达到让“最多的盒子里个数尽可能少”的目的。

在学生经历了真实的探究过程后,我将本节课研究过的所有实例通过课件进行总体呈现。让学生通过比较,总结出抽屉原理中最简单的情况:不管怎样放,总有一个抽屉中至少要放入商+1个物体,即:至少数=商+1。

让学生应用“抽屉原理”解决的几个生活中简单有趣的实际问题,进一步培养学生的“模型”思想,让学生能正确地找出问题中什么是待分的“物体”,什么是“抽屉”,让学生体会抽屉的形式是多种多样的。

这节课有以下几个亮点:

1、激发了学生的学习兴趣,引发了学生的求知欲。课前通过4位同学坐3张凳子的游戏导入,激发了学生的学习兴趣。而 “我不用看就知道你们当中肯定有2个同学坐在一张椅子上”,为什么能做出如此准确的判断?道理是什么?这其中就蕴含着一个有趣的数学原理,引发了学生学习数学的求知欲,为学生学习抽屉原理作了很好的铺垫。

2、用具体的操作,将抽象变为直观。

本节课组织的教学结构紧凑,实施过程层层推进上的扎实有效,通过4根小棒3个杯子,先让学生用枚举法,把所有情况摆出来,运用直观的方式,发现并描述:理解最简单的“抽屉原理”,举例后学生感知理解“小棒比杯子多1时,不管怎么放,总有一个杯子至少有2根小棒”。再让学生探究解决问题的简便方法,即“平均分”的方法,在这节课中,由于提拱的数据较小,为学生自主探索和理解“抽屉原理”提供了很大的空间。

特别是教师设问:到底是“至少数=商+1”还是“商+余数”?引发学生思维步步深入,并通过讨论,说理等活动,得出“至少数=商+1”。使学生经历了一个初步的数学证明过程,培养了学生的推理能力和初步的逻辑思维能力。

3、在活动中使学生感受到了数学魅力。

“抽屉原理”这一知识点,让学生通过实验操作、观察、思考、推理的基础上理解和发现的,同时也让学生感受到数学知识在生活中的应用,感受到数学的魅力。

第三篇:抽屉原理课后评课

教研组课后议课

《抽屉原理》评课稿

六年级数学组 徐老师上的《抽屉原理》这一课结构完整,过程清晰,充分体现了学生的主体地位,为学生提供了足够的自主探索的空间,引导学生在观察、猜测、操作、推理和交流等数学活动中初步了解“抽屉原理”,并学会了用“抽屉原理”解决简单的实际问题。

本节课的亮点是:

1、充分放手,让学生自主思考,采用自己的方法“证明”:“把4枝筷子放入3个杯子中,不管怎么放,总有一个杯子里至少放进2枝筷子”,然后交流展示,为后面开展教与学的活动做了铺垫。此处设计注意了从最简单的数据开始摆放,有利于学生观察、理解,有利于调动所有学生的积极性。在有趣的类推活动中,引导学生得出一般性的结论,让学生体验和理解“抽屉原理”的最基本原理:当物体个数大于抽屉个数时,一定有一个抽屉中放进了至少2个物体。这样的教学过程,从方法层面和知识层面上对学生进行了提升,有助于发展学生的类推能力,形成比较抽象的数学思维。在评价学生各种“证明”方法,针对学生的不同方法教师给予针对性的鼓励和指导,让学生在自主探索中体验成功,获得发展。在学生自主探索的基础上,进一步比较优化,让学生逐步学会运用一般性的数学方法来思考问题。

2、教学中教师抓住了假设法最核心的思路就是用“有余数除法” 形式表示出来,使学生借助直观,很好的理解了如果把书尽量多地“平均分”给各个抽屉里,看每个抽屉里能分到多少本书,余下的书不管放到哪个抽屉里,总有一个抽屉里比平均分得的书的本数多1本。特别是对“某个抽屉至少有书的本数”是除法算式中的商加“1”,而不是商加“余数”,教师适时挑出针对性问题进行交流、讨论,使学生从本质上理解了“抽屉原理”。

3、注意渗透数学和生活的联系。并在游戏中深化知识。

学了“抽屉原理”有什么用?能解决生活中的什么问题?教学中教师注重了联系学生的生活实际。课前老师设计了一组简单、真实的生活情境:“让一名学生在一副去掉了大小王和花牌的扑克牌中,任意抽取五张,老师猜:总有一种花色的牌至少有两张。”学完抽屉原理后,让学生用学过的知识来解释这些现象,有效的渗透“数学来源于生活,又还原于生活”的理念。

商榷之处:

学生对“至少”一词的理解还显得有些欠缺,学生仅仅理解了字面上的意思,对“至少”一词的指向性还不明确,就我理解,“至少”应该是指的在每一种情况中出现的最大数中的最小数,此处比较难于理解,有些学生还比较模

第四篇:抽屉原理

抽屉原理

把5个苹果放到4个抽屉中,必然有一个抽屉中至少有2个苹果,这是抽屉原理的通俗解释。一般地,我们将它表述为:

第一抽屉原理:把(mn+1)个物体放入n个抽屉,其中必有一个抽屉中至少有(m+1)个物体。

使用抽屉原理解题,关键是构造抽屉。一般说来,数的奇偶性、剩余类、数的分组、染色、线段与平面图形的划分等,都可作为构造抽屉的依据。

例1 从1,2,3,…,100这100个数中任意挑出51个数来,证明在这51个数中,一定:

(1)有2个数互质;

(2)有2个数的差为50;

(3)有8个数,它们的最大公约数大于1。

证明:(1)将100个数分成50组:

{1,2},{3,4},…,{99,100}。

在选出的51个数中,必有2个数属于同一组,这一组中的2个数是两个相邻的整数,它们一定是互质的。

(2)将100个数分成50组:

{1,51},{2,52},…,{50,100}。

在选出的51个数中,必有2个数属于同一组,这一组的2个数的差为50。

(3)将100个数分成5组(一个数可以在不同的组内):

第一组:2的倍数,即{2,4,…,100};

第二组:3的倍数,即{3,6,…,99};

第三组:5的倍数,即{5,10,…,100};

第四组:7的倍数,即{7,14,…,98};

第五组:1和大于7的质数即{1,11,13,…,97}。

第五组中有22个数,故选出的51个数至少有29个数在第一组到第四组中,根据抽屉原理,总有8个数在第一组到第四组的某一组中,这8个数的最大公约数大于1。

例2 求证:可以找到一个各位数字都是4的自然数,它是1996的倍数。

证明:因1996÷4=499,故只需证明可以找到一个各位数字都是1的自然数,它是499的倍数就可以了。

得到500个余数r1,r2,…,r500。由于余数只能取0,1,2,…,499这499个值,所以根据抽屉原理,必有2个余数是相同的,这2个数的差就是499的倍数,这个差的前若干位是1,后若干位是0:11…100…0,又499和10是互质的,故它的前若干位由1组成的自然数是499的倍数,将它乘以4,就得到一个各位数字都是4的自然数,它是1996的倍数。

例3 在一个礼堂中有99名学生,如果他们中的每个人都与其中的66人相识,那么可能出现这种情况:他们中的任何4人中都一定有2人不相识(假定相识是互相的)。

分析:注意到题中的说法“可能出现……”,说明题的结论并非是条件的必然结果,而仅仅是一种可能性,因此只需要设法构造出一种情况使之出现题目中所说的结论即可。

解:将礼堂中的99人记为a1,a2,…,a99,将99人分为3组:

(a1,a2,…,a33),(a34,a35,…,a66),(a67,a68,…,a99),将3组学生作为3个抽屉,分别记为A,B,C,并约定A中的学生所认识的66人只在B,C中,同时,B,C中的学生所认识的66人也只在A,C和A,B中。如果出现这种局面,那么题目中所说情况

/ 7

就可能出现。

因为礼堂中任意4人可看做4个苹果,放入A,B,C三个抽屉中,必有2人在同一抽屉,即必有2人来自同一组,那么他们认识的人只在另2组中,因此他们两人不相识。

例4 如右图,分别标有数字1,2,…,8的滚珠两组,放在内外两个圆环上,开始时相对的滚珠所标数字都不相同。当两个圆环按不同方向转动时,必有某一时刻,内外两环中至少有两对数字相同的滚珠相对。

分析:此题中没有直接提供我们用以构造抽屉和苹果的数量关系,需要转换一下看问题的角度。

解:内外两环对转可看成一环静止,只有一个环转动。一个环转动一周后,每个滚珠都会有一次与标有相同数字的滚珠相对的局面出现,那么这种局面共要出现8次。将这8次局面看做苹果,再需构造出少于8个抽屉。

注意到一环每转动45°角就有一次滚珠相对的局面出现,转动一周共有8次滚珠相对的局面,而最初的8对滚珠所标数字都不相同,所以数字相同的滚珠相对的情况只出现在以后的7次转动中,将7次转动看做7个抽屉,8次相同数字滚珠相对的局面看做8个苹果,则至少有2次数字相对的局面出现在同一次转动中,即必有某一时刻,内外两环中至少有两对数字相同的滚珠相对。

例5 有一个生产天平上用的铁盘的车间,由于工艺上的原因,只能控制盘的重量在指定的20克到20.1克之间。现在需要重量相差不超过0.005克的两只铁盘来装配一架天平,问:最少要生产多少个盘子,才能保证一定能从中挑出符合要求的两只盘子?

解:把20~20.1克之间的盘子依重量分成20组:

第1组:从20.000克到20.005克;

第2组:从20.005克到20.010克;

……

第20组:从20.095克到20.100克。

这样,只要有21个盘子,就一定可以从中找到两个盘子属于同一组,这2个盘子就符合要求。

例6 在圆周上放着100个筹码,其中有41个红的和59个蓝的。那么总可以找到两个红筹码,在它们之间刚好放有19个筹码,为什么?

分析:此题需要研究“红筹码”的放置情况,因而涉及到“苹果”的具体放置方法,由此我们可以在构造抽屉时,使每个抽屉中的相邻“苹果”之间有19个筹码。

解:依顺时针方向将筹码依次编上号码:1,2,…,100。然后依照以下规律将100个筹码分为20组:

(1,21,41,61,81);

(2,22,42,62,82);

……

(20,40,60,80,100)。

将41个红筹码看做苹果,放入以上20个抽屉中,因为41=2×20+1,所以至少有一个抽屉中有2+1=3(个)苹果,也就是说必有一组5个筹码中有3个红色筹码,而每组的5个筹码在圆周上可看做两两等距,且每2个相邻筹码之间都有19个筹码,那么3个红色筹码中必有2个相邻(这将在下一个内容——第二抽屉原理中说明),即有2个红色筹码之间有19个筹码。

下面我们来考虑另外一种情况:若把5个苹果放到6个抽屉中,则必然有一个抽屉空着。这种情况一般可以表述为:

/ 7

第二抽屉原理:把(mn-1)个物体放入n个抽屉,其中必有一个抽屉中至多有(m-1)个物体。

例7 在例6中留有一个疑问,现改述如下:在圆周上放有5个筹码,其中有3个是同色的,那么这3个同色的筹码必有2个相邻。

分析:将这个问题加以转化:

如右图,将同色的3个筹码A,B,C置于圆周上,看是否能用另外2个筹码将其隔开。

解:如图,将同色的3个筹码放置在圆周上,将每2个筹码之间的间隔看做抽屉,将其余2个筹码看做苹果,将2个苹果放入3个抽屉中,则必有1个抽屉中没有苹果,即有2个同色筹码之间没有其它筹码,那么这2个筹码必相邻。

例8 甲、乙二人为一个正方形的12条棱涂红和绿2种颜色。首先,甲任选3条棱并把它们涂上红色;然后,乙任选另外3条棱并涂上绿色;接着甲将剩下的6条棱都涂上红色。问:甲是否一定能将某一面的4条棱全部涂上红色?

解:不能。

如右图将12条棱分成四组:

第一组:{A1B1,B2B3,A3A4},第二组:{A2B2,B3B4,A4A1},第三组:{A3B3,B4B1,A1A2},第四组:{A4B4,B1B2,A2A3}。

无论甲第一次将哪3条棱涂红,由抽屉原理知四组中必有一组的3条棱全未涂红,而乙只要将这组中的3条棱涂绿,甲就无法将某一面的4条棱全部涂红了。

下面我们讨论抽屉原理的一个变形——平均值原理。

我们知道n个数a1,a2,…,an的和与n的商是a1,a2,…,an这n个数的平均值。平均值原理:如果n个数的平均值为a,那么其中至少有一个数不大于a,也至少有一个不小于a。

例9 圆周上有2000个点,在其上任意地标上0,1,2,…,1999(每一点只标一个数,不同的点标上不同的数)。求证:必然存在一点,与它紧相邻的两个点和这点上所标的三个数之和不小于2999。

解:设圆周上各点的值依次是a1,a2,…,a2000,则其和

a1+a2+…+a2000=0+1+2+…+1999=1999000。

下面考虑一切相邻三数组之和:

(a1+a2+a3)+(a2+a3+a4)+…+(a1998+a1999+a2000)+(a1999+a2000+a1)+(a2000+a1+a2)

=3(a1+a2+…+a2000)

=3×1999000。

这2000组和中必至少有一组和大于或等于

但因每一个和都是整数,故有一组相邻三数之和不小于2999,亦即存在一个点,与它紧相邻的两点和这点上所标的三数之和不小于2999。

例10 一家旅馆有90个房间,住有100名旅客,如果每次都恰有90名旅客同时回来,那么至少要准备多少把钥匙分给这100名旅客,才能使得每次客人回来时,每个客人都能用自己分到的钥匙打开一个房门住进去,并且避免发生两人同时住进一个房间?

解:如果钥匙数小于990,那么90个房间中至少有一个房间的钥匙数少房间就打不开,因此90个人就无法按题述的条件住下来。

/ 7

另一方面,990把钥匙已经足够了,这只要将90把不同的钥匙分给90个人,而其余的10名旅客,每人各90把钥匙(每个房间一把),那么任何90名旅客返回时,都能按要求住进房间。

最后,我们要指出,解决某些较复杂的问题时,往往要多次反复地运用抽屉原理,请看下面两道例题。

例11 设有4×28的方格棋盘,将每一格涂上红、蓝、黄三种颜色中的任意一种。试证明:无论怎样涂法,至少存在一个四角同色的长方形。

证明:我们先考察第一行中28个小方格涂色情况,用三种颜色涂28个小方格,由抽屉原理知,至少有10个小方格是同色的,不妨设其为红色,还可设这10个小方格就在第一行的前10列。

下面考察第二、三、四行中前面10个小方格可能出现的涂色情况。这有两种可能:

(1)这三行中,至少有一行,其前面10个小方格中,至少有2个小方格是涂有红色的,那么这2个小方格和第一行中与其对应的2个小方格,便是一个长方形的四个角,这个长方形就是一个四角同是红色的长方形。

(2)这三行中每一行前面的10格中,都至多有一个红色的小方格,不妨设它们分别出现在前三列中,那么其余的3×7个小方格便只能涂上黄、蓝两种颜色了。

我们先考虑这个3×7的长方形的第一行。根据抽屉原理,至少有4个小方格是涂上同一颜色的,不妨设其为蓝色,且在第1至4列。

再考虑第二行的前四列,这时也有两种可能:

(1)这4格中,至少有2格被涂上蓝色,那么这2个涂上蓝色的小方格和第一行中与其对应的2个小方格便是一个长方形的四个角,这个长方形四角同是蓝色。

(2)这4格中,至多有1格被涂上蓝色,那么,至少有3格被涂上黄色。不妨设这3个小方格就在第二行的前面3格。

下面继续考虑第三行前面3格的情况。用蓝、黄两色涂3个小方格,由抽屉原理知,至少有2个方格是同色的,无论是同为蓝色或是同为黄色,都可以得到一个四角同色的长方形。

总之,对于各种可能的情况,都能找到一个四角同色的长方形。

例12 试卷上共有4道选择题,每题有3个可供选择的答案。一群学生参加考试,结果是对于其中任何3人,都有一道题目的答案互不相同。问:参加考试的学生最多有多少人?

解:设每题的三个选择分别为a,b,c。

(1)若参加考试的学生有10人,则由第二抽屉原理知,第一题答案分别为a,b,c的三组学生中,必有一组不超过3人。去掉这组学生,在余下的学生中,定有7人对第一题的答案只有两种。对于这7人关于第二题应用第二抽屉原理知,其中必可选出5人,他们关于第二题的答案只有两种可能。对于这5人关于第三题应用第二抽屉原理知,可以选出4人,他们关于第三题的答案只有两种可能。最后,对于这4人关于第四题应用第二抽屉原理知,必可选出3人,他们关于第四题的答案也只有两种。于是,对于这3人来说,没有一道题目的答案是互不相同的,这不符合题目的要求。可见,所求的最多人数不超过9人。

另一方面,若9个人的答案如下表所示,则每3人都至少有一个问题的答案互不相同。

所以,所求的最多人数为9人。练习13

1.六(1)班有49名学生。数学王老师了解到在期中考试中该班英文成绩除3人外均在86分以上后就说:“我可以断定,本班同学至少有4人成绩相同。”请问王老师说得对吗?为什么?

2.现有64只乒乓球,18个乒乓球盒,每个盒子里最多可以放6只乒乓球,至少有几个

/ 7

乒乓球盒子里的乒乓球数目相同?

3.某校初二年级学生身高的厘米数都为整数,且都不大于160厘米,不小于150厘米。问:在至少多少个初二学生中一定能有4个人身高相同?

4.从1,2,…,100这100个数中任意选出51个数,证明在这51个数中,一定:

(1)有两个数的和为101;

(2)有一个数是另一个数的倍数;

(3)有一个数或若干个数的和是51的倍数。

5.在3×7的方格表中,有11个白格,证明

(1)若仅含一个白格的列只有3列,则在其余的4列中每列都恰有两个白格;

(2)只有一个白格的列只有3列。

6.某个委员会开了40次会议,每次会议有10人出席。已知任何两个委员不会同时开两次或更多的会议。问:这个委员会的人数能够多于60人吗?为什么?

7.一个车间有一条生产流水线,由5台机器组成,只有每台机器都开动时,这条流水线才能工作。总共有8个工人在这条流水线上工作。在每一个工作日内,这些工人中只有5名到场。为了保证生产,要对这8名工人进行培训,每人学一种机器的操作方法称为一轮。问:最少要进行多少轮培训,才能使任意5个工人上班而流水线总能工作?

8.有9名数学家,每人至多能讲3种语言,每3人中至少有2人能通话。求证:在这9名中至少有3名用同一种语言通话。

练习13

1.对。解:因为49-3=3×(100-86+1)+1,即46=3×15+1,也就是说,把从100分至86分的15个分数当做抽屉,49-3=46(人)的成绩当做物体,根据第二抽屉原理,至少有4人的分数在同一抽屉中,即成绩相同。

2.4个。解:18个乒乓球盒,每个盒子里至多可以放6只乒乓球。为使相同乒乓球个数的盒子尽可能少,可以这样放:先把盒子分成6份,每份有18÷6=3(只),分别在每一份的3个盒子中放入1只、2只、3只、4只、5只、6只乒乓球,即3个盒子中放了1只乒乓球,3个盒中放了2只乒乓球……3个盒子中放了6只乒乓球。这样,18个盒子中共放了乒乓球

(1+2+3+4+5+6)×3=63(只)。

把以上6种不同的放法当做抽屉,这样剩下64-63=1(只)乒乓球不管放入哪一个抽屉里的任何一个盒子里(除已放满6只乒乓球的抽屉外),都将使该盒子中的乒乓球数增加1只,这时与比该抽屉每盒乒乓数多1的抽屉中的3个盒子里的乒乓球数相等。例如剩下的1只乒乓球放进原来有2只乒乓球的一个盒子里,该盒乒乓球就成了3只,再加上原来装有3只乒乓球的3个盒子,这样就有4个盒子里装有3个乒乓球。所以至少有4个乒乓球盒里的乒乓球数目相同。

3.34个。

解:把初二学生的身高厘米数作为抽屉,共有抽屉

160-150+1=11(个)。

根据抽屉原理,要保证有4个人身高相同,至少要有初二学生

3×11+1=34(个)。

4.证:(1)将100个数分成50组:

/ 7

{1,100},{2,99},…,{50,51}。

在选出的51个数中,必有两数属于同一组,这一组的两数之和为101。

(2)将100个数分成10组:

{1,2,4,8,16,32,64}, {3,6,12,24,48,96},{5,10,20,40,80}, {7,14,28,56},{9,18,36,72}, {11,22,44,88},{13,26,52}, {15,30,60},…, {49,98}, {其余数}。

其中第10组中有41个数。在选出的51个数中,第10组的41个数全部选中,还有10个数从前9组中选,必有两数属于同一组,这一组中的任意两个数,一个是另一个的倍数。

(3)将选出的51个数排成一列:

a1,a2,a3,…,a51。

考虑下面的51个和:

a1,a1+a2,a1+a2+a3,…,a1+a2+a3+…+a51。

若这51个和中有一个是51的倍数,则结论显然成立;若这51个和中没有一个是51的倍数,则将它们除以51,余数只能是1,2,…,50中的一个,故必然有两个的余数是相同的,这两个和的差是51的倍数,而这个差显然是这51个数(a1,a2,a3,…,a51)中的一个数或若干个数的和。

5.证:(1)在其余4列中如有一列含有3个白格,则剩下的5个白格要放入3列中,将3列表格看做3个抽屉,5个白格看做5个苹果,根据第二抽屉原理,5(=2×3-1)个苹果放入3个抽屉,则必有1个抽屉至多只有(2-1)个苹果,即必有1列只含1个白格,也就是说除了原来3列只含一个白格外还有1列含1个白格,这与题设只有1个白格的列只有3列矛盾。所以不会有1列有3个白格,当然也不能再有1列只有1个白格。推知其余4列每列恰好有2个白格。

(2)假设只含1个白格的列有2列,那么剩下的9个白格要放入5列中,而9=2×5-1,由第二抽屉原理知,必有1列至多只有2-1=1(个)白格,与假设只有2列每列只1个白格矛盾。所以只有1个白格的列至少有3列。

6.能。

解:开会的“人次”有 40×10=400(人次)。设委员人数为N,将“人次”看做苹果,以委员人数作为抽屉。

若N≤60,则由抽屉原理知至少有一个委员开了7次(或更多次)会。但由已知条件知没有一个人与这位委员同开过两次(或更多次)的会,故他所参加的每一次会的另外9个人是不相同的,从而至少有7×9=63(个)委员,这与N≤60的假定矛盾。所以,N应大于60。

7.20轮。

解:如果培训的总轮数少于20,那么在每一台机器上可进行工作的工人果这3个工人某一天都没有到车间来,那么这台机器就不能开动,整个流水线就不能工作。故培训的总轮数不能少于20。

另一方面,只要进行20轮培训就够了。对3名工人进行全能性培训,训练他们会开每一台机器;而对其余5名工人,每人只培训一轮,让他们每人能开动一台机器。这个方案实施后,不论哪5名工人上班,流水线总能工作。

8.证:以平面上9个点A1,A2,…,A9表示9个数学家,如果两人能通话,就把表示他们的两点联线,并涂上一种颜色(不同的语言涂上不同颜色)。此时有两种情况:

(1)9点中有任意2点都有联线,并涂了相应的颜色。于是从某一点A1出发,分别与

/ 7

A2,A3,…,A9联线,又据题意,每人至多能讲3种语言,因此A1A2,A1A3,…,A1A9中至多只能涂3种不同的颜色,由抽屉原理知,这8条线段中至少有2条同色的线段。不妨设A1A2与A1A3是同色线段,因此A1,A2,A3这3点表示的3名数学家可用同一种语言通话。

(2)9点中至少有2点不联线,不妨设是A1与A2不联线。由于每3人中至少有两人能通话,因此从A1与A2出发至少有7条联线。再由抽屉原理知,其中必有4条联线从A1或A2 出发。不妨设从A1出发,又因A1至多能讲3种语言,所以这4条联线中,至少有2条联线是同色的。若A1A3与A1A4同色,则A1,A3,A4这3点表示的3名数学家可用同一种语言通话。

/ 7

第五篇:抽屉原理

《抽屉原理》教学设计

教材分析:现行小学教材人教版在十一册编入这一原理,旨在于让学生初步了解“抽屉原理”(也就是初步接触第一原理),会用“抽屉原理”解决实际有关“存在”问题;通过猜测、验证、观察、分析等数学活动,让孩子建立数学模型,发现规律;使孩子经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力;通过“抽屉原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。

学情分析:使孩子经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力;通过“抽屉原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。教学目标:

1、经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。

2、通过操作发展学生的类推能力,形成比较抽象的数学思维。

3、通过“抽屉原理”的灵活应用感受数学的魅力。

教学重点:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。

教学难点:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。

教学过程

一、游戏引入

3个人坐两个座位,3人都要坐下,一定有一个座位上至少坐了2个人。

这其中蕴含了有趣的数学原理,这节课我们一起学习研究。

二、新知探究

1、把4枝铅笔放进3个文具盒里,不管怎么放,总有一个文具盒里至少放进()枝铅笔先猜一猜,再动手放一放,看看有哪些不同方法。用自己的方法记录(4,0,0)(3,1,0)(2,2,0)(2,1,1)你有什么发现?

不管怎么放总有一个文具盒里至少放进2枝铅笔。总有是什么意思?至少是什么意思

2、思考

有没有一种方法不用摆放就可以知道至少数是多少呢?

1、3人坐2个位子,总有一个座位上至少坐了2个人2、4枝铅笔放进3个文具盒中,总有一个文具盒中至少放了2枝铅笔5枝铅笔放进4个文具盒中,6枝铅笔放进5个文具盒中。99支铅笔放进98个文具盒中。是否都有一个文具盒中

至少放进2枝铅笔呢? 这是为什么?可以用算式表达吗?

4、如果是5枝铅笔放到3个文具盒里,总有一个文具盒至少放进几枝铅笔?把7枝笔放进2个文具盒里呢? 8枝笔放进2个文具盒呢? 9枝笔放进3个文具盒呢?至少数=上+余数吗?

三、小试牛刀 1、7只鸽子飞回5个鸽舍,至少有几只鸽子要飞进同一个鸽舍里?

2、从扑克牌中取出两张王牌,在剩下的52张中任意抽出5张,至少有几张是同花色的?

四、数学小知识

数学小知识:抽屉原理的由来最先发现这些规律的人是谁呢?最先是由19世纪的德国数学家狄里克雷运用于解决数学问题的,后人们为了纪念他从这么平凡的事情中发现的规律,就把这个规律用他的名字命名,叫“狄里克雷原理”,又把它叫做“鸽巢原理”,还把它叫做

“抽屉原理”。

五、智慧城堡

1、把13只小兔子关在5个笼子里,至少有多少只兔子要关在同一个笼子里?

2、咱们班共59人,至少有几人是同一属相?

3、张叔叔参加飞镖比赛,投了5镖,镖镖都中,成绩是41环。张叔叔至少有一镖不低于9环。为什么?

4、六年级四个班的学生去春游,自由活时有6个同学在一起,可以肯定。为什么?

六、小结

这节课你有什么收获?

七、作业:课后练习

下载抽屉原理评课稿word格式文档
下载抽屉原理评课稿.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    抽屉原理范文合集

    抽屉原理 【知识要点】 抽屉原理又称鸽巢原理,它是组合数学的一个基本原理,最先是由德国数学家狭利克雷明确地提出来的,因此,也称为狭利克雷原理。 把3个苹果放进2个抽屉里,一定......

    抽屉原理

    抽屉原理 一、 起源 抽屉原理最先是由19 世纪的德国数学家迪里赫莱(Dirichlet)运用于解决数学问题的,所以又称"迪里赫莱原理",也有称"鸽巢原理"的.这个原理可以简单地叙述为......

    抽屉原理

    抽屉原理(1) 抽屉原则(1) 如果把n+k (k 大于等于1)件东西放入n个抽屉,那么至少有一个抽屉中有2件或2件以上的东西。 学习例题 例1.某次联欢会有100人参加,每人在这个联欢会上至少有......

    抽屉原理

    4分割图形构造“抽屉”与“苹果” 在一个几何图形内, 有一些已知点, 可以根据问题的要求, 将几何图形进行分割, 用这些分割成的图形作抽屉, 从而对已知点进行分类, 再集中对......

    抽屉原理

    B15六年级专题讲座(十五)简单的抽屉原理 赵民强 抽屉原理一 把n+1个苹果放入n个抽屉中,则必有一个抽屉中至少放了两个苹果. 在解答实际问题时,关键在于找准什么是“抽屉”和......

    抽屉原理

    抽屉原理专项练习1.把红、黄、蓝三种颜色的球各5个放到一个袋子里,至少取多少个球可以保证取到两个颜色相同的球?请简要说明理由. 2.某校有201人参加数学竞赛,按百分制计分且得......

    抽屉原理

    抽屉原理(鸽巢问题) 抽屉原理有两条: (1)如果把xk(k>1)个元素放到x个抽屉里,那么至少有一个抽屉里含有2个或2个以上的元素。 (2)如果把n个物体放在m个抽屉里,其中n>m,那么必有一个抽屉至......

    抽屉原理

    抽屉原理 1、某校六年级有367人,一定有至少有两个学生的生日是同一天,为什么?2、某校有30名同学是2月份出生的,能否有两个学生的生日是在同一天?3、15个小朋友中,至少有几个小朋友......