汽车空调系统制剂加注量研究

时间:2019-05-14 02:32:51下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《汽车空调系统制剂加注量研究》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《汽车空调系统制剂加注量研究》。

第一篇:汽车空调系统制剂加注量研究

汽车空调系统制剂加注量研究

2013年01月19日

随着我国汽车工业的不断发展和人们对汽车舒适性要求的不断提高,空调已成为大多数汽车的必须配置,但由于汽车空调的特殊工况,制冷系统易损坏而产生泄露,即使正常状况,原厂空调一般每隔..3年需要检查补充一定量的制冷剂。制冷剂可以从高压端或低压端加注。制冷剂的加注量对空调系统性能的影响

制冷剂是汽车空调制冷系统的工作流体,它在制冷系统中循环流动,通过自身热力状态的循环变化不断与外界发生能量交换,达到制冷的目的,制冷剂充注量是否合适直接影响着制冷系统的性能。

如图1所示,是某型轿车空调系统制冷量、能效比(COP)与随制冷剂加注量的变化曲线。从图可以看出,在实验的起始阶段,由于制冷剂加注量较少,制冷量很小,能效比(C0P)低,制冷效果很差。

随着制冷剂加注量的增加,制冷量与能效比(COP)不断上升,逐渐达到最大,这时制冷量有一个相对稳定的阶段,是因为空调制冷系统中的储液灌内储存了一定的制冷剂从而保证系统中制冷剂的流量比较稳定。当系统中制冷剂加注量继续增大,储液灌被制冷剂充满以后,制冷剂占住冷凝器和蒸发器部分容积,使换热面积减少,从而降低蒸发器换热能力,使制冷量降低,同时使冷凝温度升高,冷凝压力也随之升高,压缩机功率增大,而进入蒸发器内的液体不能完全蒸发,仍然呈液态被吸回压缩机内,容易引起液击现象。能效比(COP)达到最大后,随着制冷剂的增加缓慢下降。

从图1可以看出,制冷量变化相对平缓的位置即为最佳加注量。制冷剂的加注量在最佳加注量附近,空调器的能效比最大,且制冷量也较高。制冷剂加注量的估算

目前制冷剂充注量的估算主要采用估算法。

内容积估算法是采用加注量占系统各设备内容积百分比的方法来估算总的制冷剂加注量。汽车空调制冷剂加注量等于其高压侧、低压侧各管道、储液干燥器、冷凝器和蒸发器等部件加注量之和。各部件制冷剂量所占部件内容积比例如表1所示。

下面以奇瑞轿车为例,计算该车空调制冷系统制冷剂加注量。制冷系统内容积计算结果如表2所示,则制冷剂充注量的估算值为: 制冷剂的补充加注量的确定

由于汽车空调的特殊工况,系统正常的情况下长时间的使用也会出现制冷剂不足,补充加注适量的制冷剂。3.1 空调系统制冷剂的检查

汽车空调制冷系统制冷剂常用的检查方法有两种.一种是通过观察孔目测制冷剂的情况,一种是利用气管压力表检测系统中的高低压力。

启动发动机,接通空调开关,打开所有车窗玻璃,把空调温度设置最低,风扇位置开关置于最大处,使空调系统连续工作,以便目测观察孔内制冷剂状态。

如图2所示,是观察孔内看到制冷剂的状态。如a)所示,系统中有大量气泡或泡沫状,说明制冷剂严重不足;如图.b)所示,偶尔看到气泡流过,说明制冷剂稍微不足;如图c)所示,孔内无气泡,看见有液体稳定的紊流,说明制冷剂适量。

将歧管压力表接到高低压管路中,检测空调制冷系统的高、低压端压力,高压侧的压力为1.5~1.6MPa,低压侧的压力为 0.14~0.15MPa为正常。..3.2制冷剂添加

首先将加制冷剂的压力表接到高低压管路上,从低压侧加入制冷剂,制冷系统中压力与制冷剂流动情况变化如图3所示。当观察孔中看到管路中的气泡消失时,说明系统中的制冷剂制冷量接近车里需要的制冷量,制冷量还没达到平衡,需要再增加部分制冷剂,制冷系统中的压力随制冷剂的增多而升高,当系统中压力不随制冷剂增加而升高时,说明系统制冷剂达到饱和,完全满足工况的制冷要求,但考虑过冷度,需选择一个合适的添加量,添加量一般是士50g,具体需要参考添加时的环境温度。总结

汽车空调系统易发生制冷剂的泄露,使空调系统不能正常工作。在补充或修理后加注制冷剂的加注量的多少对其性能产生直接影响。制冷剂过少会影响制冷效果,制冷剂过多,压力太高则发动机负荷会增大,会出现散热不良及高温,也会影响制冷效果,严重的还会发生管路涨破和损坏压缩机的危险等。参考文献: [1]潘伟荣.《汽车空调》.机械工业出版社.

[2]钱文波.《家用空调系统制冷剂充注量的研究》.制冷学报.

第二篇:汽车空调加注知识

操作简单,就跟给轮胎充个气一样简单:

一般的汽车空调每年都会正常损失10%左右的制冷剂,这是由于汽车空调压缩机密封方式决定的(汽车空调压缩机是半密封式)。我们只要每年定期给汽车空调检测补充制冷剂就可以了。不需要担心使用方法,下面我告诉各位车友朋友DIY汽车空调检测补充方法。朋友可以尝试自己动手加注制冷剂。方法如下:

1.需要准备一根汽车空调DIY检测补充管。2.一瓶车用R134A制冷剂.3.现在开始给汽车检测压力:先将DIY补充管开瓶器端中的顶针反时针旋转至最顶端,将制冷剂瓶子旋进开瓶器中,旋紧。

4.找准低压接口一般在引擎盖下左侧端有个兰色或黑色小帽子,帽子上面有个L字,将小帽子旋下来。5.将汽车发动机起动并打开空调AC开关,鼓风机开至最大,运转并等待三分种。将DIY管子接口接入汽车空调低压端。

6.DIY管接入低压接口后,DIY管压力表就会瞬间有刻度指示。这时DIY管上的压力表刻度是与空调系统压力是一致的,看压力表上的压力刻度,就知道系统中的压力了。在多少压力时需要补充制冷剂呢?这时有一个知识说明!汽车空调系统中的压力是根据外界环境温度变化而变化的。如下图中,华氏温度与空调系统压力对照表而确认系统中压力高与低,系统压力高了说明系统中的制冷剂多于正常值,反之就要补充制冷剂。

外界环境温度(华氏温度)低压表的压力,以下压力表数值是实验室中理论恒温值,在使用过程中室外温度是达不到这个要求的。所以车主朋友在使用过程中请按图表数值中最小值计算,计算方法是最小值到最小值减去10PSI计算都是系统正常压力,压力千万不能超过最小值,压力一旦超过,压缩机会自动保护,这时制冷效果反而会很差!如外界温度在30度时,图表显示为45PSI-55PSI,这是恒温数值。我们计算时应该用45PSI减去10PSI压力,结果为35PSI,这就是系统正常压力值,最好不超过这个数值。华氏65对应 18.33摄氏度 系统压力25-35PSI 华氏70对应 21.11摄氏度 系统压力35-40PSI 华氏75对应 23.89摄氏度 系统压力35-40PSI 华氏80对应 26.67摄氏度 系统压力40-50PSI 华氏85对应 29.44摄氏度 系统压力45-55PSI 华氏90对应 32.22摄氏度 系统压力45-55PSI 华氏95对应 35 摄氏度 系统压力50-55PSI 华氏100对应 37.78摄氏度 系统压力50-55PSI 华氏105对应 40.56摄氏度 系统压力50-55PSI 华氏110对应 43.33摄氏度 系统压力50-55PSI 7.空调系统中压力低,需要补充制冷剂,将开瓶器中的顶针顺时针旋转,刺穿制冷剂瓶口,开瓶器中的顶针立刻反时针旋转至顶,(注:这时候压力表的刻度会显示最高到100PSI到110PSI,2到时候秒钟后压力表的刻度会慢慢降下来,回来原来显示的刻度上,这是正常的,因为瓶子被刺穿后,有压力出来,这几秒钟显示的是R134A瓶子中的压力,瓶子的压力被压缩机吸收后就显示为系统中的压力了!)轻摇制冷剂瓶,制冷剂气体会流入系统中,同时看压力表刻度,与上图温度与压力PSI单位一至即可。注:制冷剂瓶子请勿倒立!!(油剂混合物除外)

注:在没有刺穿制冷剂瓶时,DIY管中有一点空气,如果车主如要需要将管子中的一点空气排掉,请按以下方法做,在没有刺穿制冷剂瓶时将制冷剂瓶子和开瓶器轻轻松开一点,这时DIY管中的空气会被空调系统中制冷剂冲出去,这时即刻旋紧制冷剂瓶即可!!8.观察到压力表刻度正常时,请立即将开瓶器中的顶针顺时针旋转至最下端并旋紧,拆下空调系统低端口接头即可。如一瓶加入后不够,请按上叙述方法加入第二瓶制冷剂,直至外界温度与系统压力一至为止。9.这时汽车空调系统制冷剂补充以完成,请将L字小帽子旋紧。

注:以上压力刻度和加注方法是美国制冷剂销售公司ID和EF的加注说明,自己完成一次成功加注后,会觉得和汽车轮胎冲气一样的方便!

请在外界环境温度20度以上进行操作.看了该宝贝的人还看了

第三篇:汽车空调自己加注补充制冷剂方法

汽车空调自己加注补充制冷剂方法

汽车空调制冷剂DIY加注补充方法

汽车空调制冷剂补充,就和轮胎冲气一样的方便,安全。

汽车空调每年都会正常损失15%到20%的制冷剂,这是由于汽车空调压缩机是半封闭密封方法决定的。这是正常损失,我们只要每年给汽车空调补充一瓶制冷剂就可以了。不需要担心,我告诉各位车友朋友DIY汽车空调加注方法。朋友可以尝试自己动手加注制冷剂。方法如下: 1.一根汽车空调DIY加注补充管。2.一瓶R134A制冷剂250克,就可以了。

3.现在开始给汽车检测压力:先将DIY补充管开瓶器端中的顶针反时针旋转至最顶端,将制冷剂瓶子旋进开瓶器中,旋紧。

4.找准低压接口一般在引擎盖下左侧端有个兰色或黑色小帽子,帽子上面有个L字,将小帽子旋下来。

5.将汽车发动机起动并打开空调AC开关,鼓风机开至最大,等待三分种后将DIY管子接口接入汽车空调低压端。

6.DIY管接入低压接口后,DIY管压力表就会瞬间有刻度指示。这时DIY管与空调系统是联通的,看压力表上的压力刻度,就知道系统中的压力了,在什么压力下加注呢?这时有一个知识说明!汽车空调系统中的压力是根据外界环境温度变化而变化的。如下图中,华氏温度与空调系统压力对照表而确认系统中压力高与低,系统压力高了说明系统中的制冷剂多于正常值,反之就要补充制冷剂。如外界温度在30度,空调系统中的压力应该在45PSI左右,小于45PSI就应该补充制冷剂。(华氏温度是美国常用温度单位,谢谢!)

外界环境温度(华氏温度)低压表的压力 华氏65对应 18.33摄氏度 系统压力25-35PSI 华氏70对应 21.11摄氏度 系统压力35-40PSI 华氏75对应 23.89摄氏度 系统压力35-40PSI 华氏80对应 26.67摄氏度 系统压力40-50PSI 华氏85对应 29.44摄氏度 系统压力45-55PSI 华氏90对应 32.22摄氏度 系统压力45-55PSI 华氏95对应 35 摄氏度 系统压力50-55PSI 华氏100对应 37.78摄氏度 系统压力50-55PSI 华氏105对应 40.56摄氏度 系统压力50-55PSI 华氏110对应 43.33摄氏度 系统压力50-55PSI

7.空调系统中压力低,需要补充制冷剂,将开瓶器中的顶针顺时针旋转,刺穿制冷剂瓶口,开瓶器中的顶针立刻反时针旋转至顶,将制冷剂瓶上下反至,轻摇制冷剂瓶,制冷剂液会流入系统中,同时看压力表刻度,与上图温度与压力PSI单位一至即可。

8.观察到压力表刻度正常时,请立即将开瓶器中的顶针顺时针旋转至最下端并旋紧,移动空调系统低端口接头。如一瓶加入后不够,请按上叙述方法加入第二瓶制冷剂,直至外界温度与系统压力一至为止。

9.这时汽车空调系统制冷剂补充以完成,请将L字小帽子旋紧。完成!淘宝有此产品!注:以上压力刻度和加注方法是美国制冷剂销售公司ID和EF的加注说明,自己完成一次成功加注后,会觉得和汽车轮胎冲气一样的方便!有兴趣的朋友有以访问他们的网站。

第四篇:汽车空调系统实验报告

汽车空调系统实验报告

车辆2 陈树郁 201131150501

一、实验目的

1.学习并理解汽车空调系统的组成及基本工作原理;

2.熟悉空调系统的制冷循环路线;

3.掌握对空调系统的操作以及控制系统的结构原理;

4.理解压力表的结构原理以及对压力表的操作;

5.理解制冷剂的作用并能掌握加注方法;

6.具有诊断和排除汽车空调系统常见故障的技能。

二、空调工作基本原理

发动机驱动的压缩机将气态的制冷剂从蒸发器中抽出,并将其送入冷凝器。高压气态制冷剂经冷凝器时液化而进行热交换(释放热量),热量被车外的空气带走。然后高压液态的制冷剂经膨胀阀的节流作用而降压,低压液态制冷剂在蒸发器中气化而进行热交换(吸收热量),此时蒸发器附近被冷却了的空气通过鼓风机吹入车厢内。接着气态制冷剂又被压缩机抽走,泵入冷凝器,如此使制冷剂进行封闭的循环流动,不断地将车厢内的热量排到车外,使车厢内的气温降至适宜的温度。

三、实验设备

1.曲柄连杆式压缩机(由曲柄,连杆,活塞,进排气阀等组成);

2.斜盘式压缩机(由主轴,斜盘,气缸,活塞,进排阀等组成);

3.冷凝器、干燥器、膨胀阀、蒸发器、压力表、制冷剂罐、真空泵、空调系统示教台。

四、实验设备简介

1.空调压缩机

a)压缩机的功能

把蒸发器中吸收热量后产生的低温低压冷冻剂蒸气吸入后进行压缩,升高其压力和温度之后送往冷凝器,使冷冻剂在冷却循环中进行循环,由蒸发器吸收的热量在通过冷凝器时散发掉。

b)压缩机的种类

压缩机的种类分为曲轴连杆式、斜盘式摇盘式、双作用轴向斜盘式、涡旋式、旋转叶片式等;

c)压缩机的工作原理(双作用式)

当主轴带动斜盘转动时,斜盘便驱动活塞作轴向移动,由于活塞在前后布置的气缸中同时作轴向运动,这相当于两个活塞在作双向运动。

d)工作过程

前缸活塞向左移动时,排气阀片关闭,缸内压力下降,吸气阀片打开,低压蒸气进入气缸开始了吸气过程,一直到活塞向左移动到终点为止;与此同时后缸活塞也向左移动,但不同的是后缸活塞处于压缩过程,在这过程中蒸气不断被压缩,压力和温度不断上升,上升到一定程度时,排气阀片打开,转到排气过程,一直到活塞移动到最左边为止。这样斜盘每转动一周,前后两个活塞分别同时完成吸气、压缩过程,这样一次循环,相当于两个工作循环。

e)压缩机电磁离合器

压缩机电磁离合器在需要的时候可以接通或切断发动机与压缩机之间的动力传递;另外,当压缩机过载时,它还能起到一定的保护作用。2.冷凝器

空调冷凝器用于制冷空调系统,管内制冷液直接与管外空气强制进行热交换,以达到制冷空气的效果。

在制冷时为系统的高压设备(冷暖热泵型在制热状态时为低压设备),装在压缩机排气口和节流装置(毛细管或电子膨胀阀)之间,由空调压缩机中排出的高温高压气体,进入冷凝器,通过铜管和铝箔片散热冷却,空调器中都装有轴流式冷却风扇,采用的是风冷式,使制冷剂在冷却凝结过程中,压力不变,温度降低。由气体转化为液体。

在冷凝器内制冷剂发生变化的过程,在理论上可以看成等温变化过程。实际上它有三个作用,一是空气带走了压缩机送来的 高温空调制冷剂气体的过热部分,使其成为干燥饱和蒸气;二是在饱和温度不变的情况下进行液化;三是当空气温度低于冷凝温度时,将已液化的制冷剂进一步冷却 到与周围空气相同的温度,起到冷却作用

目前汽车空调冷凝器有管片式、管带式以及平行流式3种。

3.干燥器

储液干燥器串联在冷凝器与膨胀阀之间的管路上,使从冷凝器中来的高压制冷剂液体经过滤、干燥后流向膨胀阀。在制冷系统中,它起到储液、干燥和过滤液态制冷剂的作用。制冷剂和冷冻机油中含有微量水分,当这些水分通过节流装置时,由于压力和温度下降,水分便容易凝结成冰,造成系统堵塞的“冰堵”故障。干燥的最主要功用是防止水分在制冷系统中造成冰堵。

此外,制冷系统会由于制造维修时,而带入一些杂物,同时,金属的腐蚀作用也会产生一些杂质。上述杂质与制冷系统的制冷剂混合在一起,在系统中循环便很容易将系统中堵塞,影响正常工作,同时也会增加压缩机的磨损,所以干燥器的另一重要作用是过滤。

4.膨胀阀

膨胀阀也称节流阀,是组成汽车空调制冷系统的主要部件,安装在蒸发器入口处。功能是把来自贮液干燥器的高压液态制冷剂节流减压,调节和控制进入蒸发器中的液态制冷剂量,使之适应制冷负荷的变化,同时可防止压缩机发生液击现象(即未蒸发的液态制冷剂进入压缩机后被压缩,极易引起压缩机阀片的损坏)和蒸发器出口蒸气异常过热。

目前膨胀阀主要有内平衡热力膨胀阀、外平衡热力膨胀阀、H型膨胀阀、膨胀节流管(孔管)四种结构形式。

膨胀阀工作原理:它有四个接口通往空调系统,一个接干燥过滤器出口,一个接蒸发器入口。另外两个接口,一个接蒸发器出口,一个接压缩机进口。感温元件处在从蒸发器出来的制冷剂气流中。这种膨胀阀是温控式的,当冷却负荷的增加导致蒸发器向外输出的温度升高,感温包的温度也随之升高并产生膨胀作用。通过膜片和推杆推动球阀使截面加大,制冷剂进入蒸发器的流量加大。当蒸发器内制冷剂输出温度有所下降时,感温包收缩,球阀的横截面减小,导致制冷剂进入蒸发器的流速减慢。阀门的开度大小取决于蒸发器输出端的温度。

5.蒸发器

空调蒸发器的作用是利用液态低温制冷剂在低压下易蒸发,转变为蒸气并吸收周围空气的热量,风机再将冷风吹到车室内,达到制冷目的。

6.制冷剂

制冷剂又称制冷工质,在南方一些地区俗称雪种。它是在制冷系统中不断循环并通过其本身的状态变化以实现制冷的工作物质。制冷剂在蒸发器内吸收被冷却介质(水或空气等)的热量而汽化,在冷凝器中将热量传递给周围空气或水而冷凝。

以前的汽车使用的制冷剂为R-12,它会破坏臭氧层,已淘汰,制冷剂不可混用。目前空调使用的制冷剂,一种是R22制冷剂,另一种是R410A新冷媒。

五、实验过程

1、制冷剂加注过程

空调系统在加注制冷剂前必须抽真空,而抽真空的目的是为了清除系统中的空气及水分,并进一步检查系统在真空情况下的密封性。a)抽真空步骤

① 将歧管压力表中黄色(中间)软管的接头接到真空泵上,将蓝色(低压)软管 的接头接到低压管路维修阀口上,将红色(高压)软管接头接到高压管路维修阀口上;② 打开歧管压力表,打开高低压手动阀,启动真空泵; ③ 抽真空到低压表的负压值高于l00kPa;

④ 关闭高低压手动阀,其低压侧表针在10分钟内不得有明显回升。若无,则可向系统内充注制冷剂;若有,就应向系统内充入少量制冷剂进行查找、检修泄漏点,并重新抽真空。b)制冷剂加注步骤

将压力表黄色软管接头从真空泵上接到倒的制冷剂钢瓶接口上;

拧开压力表高压手动阀,向系统中加入液态制冷剂,直到规定量;若不能加注到规定量,可按步骤b补充。注:加注液态制冷剂时,不可拧开低压手动阀,以防产生液击;不能启动空调,以防制冷剂倒灌入钢瓶中产生危险。c)加注气态制冷剂

① 将压力表中黄色软管接头从真空泵上接到正立的制冷剂钢瓶接口上; ② 拧开钢瓶阀门,拧松压力表黄色软管螺母,直到有制冷剂气体外泄约2-3 秒钟,然后拧紧螺母;

③ 拧开压力表低压手动阀,向系统中加入气态制冷剂,当系统压力高于 2.5kg/cm2时,关闭低压阀;

④ 启动发动机,同时启动空调且置最大制冷工况档; ⑤ 再打开低压手动阀,让制冷剂吸入系统,直到规定量。

需注意的是补充制冷剂,可用压力表和视液镜观查法来确定制冷剂是否足量。

2、空调泄露点的查找

a)直接查找有油污的地方,若过于隐蔽也可把洗洁精水涂抹在管道上,有气泡冒出的地方即为泄露点;

b)用试灯法检测,若火苗呈绿色则灯接近处即为泄露点; c)电子检测法检测,将探头伸到可疑泄露处,若有冷媒泄露则在显示屏上有显示,在检测过程中要注意调节灵敏度; d)荧光法检测泄漏量很小的泄露点。

六、实验心得

1.通过实验对空调的组成零部件有了更深层的了解;

2.在实验不断思考的过程中,对空调的工作原理、检测与维护的知识得到进一 步的提升;增强了自身的学习能力;

3.冷媒发生的变化:

a)压缩机:低温低压气态制冷剂压缩成高温高压制冷剂

b)冷凝器:将高压制冷剂蒸汽冷凝成中温高压液体(注:从冷凝器中出来的为液态冷媒,流经干燥瓶吸收了多余的水分)

c)蒸发器:低温低压的液态制冷剂蒸发成低温低压的制冷剂蒸汽

4.通过学习解决了之前在4S店实习中遇到汽车空调蒸发器至压缩机空气入口 之间的低压管路结霜的问题,结合课堂上的知识,我认为应该有以下几个原因: a)管道堵塞 b)鼓风机不运转 c)干燥瓶不起做用 d)温度传感器失效

第五篇:热泵型电动汽车空调系统性能试验研究

热泵型电动汽车空调系统性能试验研究

1.1 研究背景及意义

目前,随着人类越来越多的使用燃油汽车,汽车尾气排放出的二氧化碳加剧了全球 气候极端变化。我国的石油资源的探明储量极其有限,早在 2009 年,石油消费进口依 存度就突破了“国际警戒线”(50%),高达 52%。汽车保有量却是逐年增加,如果 汽车几乎完全依赖于化石燃料,很容易受到国际石油价格的冲击,甚至导致燃料的供应 中断。再者,燃油汽车的尾气排放出大量的污染物如 PM10(可吸入颗粒物)、NOx(氮 氧化物)、SO2(二氧化硫)和 VOCs(挥发性有机化合物)等,已经成为我国城市大 气污染的主要污染源,严重危害了人们的健康。纯电动汽车是以电能驱动的,具有燃 油汽车无法比拟的优点,主要表现在:

一、污染少、噪声低。其本身不排放污染大气 的有害气体,即使按所耗电量换算为发电厂的排放,除硫和微粒外,其它污染物也显著 减少,且电动汽车电动机的发出的噪声较燃油汽车发动机小得多;

二、能源的利用具有 多元化,电力可以从多种一次能源如煤、核能、水力、太阳能、风能、潮汐能等获得,能源利用更加安全;

三、可在夜间利用电网的廉价“谷电”进行充电,起到平抑电网的 峰谷差的作用;

四、效率更高和控制更容易实现智能化。

作为一种具有环保和节能优势的先进交通工具,电动汽车受到了越来越广泛的关注。美、日、欧等发达国家不惜投入巨资进行电动汽车的研究开发,取得了丰硕的研究成果,纯电动汽车目前在许多发达国家已得到商业化的应用。我国电动汽车发展起步

较晚,但国家从维护能源安全,改善大气环境,提高汽车工业竞争力和实现我国汽车工 业的跨越式发展的战略高度考虑,从“八五”开始到现在,电动汽车研究一直是国家计 划项目,并在 2001 年设立了“电动汽车重大科技专项”,通过组织企业、高校和科研 机构,集中各方面力量进行技术攻关。与此同时,上海、广州和深圳等地的地方政 府也出台了相应的扶持新能源汽车的发展政策,计划实现电动汽车在本地的产业化。

电动汽车代表未来汽车发展的方向,各国政策的扶持为电动汽车的发展铺平了道 路,近年来,它们在全世界范围内呈现出欣欣向荣的的发展态势,据国外著名金融杂志 JP Morgan 报道,预计到 2020 年全球将有 1100 万辆电动汽车上市销售,这意味着到那 时电动汽车将分别占有北美 20%和全球 13%的市场份额,但目前电动汽车的发展遇到 很多技术问题,特别动力电池技术,续驶里程的提高和充电网络的建设等问题。

空调系统作为改善驾驶员工作条件、提高工作效率、提高汽车安全性及为乘员营造 健康舒适的乘车环境的重要手段,对燃油汽车和电动汽车而言,都是必不可少的。电 动汽车用空调系统与普通的汽车(内燃机驱动)空调相比,由于原动机不同而引发一系 列新变化。主要体现在:1)普通的汽车空调系统的压缩机依靠发动机通过一个电磁离 合器驱动,而电动汽车空调压缩机自带电动机独立驱动;2)电动汽车没有用来采暖的 发动机余热,不能提供作为汽车空调冬天采暖用的热源,必须自身具有供暖的功能,即 要求制冷、制热双向运行的热泵型空调系统。

纯电动汽车空调系统制冷、供暖和除霜所需能量均来自于整车动力电池。作为电动 汽车功耗最大的辅助子系统,空调系统的使用将极大的降低其续驶里程。因而,通过优 化电动汽车空调系统的设计以提高其性能对提高电动汽车续驶里程,推广电动汽车的应 用有着重要意义。

1.2.2 热泵式汽车空调研究现状

汽车空调系统是实现对车厢内空气进行制冷、加热、换气和空气净化的装置。随着 汽车的日益普及以及人们对汽车的舒适性、安全性要求的提高,汽车空调系统已经成为 现代汽车上必不可少的装置。汽车空调工作环境的特殊性如需要承受频繁的震动和冲 击,空调的热负荷大和汽车结构空间有限等决定的汽车空调在结构、材料、安装、布置、设计、技术要求等方面与普通的室内空调有较大的差别。而对于能源利用效率较高的新 兴代环保电动汽车,它们是否能被用户接受,往往依赖于是否拥有效率更高的采暖和空 调系统。对于汽车空调系统,目前采用的技术路线主要包括R134a热泵空调系统、CO2 热泵空调系统、太阳能辅助热泵空调系统和电加热器混合调节空调系统。1.2.2.1 R134a 热泵空调系统

众所周知,热泵技术是一项节能技术,它在家用空调系统中的应用已较为成熟,纵 观电动汽车的发展史,采用小型燃油装置作为加热装置的不消耗电能的汽车空调系统,由于污染环境被淘汰;效率较低的采用半导体制冷和制热的热电空调系统则更无法被 电动汽车所接受,只有热泵型空调系统才是最适合电动汽车的系统。如前文所述,国 内外高校和企业在研究电动汽车的同时,也相应地开展了热泵空调系统的配套研究。由 于传统的燃油汽车车室内冬季采暖一般采用发动机的余热,而汽车行业的核心竞争力在 于产品和技术,因此现有文献中报道电动汽车热泵空调系统的参数的很少,对汽车热泵 空调系统的研究仅仅局限于实验室阶段。

R134a是目前汽车空调系统中广泛使用的一种制冷剂,日本电装公司开发出的一套 R134a热泵空调系统是具有代表性的电动汽车空调系统之一,其在风道中采用了车内冷 凝器和蒸发器的结构,如图1-3所示。制冷工况循环为:由压缩机经四通阀至车外换 热器(此时用作冷凝器),再经电子膨胀阀

1、蒸发器回到压缩机。制热及除霜工况循 环为:由压缩机经四通阀至车内冷凝器,再经电子膨胀阀

2、车外换热器(此时用作蒸 发器)和电磁阀回到压缩机。当系统以除霜/除湿模式运行时,制冷剂将经过所有3个换 热器。空气通过内部蒸发器来除湿,将空气冷却到除霜所需要的温度,再通过车内冷凝 器加热,然后将它送到车室,解决了汽车安全驾驶的问题。该系统在制冷和制热运

行工况下具有较好的性能:当环境温度为40℃,车室温度为27℃,相对湿度为50%时,系统的EER达2.9;环境温度为-10℃,车室温度为25℃时,系统制热性能系数达2.3。文献[26-27]也对汽车热泵空调系统的性能进行了实验研究。Antonijevic和Heckt将开发出热泵空调安装在一辆燃油汽车上,测试其在低温工作环境下的性能,将实验结果与现有燃油汽车的其它供暖形式进行对比发现,采用热泵空调供暖时汽车性能更优,耗油量更少。Hosoz和Direk对一台R134a热泵型汽车空调在改变室外温度和压缩机转速的条件下进行了性能测试,该台汽车空调的特点是使用四通阀来实现制冷和制热模式的切换,且在制冷和制热运行时,R134a制冷剂分别经过两个热力膨胀阀降压。测试结果表明:系统制冷运行时,各个部件的总的 损失随着压缩机转速的增大而增大,切换至制热模式运行时,系统 损失率则随压缩机的转速提高而减小;R134a系统制热运行时COP较制冷系统更高,单位质量 损失更小,但系统在室外温度较低的情况下制热量是不够的。

1.2.2.2 CO2热泵空调系统

自Perkins于1934年首次开发出蒸汽压缩式制冷循环以来,至今用于制冷与空调系统的制剂达50多种。目前汽车空调中广泛使用的制冷剂是HFC134a(R134a),少部分使用R407C。近年来,世界各国加速了温室气体的减排进,欧盟在2006年通过的禁氟法规定:2011年1月1日起所有新批准型号的汽车放热空调系统将禁止使用含GWP>150的氟化气体制冷剂,从2017年1月1日起所有新出厂车辆的空调系统将禁止使用含有GWP>150的氟化气体制冷剂。R134a 的GWP值高达1300,这就意味着R134a在不久的将来也会被完全淘汰。现在汽车行业正在考虑用CO2、HFO1234yf和R152a三种主要候选物来替代汽车空调系统中的R134a(表1-2所示为四种制冷剂的环境及安全性能比较),其中CO2是一种自然工质,它来源广泛、成本低廉,且安全无毒,不可燃,适应各种润滑油常用机械零部件材料,即便在高温下也不分解成有害气体。自从1992年挪威工业大学的Lorentzen教授提出了二氧化碳跨临界循环理论,制造了第一套二氧化碳空调系统,并得出了与R134a系统相近的性能测试结果之后,二氧化碳再次引起人们的兴趣。

目前国内外研究者对二氧化碳在汽车热泵空调上的应用已进行了大量的研究,并取得了一定的成果。相对而言,国外的研究起步早,研究更深入。在实验研究方面,McEnaney 等人于1999年通过实验比较了两套分别采用CO2和R134a作为制冷剂的相似的汽车空调系统的性能,其中CO2汽车空调系统采用了微通道蒸发器和气冷器,而R134a系统则采用采用传统的管翅式换热器。与管翅式换热器相比,微通道蒸发器的迎风面积增大了20%,微通道气冷器的外形体积和空气侧迎风面积则分别减少23%和28%。实验结果表明在相同的运行工况下,二氧化碳和R134a系统的性能相当。2005年,日本的Tamura等人在改造已有的R134a系统的基础上,设计了一套CO2热泵型汽车空调系统,该热泵系统能够利用车内的辅助换热器收集系统除霜时放出的热量来预热空气。他们还通过对比实验研究发现,在热泵/除霜工况下,CO2系统性能更优。2009年,韩国的Kim等人则为燃料电池汽车设计了一套CO2热泵空调系统,该系统由一台半封闭压缩机、两个微通道冷凝器(制冷用的气冷器和制热用的小型换热器)、一个微通道蒸发器、一个内部热交换器、一个膨胀阀和一个集气罐组成。他们将散热片(散发燃料电池余热)分别放置在室外侧微通道换热器的迎风侧和背风侧,在不同工况下对该系统进行测试,测试结果表明:制热时,将散热片置于迎风侧以加热室外空气可使系统的制热量和COP分别提高54%和22%,但在系统制冷时,制冷量将减少40%~60%,COP则相应的减少43%-65%。同时他们还发现,压缩机的转速对系统的性能影响较大,压缩机的转速从1460rpm(转每分)增大到2330rpm时,系统的COP减少28%,因为压缩机消耗的功率的增幅远大于系统制冷量的增大幅度;制冷时系统降温时间随车内负荷的增大而增大,车内负荷分别为0kw、1kw和2kw时,从35℃降到20℃的时间分别为8min,26min和30min。在CO2汽车空调系统的开发方面,国外许多著名的企业如日本的Denso(电装),美国的Visteon(伟世通),法国的Valeo(法雷奥)等公司均已研制出二氧化碳汽车空调样机。日本电装公司还专门为电动汽车开发了一套CO2热泵空调系统,系统也采用了在风道内设置2个换热器的方案,与R134a系统(如图1-3所示)不同的是CO2系统各部件的承压均超过10MPa,且制冷模式运行时,制冷剂同时流经内部冷凝器和外部冷凝器。

国内对CO2运用于汽车空调系统的研究起步相对较晚,以上海交通大学的陈江平教授为代表的团队一直致力于二氧化碳汽车空调压缩机、膨胀阀以及系统的设计和优化等的研究工作。2003年,上海交通大学联合Santana(桑塔纳)公司研制出我国第一套CO2汽车空调系统,通过实验发现,该系统与国外同期研制的样机性能差不多。随后,他们又对系统进行了改进,将压缩机、气冷器和蒸发器的尺寸分别减少49%、28%和10%,在系统性能不变的前提下,大大提高了系统紧凑性,但到目前为止,国内还未见热泵型CO2汽车空调系统的相关报道。

综上所述,CO2跨临界循环用于汽车热泵空调系统中不仅具有环保的优势,而且在系统效率方面也有提高的潜力。但相比传统的R134a系统而言,CO2系统排气压力高、成本高且压缩机较为笨重,因而目前对CO2应用于汽车空调系统的研究有所降温。

1.2.2.3 太阳能辅助空调系统

早在1989年,Ingersoll就发现将太阳能电池布置在车顶在为汽车空调系统提供部分能量的同时也大大降低了车厢内的峰值冷负荷。2000年,广东工业大学的陈观生等人设计出一台电动汽车用热泵空调,并探讨了太阳电池在热泵空调系统中应用的可能性。电动汽车热泵空调系统的工作原理如图1-5所示,它与普通的热泵空调系统并无区别,由于在电动车上使用,压缩机具有特殊性,采用了结构简单,性能优良的双工作腔滑片式压缩机。制冷/制热模式运行时,该系统的制冷量/制热量随压缩机转速增加呈线性增长。制冷运行条件下,压缩机转速较低(<1500r/min)时,COP随转速的增大,增长速度较快,当转速增长到一定程度(>2000r/min)后,COP随转速增加而趋于恒定,将太阳能电池布满车顶后,空调系统制冷量的增幅为6%~27%。热电制冷虽然效率太低,难以满足汽车空调的需要,但采用太阳能辅助的方法来实现其在汽车上的应用也是一个较好的选择。Mei等人首次将太阳能辅助热电制冷技术应用于汽车空调系统中,他们发现将太阳能光伏电池板覆盖汽车车顶能够产生225W的电量,并大大降低车内的峰值负荷.1.2.2.4 电加热辅助空调系统

电动汽车热泵空调系统在室外环境温度极低的情况下,制热性能会大大降低,往往无法满足车内的热负荷需求,而采用电加热辅助的空调系统则克服了热泵系统的以上缺点。富士重工在“2005年人与车科技展(Pacifico横浜、2005年5月18~20日)”上展出的电动汽车“Subaru R1e”中,采用了电加热辅助空调系统。此外,三菱汽车2009年7月上市的电动汽车“i-MiEV”也采用了电加热器(如图1-6a所示)作为空调的制暖热源。加热器由可用电发热的PTC(Positive Temperature Coefficient)加热器元件、将加热器元件的热量传送至散热剂(冷却水)的散热扇、散热剂流路和控制底板等组成。该电加热器配置在驾驶席和副驾驶席之间的地板下方,通过在其内部的加热原件两侧通入冷却水,提高了制暖性能。

展望

在本文研究基础上,以下几个方面仍然需要进一步研究,以提高系统性能:

1)建立电动汽车空调系统各个部件的仿真模型,并对其进行动态仿真模拟研究用以指导系统优化设计;

2)对微通道蒸发器在热泵工况的结霜性能做更深入的研究,在双层蒸发器的基础上设计出制冷剂均匀分配、压降合理的微通道蒸发器,以期获得高效换热;

3)强化 R407C 系统的压缩机、换热器、膨胀阀的匹配问题以及系统控制策略研究等。

下载汽车空调系统制剂加注量研究word格式文档
下载汽车空调系统制剂加注量研究.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    汽车空调系统匹配计算(五篇范文)

    摘要 汽车空调的普及,是提高汽车竞争能力的重要手段之一。随着汽车工业的发展和人们物质生活水平的提高,人们对舒适性,可靠性,安全性的要求愈来愈高。国内近年来,汽车生产厂家越......

    国外汽车空调系统技术发展趋势

    国外汽车空调系统技术发展趋势 摘要近年来,环保和能源问题成为世界关注的焦点,也成为影响汽车业发展的关键因素,各种替代能源动力车的出现,为汽车空调业提出了新的课题与挑......

    汽车空调系统检修试题(含答案)

    《汽车空调系统检修》复习题(一) 一、单项选择题: ( A )1、汽车空调控制按键“AUTO”表示 : A、自动控制 B、停止 C、风速 D、温度控制 ( D )2、一般汽车空调工作时,压缩机电磁离合......

    汽车空调系统维修试卷及参考答案

    《汽车空调系统维修》考试卷及参考答案 一、选择题(10分,每题1分) 1、( B )冷媒在蒸发器出口处为: (A) 高压气态 (B)低压气态 (C)高压液态 (D)低压液态。 2、( A )冷冻液最主要之作用是: (A) 润......

    汽车空调系统实训标准

    汽车空调系统实训标准本课程属于汽车空调课程的实训部分,根据汽车空调实训教研室的配置方案编写相关的空调实训教学大纲。以相关的实训教学项目开展教学,指导学生使用汽车空调......

    大众汽车空调系统维修心得

    大众汽车空调系统维修心得 上海汽车工业青州销售有限公司 王天杰论文 随着气温的升高,每天来站维修的顾客很大一部分是对空调系统有抱怨,为了提高顾客的满意度,快速、正确地为......

    汽车空调系统的维修检测

    汽车空调系统的检测1.空调系统的检漏汽车空调制冷系统的检漏方法常用的有目测检漏法、皂泡检漏法、汽车空调制冷系统的检漏方法常用的有目测检漏法、皂泡检漏法、目测检漏法......

    汽车空调系统的认识(教案)

    汽车空调系统的认识 授课班级:09汽车 授课地点:09汽车教室 课型:新授课 课时安排:1课时 教学目标: 知识目标:1 正确描述空调系统的基本知识、基本组成 2 简单描述暖风系统的类型......