载货汽车驱动桥设计开题报告(共五则范文)

时间:2019-05-14 02:34:55下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《载货汽车驱动桥设计开题报告》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《载货汽车驱动桥设计开题报告》。

第一篇:载货汽车驱动桥设计开题报告

黑龙江八一农垦大学 本科毕业设计(论文)开题报告

姓 名:

学 院: 工程学院 专 业: 交通运输 学 号:

课 题 名 称: 载货汽车驱动桥设计 指 导 教 师:

研究起止日期:2013 年 3月-2013年6月

交通运输专业本科毕业设计(论文)开题报告书

1论文选题的目的和意义

随着时代的发展,汽车的作用日益明显,已成了我们生活比不缺少的工具。汽车发展程度也成为衡量一个国家工业发展程度的重要标志。汽车不仅作为一种代步工具,同时它在运输业中也有着非常重要的地位,特别是在一些短途运输中。因此载货汽车的发展也非常迅速,载货汽车总的分为重型和轻型两种。

汽车驱动桥在汽车的各种总成中是涵盖机械零件、部件、分总成等的品种最多的总成。例如,驱动桥一般由主减速器、差速器、车轮传动装置和桥壳组成。由此可见,汽车驱动桥设计涉及的机械零部件及元件的品种极为广泛,对这些零部件、元件及总成的制造也几乎要设计到所有的现代机械制造工艺。

并且随着近年来油价的上涨,汽车的运输成本也越来越高,因此在保证汽车的动力性的前提下,提高其燃油经济性也变得非常重要。为了降低油耗,不仅要在发动机的环节上节油,而且也需要从传动系中减少能量的损失。这就必须在发动机的动力输出之后,在从发动机—传动轴—驱动桥这一动力输送环节中寻找减少能量在传递的过程中的损失。在这一环节中,发动机是动力的输出者,也是整个机器的心脏,而驱动桥则是将动力转化为能量的最终执行者。因此,在发动机相同的情况下,采用性能优良且与发动机匹配性比较高的驱动桥便成了有效节油的措施之一。同时,人们对于汽车的行驶平顺性、操作稳定性和平均行驶速度有了更高的要求,这都和汽车驱动桥的选择有着非常重要的关系。

综上所述,通过对汽车驱动桥的学习和设计,可以更好的学习并掌握现代汽车设计与机械设计的全面知识和技能。

2国内外研究现状及发展趋势

(一)国内现状

我国正在大力发展汽车产业,采用后轮驱动桥的汽车平衡性和操作性都将会有很大的提高。后轮驱动的汽车加速时,牵引力将不会由前轮发出,所以在加速转弯时,司机就会感到有更大的横向握持力,操作性能好。维修费用低也是后轮驱动的一个优点,尽管由于构造和车型的不同,这种费用将会很大的差别。如果变速器出了障碍,对于后轮驱动桥的汽车就不需要进行维修,但是对于前轮驱动的汽车来说也许就有这个必要了,因为这两个部件是坐在一起的。所以后轮驱动必然会使得乘车更加安舒适,交通运输专业本科毕业设计(论文)开题报告书

从而带来可观的经济效益。

国产驱动桥在国内市场占据了绝大部分份额,但仍有一定数量的车桥依赖进口,国产车桥与国际先进水平仍有一定差距。国内车桥长的差距主要体现在设计和研发能力上,目前有研发能力的车桥厂家还不多,一些厂家仅仅停留在组装阶段。实验设备也有差距,比如工程车和牵引车在行驶过程中,齿轮啮合接触区的形状是不同的,国外先进的实验设备能够模拟这种状态,而我国现在还在摸索中。

在具体工艺细节方面,我国和世界水平的差距还比较大,归根结底后桥的功用是承载和驱动。在这两方面,今年来出现了一些新的变化。另外,在结构方面,单级驱动桥的使用比例越来越高;技术方面,轻量化、舒适性的要求将逐步提高。总体而言,现在汽车向节能、环保、舒适等方面发展的趋势,要求车桥向轻量化、大扭矩、低噪声、宽速比、寿命长和低生产成本。

目前,国内生产驱动桥的厂家较多,品种和规格也较齐全,其性能和质量基本上能够满足国产农业机械和工程机械的使用需求,呈现了明显的产业特点:由进口国外产品向国产化发展,由小作坊向正规化产业化发展,由低端产品向高端产品发展,由引进国外技术向自主研发发展。在技术方面,通过不断提高自身铸锻造技术及工艺水平来保证研发产品制造质量;通过利用先进科学的设计辅助手段来达到设计优化的目的;通过不断学习吸收国外先进的技术逐步实现技术与国际接轨的目标,从而提高产品的核心竞争力;通过运用先进的技术及方法来提高产品的性能,满足市场需求,推进机电一体化进程。

(二)国外现状

在西欧,带轮边减速的双级主减速器后驱动桥只占整个产品的40%,且有呈下降趋势,在美国只占10%。其原因是这些地区的道路较好,采用单级减速双曲线螺旋锥齿轮副成本较低,故大部分均采用这种结构。国外汽车驱动桥已普遍采用限滑差速器《N一Pin牙嵌式或多片摩擦盘式》、湿式行车制动器等先进技术。限滑差速器大大减少了轮胎的磨损,而湿式行车制动器则提高了主机的安全性能,简化了维修工作。国内仅一部分车使用N。一Pin牙嵌式差速器。限滑差速器成本较高,因而在多数国产驱动桥上一直没有得到应用。目前向国内提供限滑差速器的制造商主要是美国TraCtech公司和德国采埃孚公司。美国Tractech公司在苏州的工厂即将建成投产,主要生产牙嵌式、多片摩擦盘式和比例扭矩(三周节)差速器(锁紧系数3.5)。国内如徐工、鼎盛天工等主机制造商等原来自制一部分牙嵌式差速器,后因质量不过关而放

交通运输专业本科毕业设计(论文)开题报告书

弃。

亚洲、非洲和南美国家则采用带轮边减速的双级主减速器的驱动桥,用于非道路和恶劣道路使用的车辆。因此可以得出结论:一个国家的道路愈差,则采用带轮边减速双级主减速器驱动桥愈多,反之,则愈少。国内有几个制造商生产比例扭矩差速器,但均为单周节,锁紧系数138,较三周节要小得多。徐州良羽传动机械有限公司在停车制动器(液压)上也做了一些工作,主要用于重型卡车产品,但国产此类产品的可靠性还有待提高。本课题的重点和研究方法

(一)主要技术分析

载货汽车驱动桥主要由主减速器部分、差速器部分、半轴部分和桥壳部分等几大部分组成。通过比较国内外货车驱动桥的不同之处,使我们能更好地认识我国载货汽车驱动桥系统的不足之处,积极吸取国外先进技术,更好的应用于我国载货汽车驱动桥生产中。

(二)主要设计内容

(1)驱动桥结构方案的选择与分析;(2)主减速器结构参数的选取;(3)差速器结构参数的选取;(4)桥壳参数的选取与强度的分析。

(三)本文研究的思路和方法

(1)通过查阅书籍、上网搜索以及文献检索等多种有效方法,系统收集驱动桥的研究成果和相关信息;

(2)在对国内外驱动桥的技术现状、发展趋势、市场等情况进行系统分析研究的基础上,确定设计策略,作为构思总体设计方案的指导思想;

(3)选型设计:根据汽车行驶的路况条件和设计参数要求进行驱动桥的选型;(4)参数化设计:根据整体设计要求,质量、轴荷、载重量、动力性、制动性、平顺性要求,确定发动机动力参数,确定主减速器、差速器、车轮传动装置和桥壳的件结构形式和基本参数;

(5)计算机二维图纸绘制:根据理论计算的主要参数,对各零件和总成进行二维图纸绘制和装配。

(四)参考文献:

交通运输专业本科毕业设计(论文)开题报告书

[1] 刘惟信.汽车设计[M].北京:清华大学出版社,2001.[2] 陈家瑞.汽车构造[M].北京:机械工业出版社,2003.[3] 汽车工程手册编辑委员会.汽车工程手册[M]:设计篇.北京:人民交通出版社,2001.[4] 成大先.机械设计手册[M].北京:化学工业出版社,2004.1.[5] 余志生.汽车理论[M].北京:机械工业出版社, 1990.[6] 杨朝会,王丰元,马浩.基于有限元方法的载货汽车驱动桥壳分析[J].农业装备与车辆工程.2006,(10):19-21 [7] 胡迪青,易建军,胡于进,李成刚.基于模块化的越野汽车驱动桥设计及性能综合评价[J].机械设计与制造工程,2000,(3):8-11.[8] 唐善政.汽车驱动桥噪声的试验研究与控制[J].汽车科技,2000,(3):14-24 [9] 石琴,陈朝阳,钱锋,温千红.汽车驱动桥壳模态分析[J].上海汽车,1999,(4):1-3,8.[10] 林军,周晓军,陈子辰,陈庆春.汽车驱动桥总成在线自动检测系统[J].机械与电子,2000,(4):20-21.[11] 王聪兴,冯茂林.现代设计方法在驱动桥设计中的应用[J].公路与汽运,2004,(4):6-8.[12] 杨锁望,韩愈琪,杨钰.矿用自卸驱动桥壳结构分析与改进设计[J].专用汽车,2005,(1):21-23.[13] 王铁,张国忠,周淑文.路面不平度影响下的汽车驱动桥动载荷[J].东北大学学报,2003,(1):50-53.[14] 常曙光.重载汽车驱动桥齿轮用钢的成分设计[J].现代零部件,2006,(1):90-95.[15] 徐灦.机械设计手册[M].北京:机械工业出版社,1991.[16]J.Vogwell.Analysis of a vehicle wheel shaft faiure.Engineering Failure Analysis.1998(5):4.[17]Makoto Akama.Bayesian analysis for the results of fatigue test using full-scale models to obtain the failure probabilities of the Shinkansen vehicle axle.Reliability Engineering and system Safety.2002,(1):75.[18]王忠会,骆雨,贾毅.行星齿轮式桥间差速器的差速特性分析.2005.9[J].交通运输专业本科毕业设计(论文)开题报告书

[19]蔡广新主编.汽车机械基础.北京:高等教育出版社.2005.1 [20]冯刚年,杨春永.装载机驱动桥主减速器壳体组件的结构改进.2008.11[J].[21] 王望予.汽车设计[M].北京:机械工业出版社.[23] 李长河,机械制造基础[M]北京:机械工业出版社,2009.7.

第二篇:E420轻型载货汽车驱动桥设计说明书

盐城工学院毕业设计说明书 2006

目录 前言...........................................................................................................................1 1.1 本课题的来源、基本前提条件和技术要求.......................................................1 1.2 本课题要解决的主要问题和设计总体思路.......................................................1 1.3 预期的成果...........................................................................................................1 2 国内外发展状况及现状的介绍...............................................................................3 3 总体方案论证...........................................................................................................4 4 具体设计说明...........................................................................................................7 4.1 主减速器的设计...................................................................................................7 4.1.1 主减速器的结构型式.......................................................................................7 4.1.2 主减速器主动锥齿轮的支承型式及安装方法...............................................9 4.1.3 主减速器从动锥齿轮的支承型式及安装方法.............................................10 4.1.4 主减速器的基本参数的选择及计算.............................................................10 4.2 差速器的设计.....................................................................................................13 4.2.1差速器的结构型式..........................................................................................13 4.2.2差速器的基本参数的选择及计算..................................................................15 4.3 半轴的设计.........................................................................................................16 4.3.1半轴的结构型式..............................................................................................16 4.3.2半轴的设计与计算..........................................................................................16 4.4驱动桥壳结构选择..............................................................................................19 5 结论.........................................................................................................................21 参 考 文 献...............................................................................................................22

盐城工学院毕业设计说明书 2006 1 前言

本课题是进行低速载货汽车后驱动桥的设计。设计出小型低速载货汽车后驱动桥,包括主减速器、差速器、驱动车轮的传动装置及桥壳等部件,协调设计车辆的全局。

1.1 本课题的来源、基本前提条件和技术要求

a.本课题的来源:轻型载货汽车在汽车生产中占有大的比重。驱动桥在整车中十分重要,设计出结构简单、工作可靠、造价低廉的驱动桥,能大大降低整车生产的总成本,推动汽车经济的发展。

b.要完成本课题的基本前提条件是:在主要参数确定的情况下,设计选用驱动桥的各个部件,选出最佳的方案。

c.技术要求:设计出的驱动桥符合国家各项轻型货车的标准[1],运行稳定可靠,成本降低,适合本国路面的行驶状况和国情。1.2 本课题要解决的主要问题和设计总体思路

a.本课题解决的主要问题:设计出适合本课题的驱动桥。汽车传动系的总任务是传递发动机的动力,使之适应于汽车行驶的需要。在一般汽车的机械式传动中,有了变速器还不能完全解决发动机特性与汽车行驶要求间的矛盾和结构布置上的问题。首先是因为绝大多数的发动机在汽车上的纵向安置的,为使其转矩能传给左、右驱动车轮,必须由驱动桥的主减速器来改变转矩的传递方向,同时还得由驱动桥的差速器来解决左、右驱动车轮间的转矩分配问题和差速要求。其次,需将经过变速器、传动轴传来的动力,通过驱动桥的主减速器,进行进一步增大转矩、降低转速的变化。因此,要想使汽车驱动桥的设计合理,首先必须选好传动系的总传动比,并恰当地将它分配给变速器和驱动桥。

b.本课题的设计总体思路:非断开式驱动桥的桥壳,相当于受力复杂的空心梁,它要求有足够的强度和刚度,同时还要尽量的减轻其重量。所选择的减速器比应能满足汽车在给定使用条件下具有最佳的动力性和燃料经济性。对载货汽车,由于它们有时会遇到坎坷不平的坏路面,要求它们的驱动桥有足够的离地间隙,以满足汽车在通过性方面的要求。驱动桥的噪声主要来自齿轮及其他传动机件。提高它们的加工精度、装配精度,增强齿轮的支承刚度,是降低驱动桥工作噪声的有效措施。驱动桥各零部件在保证其强度、刚度、可靠性及寿命的前提下应力求减小簧下质量,以减小不平路面对驱动桥的冲击载荷,从而改善汽车行驶的平顺性。1.3 预期的成果

设计出小型低速载货汽车的驱动桥,包括主减速器、差速器、驱动车轮的传动装置及桥壳等部件,配合其他同组同学,协调设计车辆的全局。使设计出的产品使用方便,材料使用最少,经济性能最高。

a.提高汽车的技术水平,使其使用性能更好,更安全,更可靠,更经济,更

低速载货汽车后驱动桥的设计

舒适,更机动,更方便,动力性更好,污染更少。

b.改善汽车的经济效果,调整汽车在产品系列中的档次,以便改善其市场竞争地位并获得更大的经济效益

盐城工学院毕业设计说明书 2006 2 国内外发展状况及现状的介绍

为适应不断完善社会主义市场经济体制的要求以及加入世贸组织后国内外汽车产业发展的新形势,推进汽车产业结构调整和升级,全面提高汽车产业国际竞争力,满足消费者对汽车产品日益增长的需求,促进汽车产业健康发展,特制定汽车产业发展政策。通过该政策的实施,使我国汽车产业在2010年前发展成为国民经济的支柱产业,为实现全面建设小康社会的目标做出更大的贡献。政府职能部门依据行政法规和技术规范的强制性要求,对汽车、农用运输车(低速载货车及三轮汽车,下同)、摩托车和零部件生产企业及其产品实施管理,规范各类经济主体在汽车产业领域的市场行为。低速载货汽车,在汽车发展趋势中,有着很好的发展前途。生产出质量好,操作简便,价格便宜的低速载货汽车将适合大多数消费者的要求。在国家积极投入和支持发展汽车产业的同时,能研制出适合中国国情,包括道路条件和经济条件的车辆,将大大推动汽车产业的发展和社会经济的提高。

在新政策《汽车产业发展政策》中,在2010年前,我国就要成为世界主要汽车制造国,汽车产品满足国内市场大部分需求并批量进入国际市场;2010年,汽车生产企业要形成若干驰名的汽车、摩托车和零部件产品品牌;通过市场竞争形成几家具有国际竞争力的大型汽车企业集团,力争到2010年跨入世界500强企业之列,等等。同时,在这个新的汽车产业政策描绘的蓝图中,还包含许多涉及产业素质提高和市场环境改善的综合目标,着实令人鼓舞。然而,不可否认的是,国内汽车产业的现状离产业政策的目标还有相当的距离。自1994年《汽车工业产业政策》颁布并执行以来,国内汽车产业结构有了显著变化,企业规模效益有了明显改善,产业集中度有了一定程度提高。但是,长期以来困扰中国汽车产业发展的散、乱和低水平重复建设问题,还没有从根本上得到解决。多数企业家预计,在新的汽车产业政策的鼓励下,将会有越来越多的汽车生产企业按照市场规律组成企业联盟,实现优势互补和资源共享。

低速载货汽车后驱动桥的设计 总体方案论证

驱动桥的结构型式按齐总体布置来说共有三种,即普通的非断开式驱动桥,带有摆动半轴的非断开式驱动桥和断开式驱动桥。

图3-1 驱动桥的总体布置型式简图

(a)普通非断开式驱动桥;(b)带有摆动半轴的非断开式驱动桥;(c)断开式驱动桥

方案

(一):非断开式驱动桥

图3-2 非断开式驱动桥

普通非断开式驱动桥[2],如图3-2,由于其结构简单、造价低廉、工作可靠,最广泛地用在各种载货汽车、客车和公共汽车上,在多数的的越野汽车和部分轿车上也采用这种结构。它的具体结构是桥壳是一根支承在左、右驱动车轮上的刚性空心梁,而齿轮及半轴等所有的传动机件都装在其中。这时整个驱动桥、驱动车轮及部分传动轴均属簧下质量,使汽车的簧下质量较大,这是它的一个缺点。采用单级主减速器代替双级主减速器可大大减小驱动桥质量。采用钢板冲压-焊

盐城工学院毕业设计说明书 2006 接的整体式桥壳及钢管扩制的整体式桥壳,均可显著地减轻驱动桥的质量。驱动桥的轮廓尺寸主要决定于主减速器的型式。在汽车的轮胎尺寸和驱动桥下的最小离地间隙已经确定的情况下,也就限定了主减速器从动齿轮直径的尺寸。在给定主减速器速比的条件下,如果单级主减速器不能满足离地间隙要求,则可改用双级结构。后者仅推荐用于主减速比大于7.6且载货在6t以上的大型汽车上。在双级主减速器中,通常是把两级减速齿轮放在一个主减速器壳内,也可以将第二级减速齿轮移向驱动车轮并靠近轮毂,作为轮边减速器。在后一种情况下又有五种布置方案可供选择。方案

(二):断开式驱动桥

图3-3 断开式驱动桥

断开式驱动桥区别于非断开式驱动桥的明显特点在于前者没有一个连接左右驱动车轮的刚性整体外壳或梁[2]。断开式驱动桥的桥壳是分段的,并且彼此之间可以做相对运动,所以这种桥称为断开式的。另外,它又总是与独立悬架相匹配,故又称为独立悬挂驱动桥。这种桥的中段,主减速器及差速器等是悬置在车架横梁或车厢底板上,或与脊梁式车架相联。主减速器、差速器与传动轴及一部分驱动车轮传动装置的质量均为簧上质量。两侧的驱动车轮由于采用独立悬挂则可以彼此独立地相对于车架或车厢作上下摆动,相应地就要求驱动车轮的传动装置及其外壳或套管,作相应摆动。所以断开式驱动桥也称为“带有摆动半轴的驱动桥”。

汽车悬挂总成的类型及其弹性元件与减振装置的工作特性是决定汽车行驶平顺性的主要因素,因汽车簧下部分质量的大小,对其平顺性也有显著的影响。断开式驱动的簧下质量较小,又与独立悬架相配合,致使驱动车轮与地面的接触

低速载货汽车后驱动桥的设计

情况及对各种地形的适应性比较好,由此可大大地减小汽车在不平路面上行驶时的振动和车厢倾斜;提高汽车的行驶平顺性和平均行驶速度;减小车轮和车桥上的动载荷及零件的损坏,提高其可靠性及使用寿命。但是,由于断开式驱动桥及与其相配的独立悬挂的结构复杂,故这种结构主要见于对行驶平顺性要求较高的一部分及一些越野汽车上,且后者多属于轻型以下的越野汽车或多桥驱动的重型越野汽车。

方案

(三):多桥驱动的布置

为了提高装载量和通过性,有些重型汽车及全部中型以上的越野汽车都是采用多桥驱动,常采用4×4、6×6、8×8等驱动型式[2]。在多桥驱动的情况下,动力经分动器传给各驱动桥的方式有两种。相应这两种动力传递方式,多桥驱动汽车各驱动桥的布置型式分为非贯通式与贯通式。前者为了把动力经分动器传给各驱动桥,需分别由分动器经各驱动桥自己专用的传动轴传递动力,这样不仅使传动轴的数量增多,且造成各驱动桥的零件特别是桥壳、半轴等主要零件不能通用。而对8×8汽车来说,这种非贯通式驱动桥就更不适宜,也难与布置了。为了解决上述问题,现代多桥驱动汽车都是采用贯通式驱动桥的布置型式。在贯通式驱动桥的布置中,各桥的传动轴布置在同一纵向铅垂平面内,并且各驱动桥分别用自己的传动轴与分动器直接联接,而是位于分动器前面的或后面的各相邻两桥的传动轴,是串联布置的。汽车前后两端的驱动桥(第一、第四桥)的动力,是经分动器并贯通中间桥(分别穿过第二、第三桥)而传递的。其优点是,不仅减少了传动轴的数量,而且提高了各驱动桥零件的相互通用性,并且简化了结构、减小了体积和质量。这对于汽车的设计(如汽车的变形)、制造和维修,都带来方便。四桥驱动的越野汽车也可采用侧边式及混合式的布置。

经上述分析,考虑到所设计的轻型载货汽车的载重和各种要求,其价格要求要尽量低,故其生产成本应尽可能降低。另由于轻型载重汽车对驱动桥并无特殊要求,和路面要求并不高,故本设计采用普通非断开式驱动桥。

盐城工学院毕业设计说明书 2006 4 具体设计说明

4.1 主减速器的设计

4.1.1 主减速器的结构型式

主减速器的结构型式,主要是根据其齿轮类型、主动齿轮和从动齿轮的安置方法以及减速型式的不同而异。

在现代汽车驱动桥上,主减速器采用得最广泛的是“格里森”(Gleason)制或“奥利康”(Oerlikon)制的螺旋锥齿轮和双面锥齿轮。

图4-1 螺旋锥齿轮与双曲面齿轮传动

(a)螺旋锥齿轮传动;(b)双曲面齿轮传动

采用双曲面齿轮。他的主、从动齿轮轴线不相交而呈空间交叉。其空间交叉角(即将一轴线平移,使之与另一轴线相交的交角)也都是采用90°。主动齿轮轴相对于从动齿轮轴有向上或向下的偏移,称为上偏置或下偏置。这个偏移量称为双曲面齿轮的偏移距。当偏移距大到一定程度,可使一个齿轮轴从另一个齿轮轴旁通过。这样就能在每个齿轮的两边布置尺寸紧凑的支承。这对于增强支承刚度、保证齿轮正确啮合从而提高齿轮寿命大有好处。和螺旋锥齿轮由于齿轮的轴线相交而使得主、从动齿轮的螺旋角相等的情况不同,双曲面齿轮的偏移距使得主动齿轮的螺旋角大于从动齿轮的螺旋角。因此,双曲面传动齿轮副的法向模数或法向周节虽相等,但端面模数或端面周节是不等的。主动齿轮的端面模数或端面周节是大于从动齿轮的。这一情况就使得双曲面齿轮传动的主动齿轮比相应的螺旋锥齿轮传动的主动齿轮有更大的直径和更好的强度和刚度。其增大的程度与偏移距的大小有关。另外,由于双曲面传动的主动齿轮的直径及螺旋角都较大,所以相啮合齿轮的当量曲率半径较相应的螺旋锥齿轮当量曲率半径为大,从而使齿面间的接触应力降低。随偏移距的不同,双曲面齿轮与接触应力相当的螺旋锥齿轮比较,负荷可提高至175%。双曲面主动齿轮的螺旋角较大,则不产生根切的最少齿数可减少,所以可选用较少的齿数,这有力于大传动比传动。当要求传动比大而轮廓尺寸又有限时,采用双曲面齿轮更为合理。因为如果保持两种传动的主动齿轮直径一样,则双曲面从动齿轮的直径比螺旋锥齿轮的要小,这对于主减速比i04.5的传动有其优越性。对中等传动比,两种齿轮都能很好适应。由于双曲面主动齿轮螺旋角的增大,还导致其进入啮合的平均齿数要比螺旋锥齿轮

低速载货汽车后驱动桥的设计

相应的齿数多,因而双曲面齿轮传动比螺旋锥齿轮冲动工作更加平稳、无噪声,强度也高。双曲面齿轮的偏移距还给汽车的总布置带来方便。

不涂漆******

图4-5 采用组合式桥壳的单级主减速器

减速型式的选择与汽车的类型及使用条件有关,但它主要取决于由动力性、经济性等整车性能所要求的主减速比 i0 的大小及驱动桥下的离地间隙、驱动桥的数目及布置型式等。

本设计采用组合式桥壳的单级主减速器(图)。单级主减速器具有结构简单、质量小、尺寸紧凑及制造成本低等优点。其主、从动锥齿轮轴承都直接支承在与桥壳铸成一体的主减速器壳上,结构简单、支承刚度大、质量小、造价低。

盐城工学院毕业设计说明书 2006 4.1.2 主减速器主动锥齿轮的支承型式及安装方法

图4-2 主动锥齿轮齿面受力图

在壳体结构及轴承型式已定的情况下,主减速器主动齿轮的支承型式及安置方法,对其支承刚度影响很大,这是齿轮能否正确捏合并具有较高使用寿命的因素之一。

图4-3 骑马式支承

1-调整垫圈;2-调整垫片

本设计采用骑马式支承(图4-3)。齿轮前、后两端的轴颈均以轴承支承。骑马式支承使支承刚度大为增加,使齿轮在载荷作用下的变形大为减小,约减小到悬臂式1/30以下。而主动锥齿轮后轴承的径向负荷比悬臂式的要减小至1/5~1/7。齿轮承载能力较悬臂式可提高10%左右。此外,由于齿轮大端一侧前轴承及后轴承之间的距离很小,可以缩短主动锥齿轮轴的长度,使布置更紧凑,这有利于减小传动轴夹角及整车布置。骑马式支承的导向轴承(即齿轮小端一侧的轴承)都采用圆柱滚子式的,并且其内外圈可以分离,以利于拆装。为了进一步增强刚度,应尽可能地减小齿轮大端一侧两轴承间的距离,增大支承轴径,适当提

低速载货汽车后驱动桥的设计

高轴承的配合的配合紧度。

4.1.3 主减速器从动锥齿轮的支承型式及安装方法

图4-4 主减速器从动锥齿轮的支承型式及安置办法

主减速器从动锥齿轮的支承刚度依轴承的型式、支承间的距离和载荷在轴承之间的分布而定。两端支承多采用圆锥锥子轴承,安装时使它们的圆锥滚子大端相向朝内,而小端相背朝外。

为了防止从动齿轮在轴向载荷作用下的偏移,圆锥滚子轴承也应预紧。由于从动锥齿轮轴承是装在差速器壳上,尺寸较大,足以保证刚度。球面圆锥滚子轴承(图4-4(b))具有自动调位的性能,对轴的歪斜的敏感性较小,这在主减速器从动齿轮轴承的尺寸大时极其重要。

4.1.4 主减速器的基本参数的选择及计算

主减速比i0,驱动桥的离地间隙和计算载荷,是主减速器设计的原始数据。A.主减速比i0的确定

主减速比对主减速器的结构型式、轮廓尺寸、质量大小以及当变速器处于最高档位时汽车的动力性和燃料经济性都有直接影响。i0的选择应在汽车总体设计时和传动系的总传动比iT一起由整车动力计算来确定。可利用在不同io下的功率平衡图来研究i0对汽车动力性的影响。通过优化设计,对发动机与传动系参数作

盐城工学院毕业设计说明书 2006 最价匹配的方法来选择i0值,可使汽车获得最佳的动力性和燃料经济性。

为了得到足够的功率储备而使最高车速稍有下降,i0按下式计算[3]:

i0(0.377~0.472)式中:rr—车轮滚动半径,m;

igh—变速器最高档传动比;

amax—汽车最高车速;

np—发动机最大转速

rrnpamaxigh 41

i0(0.377~0.472)rrnpamaxigh0.4430.4440006.67

23.614.95 根据所选定的主减速比io值,确定主减速器的减速型式为单级。查表得汽车驱动桥的离地间隙为200mm.B.主减速齿轮计算载荷的计算

通常是将发动机最大转矩配以传动系最低档传动比时和驱动车轮打滑时这两种情况下作用于主减速器从动齿轮上的转矩(Tje、Tj)的较下者,作为载货汽车和越野汽车在强度计算中用以验算主减速器从动齿轮最大应力的计算载荷。既[3]:

TjeTemax iTLK0T/n 42

TjG2rr 43

LBiLB式中:Temax—发动机最大转矩,Nm;

iTL—由发动机到所计算的主减速器从动齿轮之间的传动系最低档传动比;

T—上述传动部分的效率,取T0.9;

K0—超载系数,对于一般载货汽车、矿用汽车和越野汽车以及液力传动的各类汽车取K01;

n—该车的驱动桥数目;

G2—汽车满载时一个驱动桥给水平地面的最大负载,N;对后桥来说还要考虑到汽车加速时的负荷增大量;

—轮胎对路面的附着系数,对于安装一般轮胎的公路用汽车,取0.85;

rr—车轮的滚动半径,m;

LB,iLB—分别为由所计算的主减速器从动齿轮到驱动轮之间的传动效率和减速比(例如轮边减速器等)。

由式(4-2)、式(4-3)求得的计算载荷,是最大转矩而不是正常持续转矩不能用它作为疲劳损坏的依据。对于公路车辆来说,使用条件较非公路车辆稳定,低速载货汽车后驱动桥的设计

其正常持续转矩是根据所谓平均牵引力来确定的,即主减速器从动齿轮的平均计算转矩Tjm(Nm)为[4]

Tjm(GaGT)rr(fRfHfP)44

iLBLBn式中:Ga—汽车装载总重,N;

GT—所牵引的挂车满载总重,N,但仅用于牵引车;

fR—道路滚动阻力系数;

fH—汽车正常使用时的平均爬坡能力系数;

fP—汽车或汽车列车的性能系数。

fP0.195(GAGT)116 45 100Temax

当0.195GaGT16时 取fP0

Temax(GaGT)rr400000.0150.060

(fRfHfP)iLBLBn6.670.91 Tjm =22Nm

C.主减速齿轮基本参数的选择

a.齿数的选择

对于单级主减速器,当i0较大时,则应尽量使主动齿轮的齿数z1取得小些,以得到满意的驱动桥离地间隙。当i06时,z1的最小值可取为5,但为了啮合平稳及提高疲劳强度,z1最好大于5。取z16,z234[5]。

b.节圆半径的选择

可根据从动锥齿轮的计算转矩(见式4-

4、式4-5并取两者中较小的一个为计算依据)按经验公式选出:

d2Kd23Tj 46

式中 dd—从动锥齿轮的节圆半径,mm;

Kd2—直径系数,取Kd213~16;

Tj—计算转矩,Nm。

d2Kd23Tj1532242mm

c.齿轮端面模数的选择

d2选定后可按式md2/z2算出从动齿轮大端端面模数,并用下式校核:

mKm3Tj 47

盐城工学院毕业设计说明书 2006 式中 Km—模数系数。

md2/z242/341.2

mKm3Tj0.43221.2

d.齿面宽的选择

汽车主减速器双曲面齿轮的从动齿轮齿面宽Fmm为:

F0.155d2 48

F0.155d20.155426.51mm

4.2 差速器的设计

4.2.1差速器的结构型式

差速器选用对称式圆锥行星齿轮差速器。其结构原理如图(4-6)所示[6]。普通对称式圆锥行星齿轮差速器由差速器左、右壳,2个半轴齿轮,4个行星齿轮,行星齿轮轴,半轴齿轮等组成。其工作原理如图所示。0为主减速器从动齿轮或差速器壳的角速度;

1、2分别为左右驱动车轮或差速器半轴齿轮的角速度;3为行星齿轮绕其轴的自转角速度。

图4-6 普通圆锥齿轮差速器的工作原理简图

当汽车在平坦路面上直线行驶时,差速器各零件之间无相对运动,则有

120 30

低速载货汽车后驱动桥的设计

这时,差速器壳经十字轴以力P带动行星齿轮绕半轴齿轮中心作“公转”而无自转(30)。行星齿轮的轮齿以P/2的反作用力。对于对称式差速器来说,两半轴齿轮的节圆半径r相同,故传给左、右半轴的转矩均等于Pr/2,故汽车在平坦路面上直线行驶时驱动左、右车轮的转矩相等。

当汽车转弯时,假如左右轮之间无差速器,则按运动学要求,行程长的外侧车轮将产生滑移,而行程短的内侧车轮将产生滑转。由此导致在左、右轮胎切线方向上各产生一附加阻力,且它们的方向相反,如图所示。当装有差速器时,附加阻力所形成的力矩使差速器起差速作用,以免内外侧驱动车轮在地面上的滑转和滑移,保证它们以不同的转速1和2正常转动。当然,若差速器工作时阻抗其中各零件相对运动的摩擦大,则扭动它的力矩就大。在普通的齿轮差速器中这种摩擦力很小,故只要左、右车轮所走路程稍有差异,差速器开始工作。

当差速器工作时,行星齿轮不仅有绕半轴齿轮中心的“公转”,而且还有绕行星齿轮以角速度为3的自转。这时外侧车轮及其半轴齿轮的转速将增高,且增高量为3z3(z3为行星齿轮齿数,z1为该侧半轴齿轮齿数),这样,外侧半z1轴齿轮的角速度为:

103z3 z1在同一时间内,内侧车轮及其半轴齿轮(齿数为z2)的转速将减低,且减低量为3z3,由于对称式圆锥齿轮差速器的两半轴齿数相等,于是内侧半轴齿轮z2的转速为:

203z3 z1由以上两式得差速器工作时的转速关系为

1220

49

即两半轴齿轮的转速和为差速器壳转速的两倍。由式(4-9)知:

当20时,120,或 当10时,220 当00时,12

最后一种情况00,有时发生在使用中央制动时,这时很容易导致汽车失去控制,使汽车急转和甩尾。

盐城工学院毕业设计说明书 2006 4.2.2差速器的基本参数的选择及计算

由于差速器亮是装在主减速器从动齿轮上,故在确定主减速器从动齿轮尺寸时.应考虑差速器的安装;差速器壳的轮廓尺寸也受到从动齿轮及主动齿轮导向轴承支座的限制。

1.差速器齿轮的基本参数选择 A.行星齿轮的基本参数选择

本载货汽车选用4个行星齿轮[7]。B.行星齿轮球面半径RB(mm)的确定

圆锥行星齿轮差速器的尺寸通常决定于行星齿轮背面的球面半径RB,它就是行星齿轮的安装尺寸,实际上代表了差速器圆锥齿轮的节锥矩,在一定程度上表征了差速器的强度。

球面半径可根据经验公式来确定:

RBKB3Tj 410

式中:KB—行星齿轮球面半径系数;

Tj—计算转矩,Nm。

RBKB3Tj2.523227mm

RB确定后,即可根据下式预选其节锥矩:

A00.98~0.99RB 411 A00.98~0.99RB0.9876.86mm C.行星齿轮与半轴齿轮齿数的选择

选用行星齿轮齿数为10,半轴齿轮齿数为16。

D.差速器圆锥齿轮模数及半轴齿轮节圆直径的初步确定

先初步求出行星齿轮和半轴齿轮的节锥角1,2:

1arctanz1z;

2arcta2n

412 z2z1式中:z1,z2为行星齿轮和半轴齿轮齿数

1arctanz16arctan10 z234z234arctan80 z162arctan再求出圆锥齿轮的大端模数:

m2A02Asin10sin413 z1z2m2A02A26.86sin10sin2sin100.4 z1z2615

低速载货汽车后驱动桥的设计

节圆半径d右下式求得:

dzm

414

d1z1m60.42.4mm d2z2m340.413.6mm

4.3 半轴的设计

4.3.1半轴的结构型式

采用半浮式半轴。半浮式以靠近外端的轴颈直接支承在置于桥壳外端内孔中的轴承上,而端部则以具有锥面的轴颈及键与车轮轮毂相固定。半浮式半轴承受的载荷复杂,但它结构简单、质量小、尺寸紧凑、造价低廉等优点。

图4-7 半浮式半轴的结构型式与安装

4.3.2半轴的设计与计算

半轴的主要尺寸是它的直径,设计与计算时首先应合理的确定其计算载荷。

半轴的计算要考虑以下三种可能的载荷工况:

A.纵向力X2(驱动力或制动力)最大时(X2Z2),附着系数取0.8,没有侧向力作用;

B.侧向力Y2最大时,其最大值发生于侧滑时,为Z21,侧滑时轮胎与地面的侧向附着系数1在计算中取1.0,没有纵向力作用;

C.垂向力最大时,这发生在汽车以可能的高速通过不平路面时,其值为(Z2g)kd,kd是动载荷系数,这时没有纵向力和侧向力作用。

半浮式半轴的设计计算,应根据上述三种载荷工况进行

盐城工学院毕业设计说明书 2006

图4-8

半浮式半轴及受力简图

a. 半浮式半轴在上述第一种工况下

半轴同时承受垂向力Z2、纵向力X2所引起的弯矩以及由X2引起的转矩X2rr。

L,Z2R为 对左、右半轴来说,垂向力Z2LZ2RZ2gwZ2mG2gw

415 2式中:G2—满载静止汽车的驱动桥对水平地面的载荷,N;

m—汽车加速和减速时的质量转移系数;

gw—一侧车轮(包括轮毂、制动器等)本身对水平地面的载荷,N。

LZ2RZ2gw

Z2mG21.239200gw98001372N0 22纵向力按最大附着力计算,即

X2LX2R式中:—轮胎与地面的附着系数。

X2LX2RmG21.2392000.818816N 22mG2

416 2左、右半轴所承受的合成弯矩MNm为

MbMb2L2X2Z2L2L2X2Z2Lb2B2X2Z2B

417

b2B2X2Z2B0.11372018816

2低速载货汽车后驱动桥的设计

2329Nm

转矩为

TX2LrrX2Rrr 418

TX2LrrX2Rrr188160.4

48279.04Nm b.半浮式半轴在上述第二种载荷工况下

半轴只受弯矩。在侧向力Y2的作用下,左、右车轮承受的垂向力Z2L、Z2R和侧向力Y2L、Y2R各不相等,而半轴所受的力为

LZ2LgwZ2G222hg11Bgw

419

2RZ2RgwZ2G22G222hg11Bgw

420

2Y2L2hg11B421

2Y2RG222hg11B1

422

2式中:B2—驱动车轮的轮矩,mm;

hg—汽车质心高度,mm;

1—轮胎与路面的侧向附着系数;

LZ2Lgw

Z2G222hg1392001.002601g1980 0wB2216508

2410NRZ2RgwZ2G222hg13920026001.01g19800 wB2216504508N

Y2LG222hg13920026001.011 1B2216508

3390N 18

盐城工学院毕业设计说明书 2006 Y2RG222hg13920026001.011 1B221650

2529N左、右半轴所受的弯矩分别为:

Lb

423 MLY2LZ2Rb

424

MRY2RZ2Lb33908241080.131497MLY2LZ2.2Nm Rb529245080.111034MRY2RZ2.8Nm

c.半浮式半轴在上述第三种载荷工况下半轴只受垂向弯矩:

G

MVkd2gwb

425

2式中:kd—动载系数。

G39200

MVkd2gwb2.598000.1245N0m

224.4驱动桥壳结构选择

驱动桥桥壳是汽车上的主要零件之一,非断开式驱动桥的桥壳起着支承汽车荷重的作用,并将载荷传给车轮。作用在驱动车轮上的牵引力、制动力、侧向力和垂向力也是经过桥壳传到悬挂及车架或车厢上。因此桥壳既是承载件又是传动件,同时它又是主减速器、差速器及驱动车轮传动装置(半轴)的外壳。

在汽车行驶过程中,桥壳承受繁重的载荷,设计时必须考虑在动载荷下桥壳有足够的强度和刚度。为了减小汽车的簧下质量以利于降低动载荷、提高汽车的行驶平顺性,在保证强度和刚度的前提下应力求减小桥壳的质量。桥壳还应结构简单、制造方便以利于降低成本。其结构还应保证主减速器的拆装、调整、维修和保养方便。在选择桥壳的结构型式时,还应考虑汽车的类型、使用要求、制造条件、材料供应等。

选用可分式桥壳。它的结构如图所示,整个桥壳由一个垂直结合面分为左右两部分,每一部分均由一个铸件壳提和一个压入其外端的半轴套管组成。半轴套管与壳体用铆钉联接。

低速载货汽车后驱动桥的设计

图4-9 可分式桥壳

盐城工学院毕业设计说明书 2006 5 结论

此次设计了驱动桥及其各个部件,包括驱动桥的设计、主减速器的设计、差速器的设计、半轴的设计和桥壳的设计。

所选择的主减速比在满足汽车在给定使用的条件下,具有最佳的动力性和燃料经济性。差速器在保证左、右驱动车轮能以汽车动力学所要求的差速滚动外并能将转矩平稳而连续不断地传递给左、右驱动车轮。驱动桥各零部件在保证其强度、刚度、可靠性及使用寿命的前提下,减小簧下质量。初步改善了汽车的平顺性。选用的结构简单,维修也比较方便,制造容易。但同时,在驱动桥的设计上还存在着不足,有待解决。

低速载货汽车后驱动桥的设计

参 考 文 献

[1] GB18320-2001,农用运输车 安全技术条件 [S].

[2] 王望予.汽车设计[M].北京:机械工业出版社,2005.

[3] 刘惟信.汽车设计[M].北京:清华大学出版社,2001.[4] 成大先.机械设计手册[M].北京:化学工业出版社,2004,1.[5] 周开勤.机械零件手册[M].北京:高等教育出版社,2001.[6] 温芳,黄华梁.基于模糊可靠度约束的差速器行星齿轮传动优化设计[J].2004.6.[7] 成大先.机械设计手册(1~4册)[M].北京:化学工业出版社,1993.

盐城工学院毕业设计说明书 2006

致 谢

为期三个多月的毕业设计即将结束,回顾整个过程,我深有感受。在设计工作开始之前,李老师带领我们参观了很多汽车企业,老师和一些技术人员认真地给我们讲解了其工作原理,分析了各部件的功能特性和构造,避免了我在毕业设计过程中的盲目性。在设计过程中,我翻阅了大量的相关资料,同时将大一至大四上学期所学的相关专业课本认真的温习了一边,增加了很多理论知识。以前我对汽车的工作原理、工厂的工作环境和汽车的构造,没什么认识,但通过这次设计,我了解了,也感受到了。总之,这次设计,使我将四年中所学到的基础知识得到了一次综合应用,使学过的知识结构得到科学组合,同时也从理论到实践发生了一次质的飞跃,可以说这次设计是理论知识与实践运用之间互相过渡的桥梁。

知识的巩固固然重要,但能力的培养同样不可忽略。我觉得这次设计的完成,不仅锻炼了我搞设计的工作能力,培养了我独立思考的能力,解决困难的方法,并且也培养了我独立﹑创新﹑力求先进的思想。同时我认识到:无论做什么事,只要你深入的去做,难事不难,但如果你不去用心的做,易事不易。机不可失,我在这次的设计中倾注了大量的心血,尽一切力量争取将设计做到在最好。我认为我在这段时间内所有的收获,对我今后的学习和工作会是一笔难得的财富。

由于本人以前对汽车结构和制造过程了解不多,实践知识更是不足,但李老师总是耐心地给我讲解有关方面的知识,及时了解我设计中遇到的难题,使我得以在短时间内完成设计工作,同时教导我们不管是在以后的工作还是学习中,都要保持治学严谨的态度。在本次毕业设计中,李老师以及其他指导老师付出了辛勤的劳动,在此向他们表示衷心的感谢。此次设计的圆满完成与同组其他人员的通力合作也是分不开的,他们给了我许多帮助和指点,在此一并表示感谢!

由于自己能力所限,时间仓促,设计中还存在许多不足之处,恳请各位老师同学给予批评指正。

第三篇:驱动桥设计开题报告

驱动桥设计开题报告

驱动桥设计开题报告1

设计题目:大型城市客车驱动桥设计

专业班级:05车辆工程2班

学生姓名:XXX

学生学号:20xx24280

指导教师:

开题日期:20xx.3.28

一. 课题的研究背景及意义

(一).我国城市客车的发展

作为发展中国家,我国人口众多,城市人口密集,老龄化比例迅速加大,经济发展和人们的收入相对较低,道路面积率也很低,城市污染严重,所以我国城市公共交通的提高和发展势在必行,并因与国外背景条件不同,有其自身的特点。近几年,虽然我国城市公共汽车的技术水平获得了长足的进步,从沿用货车底盘到开发客车专用底盘,发动机功率由小到大,油耗由大到小,噪声由高到低,排放不断改善,出现了天然气和液化石油气公共汽车,地板高度也开始从800~900m m 降到500~600m m ,车厢的居住性、舒适性也日臻完善。但是与国外产品相比,无论从技术水平、性能和人均占有数量上仍存在较大差距,处于国外同类产品20 世纪xx年代末的水平,超低地板(地板高度在340m m 以下) 客车基本上还是空白。目前在国内,l0~12m大型客车中采用的车桥产品主要来自于重型车桥生产厂家。其中后桥大量采用的是焊接式桥壳,铸造桥只占有较少的份额。

(二).大型城市公交客车的发展趋势

1.车辆大型化

我国城市人口密集、客流量大,特别是在客流量的高峰期,拥挤不堪的现象非常明显。据有关资料记载,高峰期,车内每平方米站立人数可达11 人之多,使人感到很不舒适。解决此类现象的有效办法之一就是加大车身长度,使车身长度加大到11~12m(包括双层客车和全铰接式客车) 。增加客容量,即是大型化。国外大城市早已有11~12m 公交大客车。

2.车辆低地板化

低地板公交车有很多好处。前苏联汽车科学研究部门得出一个结论:对公交客车运营指标影响最大的是地板高度,地板高度降低57 % ,可使乘客上下车

的时间节省50 % ,从而可提高定线平均运输速度7. 5 %。有人推算过,北京市的公共汽车时速每提高1km ,相当于增加了300 辆大公共汽车。地板降低无疑可增加平均运输速度,提高运营效率,同时又便于老龄人、儿童及残疾人上下车。地板高度在320~450m m 的超低地板公交客车在国外发达国家城市已较为普遍。而我国地板高度在500~600m m 的城市中客车目前已经出现,这适合我国国情。有些道路状况很好的特大城市也应着力开发地板高度在450m m 以下的超低地板公交客车。地板高度由900m m 降到600m m ,高度降低了33 % ,而上下车时间却可节省50 %以上;而从600m m 继续降到400m m 时,上下车时间虽有减少,但幅度不大。不过,客车地板高度降到400mm 时,若再设有伸缩式导板过道,残疾人车与童车则可方便地上下,增加了使用功能。但是,这种超低地板客车需要有较大的投入,因为这种客车的前桥、后桥、悬架、轮胎、车架等各大总成及整体布置都有别于传统结构型式,造价较高。有实力的大城市可以发展这种超低地板客车。

3.绿色环保化

各种污染已对人类生活构成威胁,特别是城市环境污染日益严重,人们正在呼唤“绿色环保汽车”。这主要应从发动机改装着手,一方面电喷、三元催化技术已经从小轿车向大功率发动机延伸;另一方面开发新能源发动机装在城市公交客车上也是一种趋势。新能源主要有电力、压缩天然气(c n g) 、液化石油气(l pg) 、甲醇等。在城市客车中,电力、压缩天然气、液化石油气及混合燃料汽车已开始投入使用。

4.向高档、高技术含量和智能化方向发展

首先,在动力配置方面采用大功率、大扭矩、低排放、低噪声、先进可靠的发动机,而且发动机后横置,给乘客留有宽敞的乘坐空间;采用自动变速箱和

动力转向机构,操纵轻便,该机构可减轻驾驶员疲劳,减少安全隐患;采用空气悬架可增加客车行驶平顺性和舒适性,使车身地板高度空载与满载时保持衡定,甚至可带屈膝功能,便于乘客上下车;采用abs/ asr 防抱死制动装置和防侧滑装置;前桥为独立式、后桥为轮边减速或是u 型门式后桥以降低车身地板高度。其次,公共汽车行驶在现代文明程度高的市区,它是一道流动的风景线,因而对整车外形乃至色彩都有更高的要求。最后,公共汽车还要求有醒目和减少乘务人员劳动强度的电子报站器,电子显示路牌、无人售票装置、前后电视监视系统等新技术的采用也将越来越普及。

(三).客车车桥发展趋势

目前,客车车桥的各部分主要呈现出以下发展趋势:1.整体式桥壳向轻量化发展;2.减速器的降噪、大扭矩和低宽速比是发展的主流;3.前轴专业化分工更细,安全、平稳、舒适、人性化是目标;4.制动器高效.环保、智能化是其发展方向。

二. 课题的基本内容及重点难点

驱动桥位于传动系末端,其基本功用首先是降速增矩,改变扭矩的传递方向,并将转矩合理地分配给左右驱动车轮;其次,驱动桥还要承受作用于路面和车架或车身之间的垂直力,纵向力和横向力,以及制动力矩合反作用力矩等。设计驱动桥应满足的基本要求有:选择适当的主减速比,保证汽车在给定条件下具有最佳动力性和燃油经济性;外廓尺寸小,保证汽车具有足够的离地间隙,满足通过性的要求;齿轮及其他传动件工作平稳,噪声小;在各种载荷和转速工况下有高的传动效率;具有足够的刚度和强度,以承受和传递作用于路面和车架或车身间的各种力和力矩,在此条件下,尽可能

降低质量,尤其是簧下质量,以减少不平路面的冲击载荷,提高汽车行驶平顺性;与悬架导向机构运动协调;结构简单,加工工艺性好,制造容易,维修调整方便。驱动桥一般由主减速器,差速器,车轮传动装置和桥壳组成;本次设计所参照的是上海申沃客车12米级车型,相应的需要根据其产品的动力装置参数的匹配进行主减速器,差速器,车轮传动装置和桥壳的设计。这其中主减速器的传动方式虽然简单,但其齿轮齿形特殊,所以主减速器的方案设计和参数计算既是重点也是难点。

三. 研究方法及成果形式

驱动桥结构复杂,主要由主减速器、差速器、桥壳、半轴及轮毂等分总成组成。依据各分总成的结构特点,必须灵活运用自底向上方法和自顶向下的方法。所谓自底向上方法的主要思路是先设计好各个零件,然后将这些零件拿到一起进行装配,如果在装配过程中发现某些零件不符合要求,就要对零件进行重新设计、装配,若发现问题便再重新设计、装配,直至符合要求为止;自顶向下方法是从产品功能要求出发,选用一系列的零件去实现产品的功能;先设计出初步方案和结构草图,建立约束驱动的产品模型;通过设计计算,确定每个设计参数,然后进行零件的详细设计,通过几何约束求解将零件装配成产品;对设计方案分析之后,返回修改不满意之处,直到得到满足功能要求的产品。研究结果最后需呈现为各部分的结构方案分析,相应的尺寸计算校核,总的装配情况以及与动力系统的匹配情况;另外还需绘制主要的零件图和装配图。

四.论文提纲

论文的内容主要有以下几个部分:

第一章, 题目及要求

第二章, 主减速器的设计

第三章, 锥齿轮式差速器设计

第四章, 半轴设计计算

第五章, 驱动桥壳设计

五. 计划进度

本次设计为期15周。前三周是准备工作周,主要进行课题分析,资料查询,相关知识的系统学习和生产厂家的实地参观等。后12周进行各个系统的详细设计;计划主减速器的设计用时4周,差速器设计用时3周,半轴设计用时2周,驱动桥壳设计用时1~2周,剩余时间作为机动补充,视具体设计进度作调配。

六.主要参考文献

1.《汽车设计》 王望予 主编 机械工业出版社

2.《汽车构造》 陈家瑞 主编 机械工业出版社

3.《材料力学》 刘鸿文 主编 高等教育出版社

4. 《机械设计》 濮良贵 纪名刚 主编 高等教育出版社

5.《机械原理》 孙恒 陈作模 葛文杰 主编 高等教育出版

驱动桥设计开题报告2

1论文选题的目的和意义

随着时代的发展,汽车的作用日益明显,已成了我们生活比不缺少的工具。汽车发展程度也成为衡量一个国家工业发展程度的重要标志。汽车不仅作为一种代步工具,同时它在运输业中也有着非常重要的地位,特别是在一些短途运输中。因此载货汽车的发展也非常迅速,载货汽车总的分为重型和轻型两种。

汽车驱动桥在汽车的各种总成中是涵盖机械零件、部件、分总成等的品种最多的总成。例如,驱动桥一般由主减速器、差速器、车轮传动装置和桥壳组成。

由此可见,汽车驱动桥设计涉及的机械零部件及元件的`品种极为广泛,对这些零部件、元件及总成的制造也几乎要设计到所有的现代机械制造工艺。

并且随着近年来油价的上涨,汽车的运输成本也越来越高,因此在保证汽车的动力性的前提下,提高其燃油经济性也变得非常重要。为了降低油耗,不仅要在发动机的环节上节油,而且也需要从传动系中减少能量的损失。

这就必须在发动机的动力输出之后,在从发动机—传动轴—驱动桥这一动力输送环节中寻找减少能量在传递的过程中的损失。在这一环节中,发动机是动力的输出者,也是整个机器的心脏,而驱动桥则是将动力转化为能量的最终执行者。

因此,在发动机相同的情况下,采用性能优良且与发动机匹配性比较高的驱动桥便成了有效节油的措施之一。同时,人们对于汽车的行驶平顺性、操作稳定性和平均行驶速度有了更高的要求,这都和汽车驱动桥的选择有着非常重要的关系。

综上所述,通过对汽车驱动桥的学习和设计,可以更好的学习并掌握现代汽车设计与机械设计的全面知识和技能。

2国内外研究现状及发展趋势

(一)国内现状

我国正在大力发展汽车产业,采用后轮驱动桥的汽车平衡性和操作性都将会有很大的提高。后轮驱动的汽车加速时,牵引力将不会由前轮发出,所以在加速转弯时,司机就会感到有更大的横向握持力,操作性能好。

维修费用低也是后轮驱动的一个优点,尽管由于构造和车型的不同,这种费用将会很大的差别。

如果变速器出了障碍,对于后轮驱动桥的汽车就不需要进行维修,但是对于前轮驱动的汽车来说也许就有这个必要了,因为这两个部件是坐在一起的。所以后轮驱动必然会使得乘车更加安舒适,

从而带来可观的经济效益。

国产驱动桥在国内市场占据了绝大部分份额,但仍有一定数量的车桥依赖进口,国产车桥与国际先进水平仍有一定差距。国内车桥长的差距主要体现在设计和研发能力上,目前有研发能力的车桥厂家还不多,一些厂家仅仅停留在组装阶段。实验设备也有差距,比如工程车和牵引车在行驶过程中,齿轮啮合接触区的形状是不同的,国外先进的实验设备能够模拟这种状态,而我国现在还在摸索中。

在具体工艺细节方面,我国和世界水平的差距还比较大,归根结底后桥的功用是承载和驱动。在这两方面,今年来出现了一些新的变化。另外,在结构方面,单级驱动桥的使用比例越来越高;

技术方面,轻量化、舒适性的要求将逐步提高。总体而言,现在汽车向节能、环保、舒适等方面发展的趋势,要求车桥向轻量化、大扭矩、低噪声、宽速比、寿命长和低生产成本。

目前,国内生产驱动桥的厂家较多,品种和规格也较齐全,其性能和质量基本上能够满足国产农业机械和工程机械的使用需求,呈现了明显的产业特点:由进口国外产品向国产化发展,由小作坊向正规化产业化发展,由低端产品向高端产品发展,由引进国外技术向自主研发发展。在技术方面,通过不断提高自身铸锻造技术及工艺水平保证研发产品制造质量;

通过利用先进科学的设计辅助手段来达到设计优化的目的;

通过不断学习吸收国外先进的技术逐步实现技术与国际接轨的目标,从而提高产品的核心竞争力;

通过运用先进的技术及方法来提高产品的性能,满足市场需求,推进机电一体化进程。

(二)国外现状

在西欧,带轮边减速的双级主减速器后驱动桥只占整个产品的40%,且有呈下降趋势,在美国只占10%。其原因是这些地区的道路较好,采用单级减速双曲线螺旋锥齿轮副成本较低,故大部分均采用这种结构。国外汽车驱动桥已普遍采用限滑差速器《N一Pin牙嵌式或多片摩擦盘式》、湿式行车制动器等先进技术。限滑差速器大大减少了轮胎的磨损,而湿式行车制动器则提高了主机的安全性能,简化了维修工作。

国内仅一部分车使用N。一Pin牙嵌式差速器。限滑差速器成本较高,因而在多数国产驱动桥上一直没有得到应用。

目前向国内提供限滑差速器的制造商主要是美国TraCtech公司和德国采埃孚公司。美国Tractech公司在苏州的工厂即将建成投产,主要生产牙嵌式、多片摩擦盘式和比例扭矩(三周节)差速器(锁紧系数3.5)。国内如徐工、鼎盛天工等主机制造商等原来自制一部分牙嵌式差速器,后因质量不过关而放弃。

亚洲、非洲和南美国家则采用带轮边减速的双级主减速器的驱动桥,用于非道路和恶劣道路使用的车辆。因此可以得出结论:一个国家的道路愈差,则采用带轮边减速双级主减速器驱动桥愈多,反之,则愈少。

国内有几个制造商生产比例扭矩差速器,但均为单周节,锁紧系数138,较三周节要小得多。徐州良羽传动机械有限公司在停车制动器(液压)上也做了一些工作,主要用于重型卡车产品,但国产此类产品的可靠性还有待提高。

3本课题的重点和研究方法

(一)主要技术分析

载货汽车驱动桥主要由主减速器部分、差速器部分、半轴部分和桥壳部分等几大部分组成。通过比较国内外货车驱动桥的不同之处,使我们能更好地认识我国载货汽车驱动桥系统的不足之处,积极吸取国外先进技术,更好的应用于我国载货汽车驱动桥生产中。

(二)主要设计内容

(1)驱动桥结构方案的选择与分析;

(2)主减速器结构参数的选取;

(3)差速器结构参数的选取;

(4)桥壳参数的选取与强度的分析。

(三)本文研究的思路和方法

(1)通过查阅书籍、上网搜索以及文献检索等多种有效方法,系统收集驱动桥的研究成果和相关信息;

(2)在对国内外驱动桥的技术现状、发展趋势、市场等情况进行系统分析研究的基础上,确定设计策略,作为构思总体设计方案的指导思想;

(3)选型设计:根据汽车行驶的路况条件和设计参数要求进行驱动桥的选型;

(4)参数化设计:根据整体设计要求,质量、轴荷、载重量、动力性、制动性、平顺性要求,确定发动机动力参数,确定主减速器、差速器、车轮传动装置和桥壳的件结构形式和基本参数;

(5)计算机二维图纸绘制:根据理论计算的主要参数,对各零件和总成进行二维图纸绘制和装配。

(四)参考文献:

[1]刘惟信.汽车设计[M].北京:清华大学出版社,20xx.

[2]陈家瑞.汽车构造[M].北京:机械工业出版社,20xx.

[3]汽车工程手册编辑委员会.汽车工程手册[M]:设计篇.北京:人民交通出版社,20xx.

[4]成大先.机械设计手册[M].北京:化学工业出版社,20xx.1.

[5]余志生.汽车理论[M].北京:机械工业出版社,1990.

[6]杨朝会,王丰元,马浩.基于有限元方法的载货汽车驱动桥壳分析[J].农业装备与车辆工程.20xx,(10):19-21

[7]胡迪青,易建军,胡于进,李成刚.基于模块化的越野汽车驱动桥设计及性能综合评价[J].机械设计与制造工程,20xx,(3):8-11.

[8]唐善政.汽车驱动桥噪声的试验研究与控制[J].汽车科技,20xx,(3):14-24

[9]石琴,陈朝阳,钱锋,温千红.汽车驱动桥壳模态分析[J].上海汽车,1999,(4):1-3,8.

[10]林军,周晓军,陈子辰,陈庆春.汽车驱动桥总成在线自动检测系统[J].机械与电子,20xx,(4):20-21.

[11]王聪兴,冯茂林.现代设计方法在驱动桥设计中的应用[J].公路与汽运,20xx,(4):6-8.

[12]杨锁望,韩愈琪,杨钰.矿用自卸驱动桥壳结构分析与改进设计[J].专用汽车,20xx,(1):21-23.

[13]王铁,张国忠,周淑文.路面不平度影响下的汽车驱动桥动载荷[J].东北大学学报,20xx,(1):50-53.

[14]常曙光.重载汽车驱动桥齿轮用钢的成分设计[J].现代零部件,20xx,(1):90-95.

[15]徐灦.机械设计手册[M].北京:机械工业出版社,1991.

[16]J.Vogwell.Analysisofavehiclewheelshaftfaiure.EngineeringFailureAnalysis.1998(5):4.

[17]MakotoAkama.Bayesiananalysisfortheresultsoffatiguetestusingfull-scalemodelstoobtainthefailureprobabilitiesoftheShinkansenvehicleaxle.ReliabilityEngineeringandsystemSafety.20xx,(1):75.

[18]王忠会,骆雨,贾毅.行星齿轮式桥间差速器的差速特性分析.20xx.9[J].

第四篇:汽车驱动桥说课稿

《汽车驱动桥拆装》说课稿

各位领导,各位老师大家好!

我是广西科技大学交通运输专业学生,我的名字叫蒙泓龙。今天我说的课题是《汽车驱动桥的拆装》。

下面我将从教材分析,学情分析,教学目标和教学过程四个方面对本节课进行说课。一、教材分析

《驱动桥拆装》 一课选自《汽车底盘构造与维修》项目4中的任务一《驱动桥的拆装》内容,于P75—P83页内容成。本节课是底盘部分重要组成部分。驱动桥是汽车传动系统的重要部件,它将变速器传来的驱动力矩进行减速、增扭、调整方向后,传递给驱动轴从而带动车轮转动,实现车辆的行驶。

本任务主要讲解有关驱动桥的基本结构和拆装过程,通过学习了解驱动桥的相关理论知识,并掌握有关拆装驱动桥的技能。

二、学情分析

要讲好一节课,特别是实操课,不仅要有器材,最主要要提起学生的兴趣与动手的积极性,要做好这一点就必须对所教教材以及设备认识清楚。对学生备课,只有对学生的知识结构与心理特征进行分析,才能制定出行之有效的教学目标,才能够找出更好的方式去阐述教学难点。在学习本节内容时,学生对汽车驱动桥只是通过理论课有所了解,但是没有能够在实践当中真正认识,因而学生需要通过实践与理论相结合,提高自身的动手能力以及知识储备能力为背景,探索和开发学生动手的积极性,对器件的亲和性而入手。

基于学生的这些特点,结合教学内容,从知识能力层面,情感两大方面来制定教学目标:

三、教学目标

知识目标:通过本节课的学习让学生对驱动桥的组成、作用有一个明确的认识,并准

确的掌握主减速器及差速器的组成及工作原理。

能力目标:培养学生观察能力,分析推理能力,培养学生运用已知知识认识未知知识的能力。

情感目标:培养学生形成正确的科学的态度、并掌握科学的研究方法。并能让学生体

会发现新知识的乐趣,培养学生好学的精神。

重点与难点:结合教学大纲,我将本节课的重点问题设置为:主减速器的组成及工作原理;差速器组成及工作原理。将本节课难点设置为:差速器的工作原理

教学方法与手段:结合学生这一特点,在教学方法上为了能充分发挥学生的主观能动性,我采用了启发诱导式的教学方法,通过理论探究,实物展示,电脑多媒体等多种手段来完成本节课的讲解。同时在学习中,也培养了同学们观察问题解决问题的能力,使他们掌握科学的研究方法。

四、教学过程

本节课的教学过程我是这样设计的:

(一)创设情境

首先我为同学们一起回顾发动机的工作原理,接着设疑“发动机的高速转动,动力最 终将传递到哪里?”以此,引出新课,用这种方式来激发学生的学习兴趣。

(二)认识新知

同学生一起观看汽车动力传递的视频,同时启发引导同学们分析总结汽车在行驶过程 中,必须实现的作用,很自然的确定了汽车的驱动桥的基本组成。

(三)复习旧知识、探索新知

我的重点内容的讲解是这样实现的,先和同学一起复习直齿轮的动力传动,然后和 同学们一起分析锥齿轮的传动特点,这样能够提高同学们用已掌握的知识去探索新知识的能力,形成了认识上的突破,并提高学生探索积极性。

(四)设置疑问、小组竞赛、学习新知

差速器的工作原理学习是个难点,针对学生的物理基础薄弱的特点,我就采用避开 用纯粹的用物理学原理研究问题的方法,而是让同学们观察差速器的工作视频,然后让同学总结看到的结果,这样水到渠成的得出汽车行驶时差速器的工作原理。

实训练习不仅起到巩固所学知识的作用,还起到深化所学知识的作用,所以我用竞赛的组装的方式来巩固同学们对复杂的差速器的学习。

(五)课堂小结

当然实训小结也必不可少,通过学生自我小结,教师补充来完成对本节课的新知的整理。

(六)设疑引出新课

最后,我用曾经发生在实习课上一名同学提出的关于驱动桥的疑问来结束对本节课的 学习,同时引出下一节课的任务。

(七)布置课后习题

通过布置课后习题,增强学生对汽车驱动桥的分类、主要组成部分,各个器件、以及他们的工作原理有更深的认识。

我的说课到此结束,在课堂上,或许有些许不足,希望在座的领导老师能够多多理解,我一定多努力,争取下次说课更好!谢谢大家!

第五篇:轻型载货汽车车架设计说明书

第1章 绪论

1.1 课题背景

汽车的使用条件复杂,其受力情况也十分复杂,随着汽车行驶条件(车速和路况)的变化,车架上的载荷变化也很大,而车架,作为汽车的主要承载工件,它的好坏直接关系着汽车的各方面性能,如操作稳定性、安全性、舒适性、燃油经济性等。有过汽车在使用过程中,车架断裂的情况发生。所以对车架的主要受力件车架纵梁的强度进行校核,有着至关重要的意义。确保车架在各个工况下,车架纵梁的弯曲强度都符合材料的弯曲强度极限要求,如果不符合要求的,找出解决的方案,保证人与财产的安全。

另外,随着油价的上涨和国家对汽车尾气排放标准的不断提高,对载货汽车车架进行设计,不管是对其结构参数的优化设计,对其进行轻量化的优化设计,还是对汽车车架进行疲劳寿命预测分析等,都是出于对汽车动力性、安全性、燃油经济性的考虑。是非常有必要的。研究新的车架材料,减轻其质量,可以有效减少其整备质量。

1.2车架的发展历程

车架”这个名称原本是从法文的“Chassis”衍生而来的,早期汽车所使用的车架,大多都是由笼状的钢骨梁柱所构成的,也就是在两支平行的主梁上,以类似阶梯的方式加上许多左右相连的副梁制造而成。车体建构在车架之上,至于车门、沙板、引擎盖、行李厢盖等钣件,则是另外再包覆于车体之外,因此车体与车架其实是属于两个独立的构造。

第2章 方案论证

参考车型及其参数

公告型号 品牌 额定质量 整备质量 CA1092PK26L5E4 公告批次

228 载货汽车 8785 2

3585/5200 28/12

2260,2445 6180 560 解放4990 3600

类型 总质量 燃料种类 轴数 轴荷 接近离去角 前轮距 识别代号 整车宽 货厢长 货厢高 排放依据标准 轴距 轮胎规格 前悬后悬 后轮距 整车长 整车高 货厢宽 最高车速 4560

1080/2355 7995 2430 2115,2300 95

载质量利用系数 1.44 备注 该车带OBD,防护材料材质:Q235-A,连接方式:螺栓连接,后部防护装置的断面尺寸(mm):145×50,离地高度:545mm。

2.1 汽车车架受力情况

2.1.1车架水平菱形扭动力 因为车辆在行驶时,每个车轮因为路面和行驶情况的不同,(路面的铺设情况、凹凸起伏、障碍物及进出弯角等等)每个车轮会承受不同的阻力和牵引力,这可以使车架在水平方向上产生推拉以至变形,这种情况就好像将一个长方形拉扯成一个菱形一样。2.1.2车架非水平扭动力

当前后对角车轮遇到道路上的不平而滚动,车架的梁柱便要承受这个纵向扭曲压力,情况就好像要你将一块塑料片扭曲成螺旋形一样。2.1.3车架横向弯曲力

所谓横向弯曲,就是汽车在入弯时重量的惯性(即离心力)会使车身产生向弯外甩的倾向,而轮胎的抓着力会和路面形成反作用力,两股相对的压力将车架横向扭曲。

2.1.4车架负载弯曲力

从字面上就可以十分容易的理解这个压力,部分汽车的非悬挂重量,是由车架承受的,通过轮轴传到地面。而这个压力,主要会集中在轴距的中心点。因此车架底部的纵梁和横梁(member),一般都要求较强的刚度。

2.2车架设计要求

2.2.1车架必须要有一定的强度

保证在各种复杂受力的使用情况下车架不受破坏。要求有足够的疲劳强度,保证在汽车大修里程内,车架不致有严重的疲劳损伤。纵梁受力极为复杂,设计时不仅应注意各种应力,改善其分布情况,还应该注意使各种应力峰值不出现在同一部位上。例如,纵梁中部弯曲应力较大,则应注意降低其扭转应力,减少应力集中并避免失稳。而在前、后端,则应着重控制悬架系统引起的局部扭转。提高纵梁强度常用的措施如下:

(1)提高弯曲强度

选定较大的断面尺寸和合理的断面形状(槽形梁断面高宽比一般为3:1左右);

(2)提高局部扭转刚度

注意偏心载荷的布臵,使相近的几个偏心载荷尽量接近纵梁断面的弯曲中心,并使合成量较小;在偏心载荷较大处设臵横梁,并根据载荷大小及分散情况确定连接强度和宽度;将悬臵点分布在横梁的弯曲中心上;当偏心载荷较大并偏离横梁较远处时候,可以采用K形梁,或者将该段纵梁形成封闭断面;偏心载荷较大且比较分散时候,应该采用封闭断面梁,横梁间距也应缩小;选用较大的断面; 限制制造扭曲度,减少装配预应力。

(3)提高整体扭转强度

不使纵梁断面过大; 翼缘连接的横梁不宜相距太近。(4)减少应力集中及疲劳敏感

尽可能减少翼缘上的孔(特别是高应力区),严禁在翼缘上布臵大孔; 注意外形的变化,避免出现波纹区或者受严重变薄;注意加强端部的形状和连接,避免刚度突变; 避免在槽形梁的翼缘边缘处施焊,尤其畏忌短焊缝和“点”焊。

(5)减少失稳

受压翼缘宽度和厚度的比值不宜过大(常在12左右);在容易出现波纹处限制其平整度。

(6)局部强度加强采用较大的板厚;

加大支架紧固面尺寸,增多紧固数量,并尽量使力作用点接近腹板的上、下侧面。

2.2.2车架的轻量化

由于车架较重,对于钢板的消耗量相当大。因此,车架应按等强度的原则进行设计,以减轻汽车的自重和降低材料的消耗量。在保证强度的条件下,尽量减轻车架的质量。通常要求车架的质量应小于整车整备质量的10%。本设计主要对车架纵梁进行简化的弯曲强度计算,使车架纵梁具有足够的强度,以此来确定车架的断面尺寸。(参照《材料力学》)另外,目前钢材价格暴涨,汽油价格上涨,从生产汽车的经济性考虑的话,也应尽量减轻整车的质量。从生产工艺性考虑,横纵梁采用简便可靠的连接方式,不仅能降低工人的工作强度,还能增强车架的强度。

2.3车架形式的确定

2.3.1边梁式车架

这种车架由两根纵梁及连接两根纵梁的若干根横梁组成,用铆接和焊接的方法将纵横梁连接成坚固的刚性构架。纵梁通常用低合金钢板冲压而成,断面一般为槽型,z星或箱型断面。横梁用来连接纵梁,保证车架的抗扭刚度和承载能力,而且还用来支撑汽车上的主要部件。边梁式车架能给改装变型车提供一个方便的安装骨架,因而在载重汽车和特种车上得到广泛用。其弯曲刚度较大,而当承受扭矩时,各部分同时产生弯曲和扭转。其优点是便于安装车身、车箱和布臵其他总成,易于汽车的改装和变形,因此被广泛地用在载货汽车、越野汽车、特种汽车和用货车底盘改装而成的大客车上。在中、轻型客车上也有所采用,轿车则较少采用。用于载货汽车的边梁式车架由两根相互平行但开口朝内、冲压制成的槽型纵梁及一些冲压制成的开口槽型横梁组合而成。通常,纵梁的上表面沿全长不变或局部降低,而两端的下表面则可以根据应力情况相应地缩小。车架宽度多为全长等宽。

2.3.2中梁式车架(脊骨式车架)

其结构只有一根位于中央而贯穿汽车全长的纵梁,亦称为脊骨式车架。中梁的断面可做成管形、槽形或箱形。中梁的前端做成伸出支架,用以固定发动机,而主减速器壳通常固定在中梁的尾端,形成断开式后驱动桥。中梁上的悬伸托架用以支承汽车车身和安装其它机件。若中梁是管形的,传动轴可在管内穿过。优点是有较好的抗扭转刚度和较大的前轮转向角,在结构上容许车乾有较大的跳动空间,便于装用独立悬架,从而提高了汽车的越野性;与同吨位的载货汽车相比,其车架轻,整车质量小,同时质心也较低,故行驶稳定性好;车架的强度和刚度较大;脊梁还能起封闭传动轴的防尘罩作用。缺点是制造工艺复杂,精度要求高,总成安装困难,维护修理也不方便,故目前应用较少。2.3.3综合式车架

综合式车架是由边梁式和中梁式车架联合构成的。车架的前段或后段是边梁式结构,用以安装发动机或后驱动桥。而车架的另一段是中梁式结构的支架可以固定车身。传动轴从中梁的中间穿过,使之密封防尘。其中部的抗扭刚度合适,但中部地板凸包较大,且制造工艺较复杂。此种结构一般在轿车上使用。车架承受着全车的大部分重量,在汽车行驶时,它承受来自装配在其上的各部件传来的力及其相应的力矩的作用。当汽车行驶在崎岖不平的道路上时,车架在载荷作用下会产生扭转变形,使安装在其上的各部件相互位臵发生变化。当车轮受到冲击时,车架也会相应受到冲击载荷。因而要求车架具有足够的强度,合适的刚度,同时尽量减轻重量。在良好路面行驶的汽车,车架应布臵得离地面近一些,使汽车重心降低,有利于汽车稳定行驶,车架的形状尺寸还应保证前轮转向要求的空间。

第3章 车架结构

3.1 车架结构形式的选定

3.1.1车架宽度的确定

车架宽度是指左右纵梁腹板外侧面之间的宽度。在总体设计中,整车宽度确定后,车架前后部分宽度就可以根据前轮最大转向角、轮距、钢板弹簧片宽、装在车架内侧的发动机外廓宽度及悬臵等尺寸确定。从提高整车的横向稳定性以及减小车架纵梁外侧装臵件的悬伸长度来看,车架尽量宽些,同时前后部分宽度应相等。本设计取的车架宽860mm。

3.1.2车架纵梁形式的确定

纵梁是车架的主要承载部件,在汽车行驶中受较大的弯曲应力。车架纵梁根据截面形状分有工字梁和槽形梁。由于槽形梁具有强度高、工艺简单等特点,因此在载货汽车设计中选用槽形梁结构。另外为了满足低速载货汽车使用性能的要求,纵梁采用直线形结构。这样既可降低纵梁的高度,减轻整车自身重量,降低成本,亦可保证强度。材料选用16Mn低合金钢,16Mn低合金钢在强度,塑性,可焊性方面能较好地满足刚结构,是应用最广泛的低合金钢,综合机械性能良好,正火可提高塑性,韧性及冷压成型性能。根据本设计的要求,再考虑纵梁截面的特点,本方案设计的纵梁采用上、下翼面是平直等高的槽形钢。纵梁总长为6815mm。优点:有较好的抗弯强度,便于安装汽车部件。

3.1.3车架横梁形式的确定

横梁是车架中用来连接左、右纵梁,构成车架的主要构件。横梁本身的抗扭性能的好坏及其分布,直接影响着纵梁的内应力大小及其分布 合理设计横梁,可以保证车架具有足够的扭转刚度。

从早期通过试验所得出的一些结论可以看出,若加大横梁的扭转刚度,可以提高整个车架的扭转刚度,但与该横梁连接处的纵梁的扭转应力会加大;如果不加大横梁,而是在两根横梁间再增加横梁,其结果是增加了车架的扭转刚度,同时还降低了与横梁连接处的纵梁扭转应力

在横梁上往往要安装汽车上的一些主要部件和总成,所以横梁形状以及在纵梁上的位臵应满足安装上的需要。横、纵梁的断面形状、横梁的数量以及两者之间的连接方式,对车机架的扭转刚度有大的影响。纵、横梁材料的选用有以下三种:车架A:箱型纵梁、管型横梁,横、纵梁间采用焊接连接,扭转刚度最大。车架B:槽型纵梁、槽型横梁,横、纵梁间采用铆接连接,扭转刚度适中。车架C:槽型纵梁、工字型横梁,横、纵梁间采用铆接连接,扭转刚度最小。

从以上三种车架的对比可以看出:轻型载货汽车应该选用车架B。本设计共有八根横梁,有前横梁,发动机前悬臵横梁,发动机后悬臵横梁,驾驶室后悬臵横梁,中横梁,后钢板弹簧前支架横梁,后钢板弹簧后支架横梁,后横梁。

3.2 纵梁与横梁的连接

3.2.1车架纵梁与横梁的连接形式

货车多以铆钉连接(见下图)。铆钉连接具有一定弹性,有利于消除峰值应力,改善应力状况,这对于要求有一定扭转弹性的货车车架有重要意义。

车架铆接示意图

铆接设计注意事项:

a.尽量使铆钉的中心线与构件的端面重心线重合; b.铆接厚度一般不大于5d; c.在同一结构上铆钉种类不益太多;

d.尽量减少在同一截面上的铆钉孔数,将铆钉交错排列;8 3.2.2横梁在纵梁上的连接

常见有三种型式:横梁和纵梁上下翼缘相连;横梁和纵梁的腹板相连;横梁同时和纵梁的任一翼缘以及腹板相连。

其中前后横梁分别采用上下翼缘相连接的方式,可得到较大的连接跨度和连接刚度,使车架扭转刚度增大,纵梁局部扭转改善。

第四横梁即车架中部的横梁采用腹板连接的方式,腹板连接结构与翼面连接结构相比,前者比后者可使纵梁的扭转翘曲应力降低。

横梁和纵梁腹板及一个翼缘同时相连,则兼有以上两种连接方式的特点,缺点在于作用在纵梁上的力直接传到横梁上。有时使横梁只和纵梁的一个翼缘相连,则极难发挥其刚度作用,因此不常采用。3.2.3车架加强版

第4章 车架设计计算

4.1车架的载荷分析

汽车静止时,车架上只承受弹簧以上部分的载荷称为静载荷。汽车在行驶过程中,随行驶条件(车速和路面情况)的变化,车架将主要承受对称的垂直动载荷和斜对称的动载荷。

对称的垂直动载荷是当汽车在平坦道路上以较高车速行驶时产生的,其值取决于作用在车架上的静载荷及其在车架上的分布,还取决于静载荷作用处的垂直加速度之值。这种动载荷会使车架产生弯曲变形。当汽车在不平道路上行驶时,汽车的前后几个车轮可能不在同一平面上,从而使车架连同车身一起歪斜,其值取决于道路不平坦的程度以及车身、车架和悬架的刚度。这种动载荷将会使车架产生扭转变形。由于汽车的结构复杂,使用工况多变,除了上述两种主要载荷的作用外,汽车车架上还承受其他的一些载荷。如汽车加速或制动时会导致车架前后载荷的重新分配;汽车转向时,惯性力将使车架受到侧向力的作用。一般来说,车架主要损坏的疲劳裂纹起源于纵梁和横梁边缘处,然后向垂直于边缘的方向扩展。在纵梁上的裂纹将迅速发展乃至全部断裂,而横梁上出现的裂纹则往往不再继续发展或扩展得很缓慢。根据统计资料可知,车架的使用寿命主要取决于纵梁抗疲劳损伤的强度。因此,在评价车架的载荷性能时,主要应着眼于纵梁。

4.2车架纵梁的强度计算 4.3车架的应力计算

4.3.1支座反力的计算 4.3.1纵梁的剪力和弯矩计算

要计算车架纵梁的弯矩,先计算车架前支座反作用力,向后轮中心支座处求矩

F1——前轮中心支座对任一纵梁(左纵梁或右纵梁)的反作用力N;F2——后轮中心支座对任一纵梁(左纵梁或右纵梁)的反作用力N;

L——纵梁的总长,7215mm;

l——汽车轴距,4560mm;

a——前悬,1080mm; b——后悬,2355mm;

c——货厢长,6180mm;

c1——车厢前端到二轴的距离,4120mm;

c2——车厢后端到二轴的距离,2060mm;

Ms——空车时的簧载质量,约2400kg;

Me——满载时有效装载质量,5190kg;

g——重力加速度,9.8m/s ; 代入(4-1)和(4-2)可得:

=3179.65N

=12451.35N

在计算纵梁弯矩时,将纵梁分成两段区域,每一段的均布载荷可简化为作用于区段中点的集中力。纵梁各端面上的弯矩计算采用弯矩差法,可使计算工作量大大减少。弯矩差法认为:纵梁上某一端面上的弯矩为该段面之前所有力对改点的转矩之和。

4.4车架材料的选择 4.5梁截面系数的计算 4.6弯矩应力计算与校核

第5章 车架制图

5.1制图方式 5.2传统制图 5.3 CAD制图

5.3.1绘图便利 5.3.2保存便利

5.3.3AutoCAD在机械零件上的优势

下载载货汽车驱动桥设计开题报告(共五则范文)word格式文档
下载载货汽车驱动桥设计开题报告(共五则范文).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    载货汽车安全现状调研报告(精选多篇)

    载货汽车安全现状调研报告 一、安全现状 载货汽车一般称作货车,又称作卡车。近年来,我国货车事故发生率、货车交通事故造成的死亡人数居高不下。根据《道路交通事故统计年报汇......

    汽车毕业论文开题报告

    毕业设计(论文)开题报告 题目:浅论电子商务在汽车企业中的应用 本课题来源及研究现状: 1、来源: 自选。 2、研究现状: 随着信息技术的发展,国外的汽车企业迎来了电子商务时代,他们的......

    汽车专业开题报告

    汽车专业开题报告 汽车专业开题报告1近几年,我国汽车行业处于高速发展时期,产销量不断提高,从长远发展考虑,各个制造商和用户对整车质量提出了更高的要求。这就要求轮毂轴承要......

    设计专题开题报告

    设计专题开题报告4篇 设计专题开题报告1 一、课题目的意义:办公空间是我们每个人都非常熟悉的空间类型,对于室内设计师而言,又是一种非常重要的空间类型,具有面广量大的特点。随......

    动力电池驱动新能源汽车

    动力电池驱动新能源汽车 目前扎根中关村的中航长利、中信国安盟固利、当升材料、北大先行等以车用动力电池生产为核心的高新技术产业群正在兴起。这些动力电池“明星企业”......

    开题报告-基于单片机的汽车超速报警系统设计

    开题报告电气工程及自动化基于单片机的汽车超速报警系统设计一、综述本课题国内外研究动态,说明选题的依据和意义随着我国改革开放的继续深入以及国家经济战略的实施下,我国的......

    驱动桥的拆装实验报告

    驱动桥的拆装 一、实训目的 1、掌握主减速器与差速器的功用、构造和工作原理 2、熟悉主减速器与差速器的拆装顺序,以及一些相关的检测与维修知识 二、实验原理 根据驱动桥的......

    H桥驱动直流电机分析

    H桥驱动直流电机分析 1. H桥PWM变换器驱动电机运行过程 如图1所示,电动机M两端电压UAB的极性随开关器件驱动电压的变化而变化,这里分析双极式控制的可逆PWM变换器。四个驱动电压波......