第一篇:西门子MM430变频器在恒压供水系统中的应用
西门子MM430变频器在恒压供水系统中的应用
2009-10-15
来源:工控商务网
浏览:88 摘要:本文主要介绍西门子公司MICROMASTER430变频器在恒压供水系统中的应用,详细阐述了系统的原理、组成及调试方法。
一:引言
城市规模的不断扩大,高层建筑的不断增长,城市供水的公用管网的压力已远远不能满足用户的要求,对供水的二次加压已被广泛采用。其中变频恒压供水由于自动化程度高,维护方便、具有节能功能,成为主要的二次加压方式。按供水的特性,变频恒压供水主要有分为:恒压变流量和变压变流量两大类,在本文的中采用恒压变流量的供水方式。
二:系统组成及工作原理
系统为宾馆的供水系统,分为冷水、热水两大供水系统,系统单线如图1
Q1控制的变频器为冷水供水系统,Q2控制的变频器为热水供水系统,系统为1拖1的恒压供水,两台电机为互备,可选择使用1#泵或2#泵运行,KM3、KM8为手动工频运行选择,作为变频的维修系统备用,KM2,KM3、KM7,KM8为机械互锁的接触器,保证选择变频运行和工频运行的正确切换。
变频恒压供水的基本原理:以压力传感器和变频器组成闭环系统,根据系统管网的压力来调节电机的转速,实现高峰用户的水压恒定,和低峰时的变频的休眠功能,得到恒压供水和节能的目的。
系统的硬件组成如下:
热水系统:电机参数: Pe=15kw Ue=380v Ie=26.8A Ne=1490rpm 变频器型号: 6SE64430-2AD31-8DA0 Pe=18.5kw Ie=38A 压力传感器: GYG2000 反馈信号4-20mA 供电+24V 量程0-0.5Mpa 冷水系统:电机参数: Pe=22kw Ue=380v Ie=39.4A Ne=2940rpm 变频器型号: 6SE64430-2AD33-7EA0 Pe=30.5kw Ie=62A 压力传感器: GYG2000 反馈信号4-20mA 供电+24V 量程0-0.5MPa 三:PID闭环控制功能的实现及调试方法
西门子MICROMASTER430变频器的内置PID功能,利用装在水泵附近的主出水管上的压力传感器,感受到的压力转化为4-20mA电信号作为反馈信号。根据宾馆的层高设定压力值作为给定值,变频器内置调节器作为压力调节器,调节器将来自压力传感器的压力反馈信号与出口压力给定值比较运算,其结果作为频率指令输送给变频器,调节水泵的转速使出口压保持一定。即当用水量增加,水压降低时,调节器使变频器输出频率增加,电机拖动水泵加速,水压增大;反之,当用水量减少,水压上升,调节器使变频器输出频率减少,电机拖动水泵减速,水压减小。
由于压力传感器是两线传感器在接线必须采用正确的接线方式,将变频器的+24V控制电源连接到传感器的+端,传感器的-连接到PID的+输入,同时还必须将PID的-端连接到变频器控制电源的0V端。具体接线图如图2
图2中把传感器送回的电流信号送入到变频器的模拟量输入2作为反馈值,根据宾馆的层高设定的压力值为0.35MPa,对应输出频率为35Hz,对应反馈电流15.2mA.PID闭环控制功能的具体参数设置如图3
参数的设定方法:PID主设定值P2253可选择的源有以下几种,模拟输入、固定PID设定值、已激活的PID设定值,在本系统中采用固定给定值。PID反馈值P2264可选择的源为模拟输入1或模拟输入2在系统中采用模拟输入2,系统的PID参数设定如下: P0701=99 P2200=722.0 P2016=1 P2201=70% P2253=2224 设定主给定值固定值为35Hz。
P2264=755.1设定反馈值为模拟量输入2。
上述参数设定好以后,设定P2200=1,使能PID功能,设定P2250=1进行PID自整定,整定完成后,采用了整定后的积分和比例参数基本满足了系统的工艺要求。
PID调试的注意事项:使能PID功能后系统的加减速时间为P2257、P2258的设定值,而不是原来的P1120、P1121。使能PID功能后 PID的限幅值的上升、下降时间P22936必须根据系统要求进行设定,否则变频器将报故障F0002。为提高系统的抗干扰能力,要求根据现场的实际情况,对反馈值进行滤波环节处理,在本系统中因为主给定设定值采用固定给定,所以对主给定设定值不必进行滤波环节处理。
四:节能功能的实现
在PID控制过程中,当反馈信号大于主设定频率时,系统偏差(ΔP)为负,此时电动机的频率逐渐降低,但仍在不停运转,在系统偏差不断调节的同时,系统不断消耗电能。为了实现节能,西门子对MM430变频器设计了节能控制功能。出发点如下:当电机的频率降低到某一比较频率(P2390)时,激活节能定时器(P2391),当定时时间到期时,按斜坡下降时间停车,即输出功率为零,在无输出的情况下,系统偏差会迅速从负到正变化,当偏差超过某一设定值(P2392)时,再起动电机,当电机频率按斜坡上升时间升到某一值时(此值稍大于P2390设定频率),投入PID,使系统恢复正常控制。
参数的设定方法: P2390要低于PID主设定值所对应频率一定幅度,以保证系统实现正常的PID控制,如果P2390太小,节能又不易投入,在本系统中设定2390=20Hz,P2391定时器时间的设定要依据系统的响应速度,如果系统响应时间快,则P2391应设定较小的值。在本系统中,P2391= 900秒,P2292=0.5。设定参数的注意事项:系统的节能功能投入后,PID功能则解除,所以系统的加减速时间P1120、P1121必须根据需要进行设定,最高、最低频率必须设定。
五:结束语
系统调试完毕后已投入运行,从运行效果看,系统的运行水压稳定,响应速度快,得到了设计要求,节能效果比较明显。
MM430能够实现压力,流量等的PID闭环.PID闭环的三个要素: 1.给定 2.反馈 3.PID控制器 正确设置与这三个要素的相关参数就可实现PID闭环.相关参数如下: 1.P2200 PID 控制器使能 2.P2253 PID 给定值 3.P2264 PID 反馈值 4.P2280 PID 比例增益系数 5.P2285 PID 积分时间
PID 比例增益系数和PID 积分时间应根据实际应用进行调整,不同的应 用,P2800.P2285 所设置的数值都不一样.实际应用中PID 给定值和PID 反馈值可由多种通道输入,以下例子给予说明.例子1: 模拟输入1 为PID 给定 模拟输入2 为PID 反馈 调试步骤如下: 1.参照手册3-12,3-13 页进行快速调试: 2.P2200 = 1 PID 调节器使能
3.P2253 = 755:0 模拟输入1 为PID 给定 4.P2264 = 755:1 模拟输入2 为PID 反馈 5.P2280 = 8 PID 比例增益系数(仅供参考)P2285 = 80 PID 积分时间(仅供参考)
变频器在工业锅炉给水系统上的应用(1)
收藏本文章 引言工业蒸汽锅炉的过程控制系统包括汽包水位控制系统和燃烧过程控制系统,两系统在锅炉运行过程中互相耦合,所以控制起来非常困难。在此,我们暂不考虑系统间的耦合,只是对蒸汽锅炉的给水系统进行变频改造。某企业有2台20t燃煤蒸汽锅炉,如图1所示。这2台锅炉通过1个给水母管分别给各自汽包供水,用汽量小的季节,2台锅炉只运行1台,当用汽量较大时,则必须2台锅炉同时运行。由于给水泵额定功率为37kw,一般情况下,1台锅炉运行时,只开1台给水泵裕量仍较大,而2台锅炉同时运行且用汽量较大时,只开1台给水泵无法满足需要,而开2台给水泵后,相对单台锅炉运行时,裕量更大。由于2台锅炉分别由2套dcs系统控制各自的电动阀门调节各自汽包的给水量,运行中,阀门开度较小造成给水母管压力较大,不仅浪费了大量的电能,较高的水压还对管道、水泵叶轮和阀门造成损害 变频改造方案基于系统运行现状,本着既能节能降耗,又能控制简便、安全且投资较少的原则,我们设计了1套1台变频器拖动3台电机的方案。具体如图2所示。
图1 给水原理图
在本方案中,充分利用了锅炉层有的dcs控制系统,同时增加了变频器、可编程序控制器(plc)和控制信号转换装置。(1)硬件控制系统a)西门子mm430变频器mm430变频器是西门子公司最新研制生产的一种适用于各种变速驱动应用场合的高性能变频器(调试简单、配置灵活),它具有最新的igbt技术和高质量控制系统,完善的保护功能和较强的过载能力以及较宽的工作环境温度,安装接线方便,两路可编程的隔离数字输入、输出接口以及模拟输入、输出接口等优点,使其配置灵活多样,控制简单方便,易于操作维护。
图2 控制原理图
b)西门子s7-200型plc西门子s7-200型plc可靠性高、抗干扰能力强,可直接安装于工业现场而稳定可靠的工作。适应性强,应用灵活。(2)当1台锅炉运行时由于只开1台给水泵,就足够锅炉汽包所需用水量,故此时,系统只对运行锅炉的汽包水位进行恒液位控制即可。将切换开关置于相应位置,通过锅炉原有dcs控制系统中的手动操作器将控制该锅炉汽包进水量的电动阀完全打开后,再通过控制信号转换装置切断该控制信号,使原有控制回路断开,电动阀保持全开状态,同时,将该锅炉汽包液位信号切入plc,让plc将该锅炉汽包液位信号进行pid运算处理后,再由控制信号转换装置,将plc输出的4~20ma模拟信号传递给变频器,从而控制变频器的输出转速。在本控制过程中,关键的问题是过程参数pid(p:比例系数i:积分系数、d:微分系数)的整定。由于工业锅炉运行过程中,用汽量的多小和蒸汽压力的大小,决定了给水流量的大小和给水压力的大小。为了保证系统的相对稳定运行,不出现大的波动,对生产造成影响,在调试过程中,应多次反复调整pid参数,直至出现最佳控制过程。(3)当两台锅炉同进运行时由于2台锅炉分别由两套dcs系统控制,在运行过程,虽然蒸汽并网后压力相同,但由于燃烧过程中存在不确定性,两台锅炉汽包各自的液位就必然存在差异。因此,单台锅炉运行中所用的恒液位控制方案在此就不再适合。通过给水原理图(图1)我们不难发现,要对2台锅炉汽包的液位分别控制,最理想的方案是将1个给水母管向2台锅炉给水的现状彻底改变,将给水系统分开,使每个锅炉都有自己独立的给水系统,再在此基础上加装变频控制,由1台变频器单独控制1台锅炉的给水。但此方案不仅改动较大,投资较高,且要停产改造,显然是行不通的。为了能在不改变原有系统现状的前提下,更好的利用变频装置,节能降耗,减小系统运行,维护费用,提高原有系统的自动化程度,我们针对该企业2台锅炉的运行特点,设计了一套专用于2台(或2台以上)锅炉同时运行时的控制方案,即:蒸汽压力和母管给水压力的恒压差控制方案。
当2台锅炉同时运行时,由于外供蒸汽并管,故蒸汽压力相同,又由于2锅炉由同一母管给水,故给水压力也相同。但由于蒸汽用量的变化不定和锅炉燃烧情况的不同,蒸汽压力是时刻变化的。这样,为了能保证给锅炉汽包供上水,就必须要求给水的压力始终高于蒸汽压力,由图2我们看到,由plc采集蒸汽压力和母管给水压力,通过处理、比较后,得到二者的差值,再将此差值通过pid运算处理,输出4~20ma的模拟信号给控制信号转换装置。再由该装置将信号传输给变频器,从而控制变频器的运行速度。这样虽然可以保证给水母管压力始终高于锅炉蒸汽压力(压力差的大小可以通过plc在一定范围内任意调节),但锅炉各自汽包的液位却无法再通过调节变频器的转速去控制。在此,我们充分利用了原有给水控制装置,即汽包各自的进水电动阀门。仍由锅炉原有dcs控制系统采集各自汽包的液位,蒸汽压力,给水压力和给水流量等信号,去相应的调整进水电动阀的开度,从而控制各汽泡液位和进水流量。此方案由于存在阀门的调节,所以理论上不能最大限度的节能降耗,但实际应用中,由于减小了给水母管与蒸汽压力之间的压力差,使电动阀门的开度由原来的平均10%左右开大到75%左右,系统回水阀门关闭,仍大大节约了能源。且本方案充分考虑了系统运行的安全性,一旦变频器故障,系统可立即自动由变频运行状态切换至原有工频运行状态,完全恢复改造前的运行状态,保证锅炉正常运行。变频故障解除后,仍可方便的手动切换为变频状态,使变频器方便的投入运行,且不影响锅炉的运行。plcplc是本系统的核心控制器件,它不仅辨识、处理各种运行状态,进行系统间的逻辑运算和联锁保护,还对输入的多个模拟信号进行处理、运算后,输出标准的模拟信号控制变频器的运行速度。主程序结构较复杂,其中,对液位信号进行pid运算的子程序,原理图和程序框图如图
3、图4所示。
图3 pid原理图 注意事项(1)由于变频器产生高次谐波,会对通讯产生干扰,同时由于plc采集模拟信号,要进行a/d和d/a转换处理,在此过程中,容易受到变频器高次谐波的影响而失真。因此,必须将变频器零地分接且加装液波装置,对plc用隔离变压器供电,最好将plc安装于距离变频器较远的位置
第二篇:西门子中压变频器在石灰回转窑中的应用
1.引言
石灰是钢铁生产的重要原料,它主要应用在烧结工艺,炼钢工艺。在石灰回转窑工艺当中,保持窑内稳定的燃烧条件是非常必要的,它是由控制系统通过控制空气和燃料进入焙烧系统的速率,以及通过控制I.D.风机(主排风机)速度从而保持适当的点火器拉力来完成。变化应保持为最小值,在另一变化发生前,系统应有时间调整适应变化。短时间内太多的变化会导致系统的循环,并且要使其再次平衡将会非常困难。
I.D.风机(主排风机)的调节方式,即窑头负压的调节方
式主要有两种:
一、调节主排风机入口挡板开度使燃烧罩维持一定负压。
二、调节主排风机的速度使燃烧罩维持一定负压;
采用第一种调节方式,风机电机始终在工频运行,靠控制挡板开度来控制窑头负压,在通常正常生产的情况下,挡板开度只为25%~35%,不但耗能比较大,而且在调整挡板开度时,窑内压力变化波动较大,很难保证窑内负压。
采用第二种调节方式,有两种方案可以选择,液力偶合器调速和变频器调速,下面就将这两种方法简单介绍一下。
2.变频器恒压供风的基本原理
变频器恒压供风系统主要通过压力传感器实时检测主风管的压力,与设定的压力进行比较,经过PID控制器调节后,在线自动调节变频器来控制风机的转速,使压力始终稳定在设定值上,达到压力稳定的目的。原理图如下:
变频器的调速原理,由交流感应电动机转速公式
n=60f1/P*(1-S)(1)
(式中n—电机转速;f1—定子供电频率;S—转差率;P—电机极对数)可知:如均匀地改变电机定子的供电频率f1,就可平滑改变电机转速.对于异步电动机的变频传动,为了避免电机过磁饱和,同时抑制启动电流,产生必需的转矩进行安全运转,在改变频率的同时,对定子电压也应作相应调节.逆变器主回路把三相50Hz交流电整流滤波为直流,再通过PWM脉宽调制器触发大功率晶体管,把直流变为电压和频率可调的三相交流电,由此可实现变频调速。
变频调速对于风机水泵类负载来说,节能效果尤为明显。变速前后流量、压力、功率、转速之间的关系为:
(其中Q代表风量;H代表风压;P代表轴功率;n代表转速)
下面将挡板调速、变频调速的风量与风压性能曲线绘制到一块,如下图所示:
由以上公式及下图可以看出:
风机的正常工作点为A,当风量需要从Q1调到Q2时,采用挡板调节,特性曲线由R1改变为R2,其工作点调至B点,其功率O Q2B H2’围成的面积,其功率变化很小,其效率却随之降低。
当采用变频调速时,可以按需要升降电机转速,改变设备的性能曲线,图中从n1到n2,其工作点调制C点,使其参数满足工艺要求,其功率为O Q2B H2所围成的面积,同时其效率曲线也随之平移,依然工作在高效区。由于功率随转速3次方变化,故节能效果显著。
节能量P=(H2’-H2)* Q2
3.液力偶合器调速的优缺点
液力偶合器是通过控制工作腔内工作油液的动量矩变化,来传递电动机能量并改变输出转速的,电动机通过液力偶合器的输入轴拖动其主动工作轮,对工作油进行加速,被加速的工作油再带动液力偶合器的从动工作涡轮,把能量传递到输出轴和负载,这样,可以通过控制工作腔内参与能量传递的工作油多少来控制输出轴和力矩,达到控制负载的转速的目的,因此,液力偶合器也可以实现负载转速无级调节。
如果采用液力偶合器调速,则电动机转轴连接到液力偶合器,而负载连接到液力偶合器,电动机仍然由电网供电,电动机仍全速运行。
经过调研,采用液力偶合器调速具有以下优缺点:
优点:
●液力耦合器价格便宜。
●操作简单,维修方便。
缺点:
●调速效率低,节能效果差。
●功率因数低。
●直接改善起动性能,起动电流达到额定电流的5——7倍。
●液力偶合器依靠调节工作腔油量大小改变输出转速,因此响应慢,可能跟不上控制的需要
●机械传动方式,运行故障率高,且需定时加液力油。
●安装时需加在电机与风机中间,则要重作电机基础,期间将造成生产停顿。
●当在运行中液力耦合器出现问题时,只能停产修理。
综合比较此两种方案,变频器调速不但能够更加节约电能,运行更加可靠,调节精度及电机功率因数更高,故障率更低,而且通过压力闭环调节,使窑内负压变化保持为最小值,保证窑内压力平衡。随着变频器的发展,在价格上也会更加具有优势。
4.实际应用
某钢厂共有三条回转窑生产线,配有3台I.D.风机(主排风机),电机功率为1100KW,转速为1493r/min。根据每个窑产量1000吨/天,电机的实际运行速度在额定转速的60%~80%之间,如果采用变频调速,不但能够大大节约电能,而且在风机挡板全开的情况下能够连续调节电机转速,使得窑内负压保持稳定。
根据工艺要求及现场实际情况,对I.D.风机(主排风机)的控制采用变频调速,选用西门子SIMOVERT MV中压变频器实现窑内负压的恒压调速。具体的配置及原理图如下:
控制原理:
变频器的起停由现场操作箱或主控制人机界面HMI控制,在启动时首先将挡板开至最大位置,然后启动变频器,风压由现场压力变送器测量后将实际的压力信号传送至西门子S7-400 PLC中,与设定的压力值进行比较,通过PID调节器输出一个4~20mA的信号做为变频器的给定信号来调节电机的转速,从而实现对窑内负压的调整,保证窑内压力恒定。
在变频器发生故障时,可以临时通过的旁路高压开关柜启动电机。之后通过调节出口挡板的开度大小来调节窑内压力。由于鼠龙式电动机对电网的冲击比较大,因此采用了星三角启动电动机。
5.SIMOVERT MV中压变频器的特点:
SIMOVERT MV中压变频器是西门子公司最新推出的三电平、全数字、矢量控制的变频器。现在在各种领域已经得到了广泛的应用,它具有以下特点:
1)节省能源,特别适于风机和水泵
2)低损耗,功率因数cosΦ>0.96
3)启动电流小,无冲击,能够实现软启动和制动
4)使用电流限幅的过载保护
5)自带有Profibus DP网,易于将传动装置连接并集成到自动化系统中
6)带有专门的调试软件Drive ES,调试简单方便
7)连接简单,通过1台断路器和1台变频变压器即可与工业电网连接
8)采用12脉冲二极管整流,可以有效地消除谐波
9)设计采用三电平电路配置,其部件只承载直流母线电压的一半
6.系统调试
1)主要调试设备及软件
2)通电前的检查:
· 电机绝缘测试
· 高压电缆绝缘测试
· 变压器检查及测试
· 变频柜检查测试
3)变频器送电
4)使用Drive ES软件设置变频器参数
5)静态调试
6)空载试验
7)带载实验
经过调试,系统运行良好,变频器启动时间设为180秒,电流限幅值设为电机额定电流的100%,启动时电机运行平稳。变频器正常运行时,电机在35Hz的频率下运行,通过对实际风压的测量由PLC不断调节变频器的转速,设备运行稳定,真正实现了恒压排风。停车时间设为180秒,停车时未发生变频器过电压故障。
7.结论
1)由于采用了变频调速,使得在正常生产时,电机的输出功率大大降低,节能效果明显。
2)系统具有软启动功能,减小了在启动鼠龙式电动机时对电网的冲击,对整个电网起了保护作用。
3)通过使用PID调节器调节电机转速来调节风压,使得窑内负压变化很小,且压力恒定,实现了恒压排风。
4)采用变频调速,风板保持全开状态,降低了磨损,且大力矩执行机构工作次数减少,故障率降低。
第三篇:变频器及PLC控制技术在恒压供水系统中的应用
变频器及PLC控制技术在恒压供水系统中的应用
1引言
供水系统在各行各业的生产和生活中都起着至关重要的作用。如何保证供水系统安全、可靠、稳定地运行是很多行业都很关注的问题。把先进的PLC控制技术和变频技术等自动化控制技术应用到供水领域,成为对供水系统的要求。
在供水系统中,如果用户用水量需要变化时,利用改变阀门开度变化传统的调整方法,会造成供水压力不足或过大情况,容易造成资源浪费和产生安全隐患。因此,在一些用水量变化大、水压控制高且流量完全由用户确定的供水系统采用变频调速技术则显得尤为重要。
图1变频恒压供水系统原理图
2变频恒压供水工作原理
变频恒压供水就是变频调速技术在供水中的应用,其采用PID调节技术,使供水压力恒定在一个设定范围,其具有恒水压力波动小,节能效果明显。实验中采用循环软启方式。
它的工作原理是:当变频泵运行到工频50Hz时,此时的实际供水压力若还没有达到设定的供水压力,不是直接启动另外一台水泵,而是将当前以变频运行的水泵直接切换到工频方式运行,而以变频方式启动另外一台水泵,以达到维持系统压力的目的。在切换水泵时,按照先启先停的方式进行。这样的好处是机组中的每一台水泵在工作中都可以被使用到。变频恒压供水系统的原理图,如图1所示。
从图1可以看出,在系统运行过程中,将供水管网实际压力与设定压力比较,将得到的压力差经过PID控制器计算与转换,得到变频器输出频率的变化值后,调节水泵机组的运行方式和运行速度,最终使实际供水压力与设定压力值相等。
图2 系统结构框图 系统硬件设计
变频恒压供水系统结构原理图[1][2]如图2所示。系统由水箱、管路、阀门和水泵机组、电气操作系统和各种传感器、仪表等组成。电气操作系统由PLC(德国SIEMENS公司的S7-200型)、变频器(MM440)、小型断路器、交流接触器、热继电器、直流电源、小型电磁继电器以及各种指示灯和主令器件组成;传感器和仪表包括温度传感器、压力传感器、电压变送器、电流变送器、功率变送器等。
在此系统中,传感器将供水管中的压力转换成电量信号后,传送到PLC的特殊功能模块,进行数据处理后传给变频器控制电动机。变频器[3]是这个系统中的核心器件,通过PLC对变频器的控制,就可以改变供水管中的压力[4],实现恒压供水的要求。PLC将模拟量输入、输出模块经过转换后的数据进行PID运算,然后将计算值输出变频器,变频器根据输入的模拟量,改变输出的电压及频率,从而实现对电机转速的调节,改变管内压力值。
根据控制要求[5],水泵机组由四台水泵组成。第一台水泵变压不足时,将第一台水泵切入工频运行,再投入第二台变频泵第四台水泵启动。停泵时先停第一台工频泵,再停第二台工频先开先停。
图3 主程序流程图 系统软件设计 4.1程序模块设计
软件系统设计基于Windows平台的32位编程软件包STEP-7 Micro WIN,采用模块化设计方法,主程序的流程图如图3所示。
除主程序的流程以外,程序模块设计还涉及到定时器T0初始化程序、中断服务程序、故障报警子程序等相应的模块。
4.2组态软件
本系统我们采用WINCC组态软件[6]。WINCC是一个工控系统中的一个电脑控制组态软件,它他可以和PLC通讯,可以点击组态中的按钮来操作一些设备的运行或停止;PLC是可编程控制器[7],可以利用自己的程序来控制一些设备的运行顺序和状态,是工业中必不可少的一种控制方式。
因组态软件不能直接读取AIW通道中的数据,所以运用STEP7中的传送指令,将AIW通道中的数据传送到变量存储区中,以便组态软件从中读取数据。
4.3WINCC与S7-200PLC的通信
WINCC与S7-200系列PLC的通信,可以采用PPI和PROFIBUS两种协议之一进行。通过PROFIBUS协议进行WINCC与S7-200系列PLC通信的实现,需要以下几点:(1)软硬件要求
PC机,Windows98操作系统;S7-200系列PLC;CP5412板卡或者其他同类板卡,如:CP5613,CP5611;EM277 Profibus DP模块;Profibus电缆及接头;安装CP5412板卡的驱动;安装WINCC 4.0或以上版本;安装COM Profibus软件。(2)组态
首先,打开SIMATIC NETCOM Profibus,重新建立一个组态,主站为SOFTNET-DP,从站是EM277 Profibus-DP。(3)设置PG/PC interface 在设置完成后可以诊断硬件配置是否正确、通信是否成功。(4)WINCC的设置
在WINCC变量管理器中添加一个新的驱动程序,新的驱动程序选择PROFIBUS DP.CHN,设定参数。(5)建立变量
WINCC中的变量类型有In和Out。In和Out是相对于主站来说的,即In表示WINCC从S7-200系列PLC读入数据,Out表示WINCC向S7-200系列PLC写出数据。In和Out与数据存储区V区对应。(6)优缺点
优点:该方法数据传输速度快,易扩展,实时性好;
缺点:传送数据区域有限(最大64字节),在PLC中也必须进行相应的处理,且硬件成本高,需要Profibus总线等硬件,还需要Com Profibus软件。
应用场合:适用于要求高速数据通信和实时性要求高的系统。
图4 系统实时监测界面
5系统运行实时监测界面 图4为系统实时监测界面。
6结束语
文中介绍的新型供水方式不论在设备的投资运行的经济性,还是系统的稳定性和可靠性,自动化程序等方面,都是具有无法替代的优势,而且具有显著的节能效果。目前,该系统正向着高可靠性、全数字化微机控制、多品种的方向发展,而追求高度智能化、系列化、标准化将成为必然趋势。
于平
第四篇:变频器恒压供水教学演示系统设计
变频器恒压供水教学演示系统设计.txt31岩石下的小草教我们坚强,峭壁上的野百合教我们执著,山顶上的松树教我们拼搏风雨,严寒中的腊梅教我们笑迎冰雪。本文由shinyqb123贡献
pdf文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。
第 31 卷第 2 期 2010 年 2 月
通化师范学院学报 JOURNAL OF TONGHUA TEACHERS COLLEGE Vol 31 №2.Feb.2010 变频器恒压供水教学演示系统设计
王立忠 ,王广德 ,刘洪波 ,韩 ,孟昭晖 ,丛
强 琳(吉林师范大学 信息技术学院 ,吉林 四平136000)摘 : 为了锻练学生的职业技能 ,在分析和比较国内外供水自动控制系统的发展现状和特点的基础上 , 结合城市供水的现 要 状 ,设计了一套以变频调速技术为基础的恒压供水控制系统.该系统综合运用继电控制技术、变频调速技术以及自动控制技术 , 实 现了恒压供水的参数整定 ,保证了供水系统维持在最佳运行状况 ,同时培养了学生的系统设计能力和对专业的学习兴趣.关键词 : 恒压供水;变频调速;节能 中图分类号 : T M301.2 文献标志码 : A 文章编号 : 1008002310),男 ,吉林公主岭人 ,硕士 ,吉林师范大学信息技术学院副教授.传统的小区供水方式有恒速泵加压供水、水塔 高位水箱供水、气压罐供水等.这些传统的供水方式 不同程度的存在效率低、可靠性差、自动化程度不高 等缺点 ,难以适应当前人们生活中供水的需要.目前 的供水方式正朝着高效节能、自动可靠方向发展.因 此开发自动的变频调速恒压供水系统 , 越来越受到 人们的重视.为满足供水质量的要求 , 降低能耗 , 实 现全自动、可靠稳定的供水 ,利用变频恒压供水具有 全自动恒压运行、自动工频运行、远程手动控制和现 场手动控制等功能.结合学生职业技能训练 , 在教师指导下学生设 计并安装调试变频恒压供水系统 , 可以锻炼学生的 综合设计能力和工程意识.作为教学演示系统也可 以通过演示效果激发学生对专业知识兴趣 , 了解变 频器的应用方法.系统通过对变频器内置 P I 模块参数的预置 , D 利用远程压力表的水压反馈量 ,构成闭环系统 ,根据 用水量的变化 ,在全流量范围内利用变频泵的连续 调节实现恒压供水.1 变频恒压供水演示系统的构成 [14] 成.系统构成如图 1 所示.变频恒压供水系统能 够实现水泵的软启动 , 进而减小水泵启动时的冲击
系统启动时首先闭合空气开关 , 把转换开关达 到变频位置 ,三相交流电通过开关送到交流接触器 和热继电器加载到变频器上 , 变频器输出驱动变频 电机启动运行 ,把蓄水池的水抽到上水池中 ,在此过 ?23? 1994-2010 China Academic Journal Electronic Publishing House.All rights reserved.http://www.xiexiebang.comki.net 1
All rights
第五篇:PLC在恒压供水系统中应用
PLC在恒压供水系统中应用
引言
在供水系统中,恒压供水是指在供水网系中用水量发生变化时,出口压力保持不变的供水方式。本文采用计算机(PC)、可编程控制器(PLC)、变频器组成变频恒压供水监控系统,通过变频调速实现恒压供水、满足节能降耗的要求,而且有利于实现生产的自动化及远程监测。用水量变化具有随机性,用水高峰时水压不足,低谷时又造成能量浪费。变频恒压供水系统根据公共管网的压力变化,通过PLC和变频器自动调节水泵的增减、水泵电机的运行方式及电机的转速,实现恒压供水,既防止了能量空耗,又避免出现电机启动时冲击电流对设备的影响。
二工作原理
变频恒压供水系统采用一台变频器拖动两台大功率电动机,可在变频和工频两种方式下运行;一台低功率的电机,作为辅助泵电机。
启动方式:为避免启动时的冲击电流,电机采用变频启动方式,从变频器的输出端得到逐渐上升的频率和电压。启动前变频器要复位。
变频调速:根据供水管网流量、压力变化自动控制变频器输出频率,从而调节电动机和水泵的转速,实现恒压供水。如设备的输出电压和频率上升到工频仍不能满足供水要求时,PLC发出指令1号泵自动切换到工频电源运行,待1号泵完全退出变频运行,对变频器复位后,2号泵投入变频运行。
多泵切换:根据恒压的需要,采取无主次切换,即“先开先停”的原则接入和退出。在PLC的程序中,通过设置变频泵的工作号和工频泵的台数,由给定频率是否达到上限频率或下限频率来判断增泵或减泵。在用水量较小的情况下,采用辅助泵工作。
为了避免一台泵长期工作,任一泵不能连续变频运行超过3小时。当工频泵台数为零,有一台运行于变频状态时,启动计时器,当达到3小时时,变频泵的泵号改变,即切换到另一台泵上。当有泵运行于工频状态,或辅助泵启动时,计时器停止计时并清零。
故障处理:能对水位下限,变频器、PLC故障等报警。PLC故障,系统从自动转入手动方式。
三PLC控制电路
系统采用S7-200PLC作下位机。S7-200PLC硬件系统包含一定数量的输入/输出(I/O)点,同时还可以扩展I/O模块和各种功能模块,在保证系统稳定性的基础上,再减低系统成本,我们选用了UniMAT扩展模块接在CPU后面。输入点为6个,其中水位上、下限信号分别为I0.0、I0.1。输出点为10个,O0.0-O1.0对应PLC的输出端子。对变频器的复位是由输出点O1.0通过一个中间继电器KA的触点来实现的。根据控制系统I/O点及地址分配可知,系统共有5个开关量输入点,9个开关量输出点;1个模拟量输入点和1个模拟量输出点。可以选用CPU224PLC(14DI/10DO),再扩展一个UniMAT模拟量模块EM235(4AI/1AO)。
四电控程序设计
4.1泵站软件的设计分析
(1)由“恒压”要求出发的工作组数量的管理
为了恒定水压,那么在水压降低时,需要升高变频器的输出频率,并且在一台水泵工作是不能满足恒压要求时,这时需要启动第二台。这样有一个判断标准来决定是否需要启动新泵即为变频器的输出频率是否达到所设定的频率上限值。这一功能可以通过比较指令来实现。为了判断变频器的工作频率达到上限的确定性,应滤去偶然因素所引起的频率波动所达到的频率上限值的情况,在程序中应考虑采取时间滤波情况。
(2)台组泵站泵组的管理规范
由于变频器泵站希望每一次启动电动机均为软启动,有规定各台水泵必须交替使用,那么多台组泵站泵组的投入运行需要有一个管理规范。在本次设计中控制要求中规定任意的一台水泵连续运行不得超过3h,因此每次需要启动新泵或切换变频泵的时候,以新运行泵为变频是合理的。具体的操作时,将现运行的变频器从变频器上切除,并且接上工频电源加以运行,同时将变频器复位并且用于新运行泵的启动。除此之外,泵组管理还有一个问题就是泵的工作循环控制,在本设计中所使用的是用泵号加1的方法来实现变频器的循环控制即3加上1等于0的逻辑,用工频泵的总数结合泵号来实现工频泵的轮换工作。
4.2程序的结构及程序功能的实现
根据前面可知,PLC在恒压供水系统中的功能比较多,由于模拟量单元及PID调节都需要编制初始化及中断程序,本程序可以分为三个部分:主程序、子程序和中断程序。
(1)系统的初始化的一些工作放在初始化子程序中完成,这样可以节省扫描时间。利用定时器中断功能来实现PID控制的定时采样及输出控制。初始化子程序流程框图如图1。在初始化的子程序中仅仅在上电和故障结束时用,其主要的用途为节省大量的扫描时间加快整个程序的运行效率,提高了PID中断的精确度。上电处理的作用是CPU进行清除内部继电器,复位所有的定时器,检查I/O单元的连接。
图1初始化程序
(2)主程序流程图如图2。其功能最多,如泵的切换信号的生成、泵组接触器逻辑控制信号的综合及报警处理等等都在主程序中。生活及消防双恒压的两个恒压值是采用数字式方式直接在程序中设定的。生活供水时系统设定为满量程的70%,消防供水时系统设定为满量程的90%。本系统中的增益和时间常数为:增益Kc=0.25,采样时间Ts=0.2s,积分时间Ti=30min。
图2主控制程序
(3)中断程序如图3,其作用主要用于PID的相应计算,在PLC的常闭继电器SM0.0的作用下工作,它包括:设定回路输入及输出选项、设定回路参数、设定循环报警选项、为计算指定内存区域、指定初始化子程序及中断程序。
图3中断程序
五结束语
恒压供水技术因采用变频器改变电动机电源频率,而达到调节水泵转速改变水泵出口压力,比靠调节阀门的控制水泵出口压力的方式,具有降低管道阻力大大减少截流损失的效能。由于变量泵工作在变频工况,在其出口流量小于额定流量时,泵转速降低,减少了轴承的磨损和发热,延长泵和电动机的机械使用寿命。实现恒压自动控制,不需要操作人员频繁操作,降低了人员的劳动强度,节省了人力。
水泵电动机采用软启动方式,按设定的加速时间加速,避免电动机启动时的电流冲击,对电网电压造成波动的影响,同时也避免了电动机突然加速造成泵系统的喘振。
由于变量泵工作在变频工作状态,在其运行过程中其转速是由外供水量决定的,故系统在运行过程中可节约可观的电能,其经济效益是十分明显的。正因为此,系统具有收回投资快,而长期受益,其产生的社会效益也是非常巨大。
在实际应用中,采用PLC控制恒压供水,还能容易地随时修改控制程序,以改变各元件的工作时间和工作状况,满足不同情况要求。与继电器或硬件逻辑电路控制系统相比,PLC控制系统具有更大的灵活性和通用性。