各种太阳能电池的优缺点[共5篇]

时间:2019-05-14 21:18:50下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《各种太阳能电池的优缺点》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《各种太阳能电池的优缺点》。

第一篇:各种太阳能电池的优缺点

各种不同太阳电池的优缺点分析

http://news.cecb2b.com/ 来源:元器件交易网 日期:2012年05月10日

硅太阳电池的应用日趋广泛, 但昂贵的原材料成为发展的瓶颈.薄膜太阳电池由于只需使用一层极薄的光电材料,材料使用非常少。并可使用软性衬底,应用弹性大,如果技术发展成熟,其市场面将相当宽阔。本文就迄今被人们广为关注的薄膜太阳电池, 即非晶硅薄膜太阳电池,微(多)晶硅薄膜太阳电池,铜铟硒薄膜太阳电池,碲化镉薄膜太阳电池,染料敏化薄膜太阳电池和有机薄膜太阳电池的发展概况,技术难点和优缺点进行论述。

引言

新能源和可再生能源是21世纪世界经济发展中最具决定性影响的技术领域之一。光伏电池是一种重要的可再生能源,既可作为独立能源, 亦可实现并网发电, 而且是零污染排放。硅太阳电池由于成本原因, 最初只能用于空间, 随着技术发展和生产工艺成熟, 其成本日趋下降, 应用也逐步扩大.面对今天的能源供应状况和日益严重的环境污染, 以至危及人类自身生存的现实, 开发新能源和可再生能源的理念已被世界各国广泛接受.发电能力超过100兆瓦的超大型光伏发电站相继在世界各处建造, 发电能力为几十兆瓦的大型光伏发电站更不在少数(在建的和已建成的).大规模的发展使得上游原材料的生产供不应求, 问题日益突出, 许多太阳电池芯片生产厂家和组件生产厂家因原材料问题而不得不经常处于停产状态, 原材料的供应和价格成了制约当前太阳电池生产的瓶颈。

大力发展薄膜型太阳电池不失为当前最为明智的选择, 薄膜电池的厚度一般大约为0.5至数微米, 不到晶体硅太阳电池的1/100, 大大降低了原材料的消耗, 因而也降低了成本.薄膜电池可沉积在玻璃、不锈钢片或聚脂薄膜等廉价的衬底上, 可以弯曲甚至可以卷起来, 便于携带。

薄膜太阳电池的研究始于20世纪60年代, 目前从国际上的发展趋势看主要是非晶硅(a-Si:H)薄膜太阳电池, 微(多)晶硅薄膜太阳电池, 铜铟硒(CuInSe,CIS)薄膜太阳电池, 碲化镉(CdTe)薄膜太阳电池, 染料敏化薄膜太阳电池(DSSC), 有机薄膜太阳电池.以下分别概述各类薄膜太阳电池的研发情况。

2非晶硅薄膜太阳电池

2.1主要进展

非晶硅薄膜太阳电池在20世纪70年代世界能源危机时获得了迅速发展, 它在降低成本方面的巨大潜力, 引起了世界各国研究单位、企业和政府的普遍重视, 其主要特点是:

(1)重量轻,比功率高

在不锈钢衬底和聚脂薄膜衬底上制备的非晶硅薄膜电池, 重量轻、柔软,具有很高的比功率.在不锈钢衬底上的比功率可达1000W/Kg,在聚脂膜上的比功率最高可达2000W/Kg.而晶体硅的比功率一般仅40-100W/Kg.由于衬底很薄,可以卷曲、裁剪, 便于携带, 这对于降低运输成本特别是对于空间应用十分有利.(2)抗辐照性能好

由于晶体硅太阳电池和砷化镓太阳电池在受到宇宙射线粒子辐照时, 少子寿命明显下降.如在1Mev电子辐射通量1×1016e/cm2时, 其输出功率下降60%, 这对于空间应用来说是个严重问题.而非晶硅太阳电池则表现出良好的抗辐射能力, 因宇宙射线粒子的辐射不会(或很小)影响非晶硅太阳电池中载流子的迁移率, 但却能大大减少晶体硅太阳电池和砷化镓太阳电池中少子的扩散长度, 使电池的内量子效率下降.在相同的粒子辐照通量下, 非晶硅太阳电池的抗辐射能力(效率10%, AM0条件下)远大于单晶硅太阳电池的50倍, 具有良好的稳定性.多结的非晶硅太阳电池比单结的具有更高的抗辐照能力.(3)耐高温

单晶硅材料的能带宽度为1.1eV, 砷化镓的能带宽度为1.35eV, 而非晶硅材料的光学带隙大于1.65 eV, 有相对较宽的带隙, 所以非晶硅材料比单晶硅和砷化镓材料有更好的温度特性.在同样的工作温度下, 非晶硅太阳电池的饱和电流远小于单晶硅太阳电池和砷化镓太阳电池, 而短路电流的温度系数却高于晶体硅电池的1倍, 这十分有利在较高温下保持较高的开路电压(Voc)和曲线因子(FF).在盛夏,太阳电池表面温度达到60-70度是常有的, 良好的温度特性是十分重要的。

据报导在空间应用时, 由于辐照和高温的原因,初始稳定效率为9%的非晶硅太阳电池, 其性能优于初始效率为14%的单晶硅太阳电池。非晶硅太阳电池经过30多年的发展, 在技术上已取得很大进展, 主要是用非晶碳化硅薄膜或微晶碳化硅薄膜来替代非晶硅薄膜做窗口材料, 以改善电池的短波方向光谱响应;采用梯度界面层, 以改善异质界面的输运特性;采用微晶硅薄膜做n型层, 以减少电池的串联电阻;用绒面二氧化锡代替平面氧化铟锡;采用多层背反射电极, 以减少光的反射和透射损失, 提高短路电流;采用激光刻蚀技术, 实现电池的集成化加工;采用叠层的电池结构, 以扩展电池的光谱响应范围, 提高光电转换效率;采用分室连续沉积技术, 以消除反应气体的交叉污染, 提高电池的性能.上述技术的采用使非晶硅薄膜太阳电池的光电转换效率从2%提高到13.7%。

随着非晶硅太阳电池光电转换效率的提高, 其产业化进程也取得令人瞩目的进展.由于非晶硅材料优越的短波响应特性, 使其在计算器、手表等荧光灯下工作的微功耗电子产品中占据很大优势, 不仅在80年代的10年中取得了数十亿美元的利润, 而且至今仍具有很大的消费市场。从计算器、手表等弱光应用到各种消费品甚至功率方面的应用, 如收音机、太阳帽、庭院灯、微波中继站、航空航海信号灯、气象监测、光伏水泵及小型独立电源等应用领域不断扩大, 产量迅速上升.世界上出现了若干MW级的生产线和许多非晶硅薄膜太阳电池的企业.到80年代中, 整个非晶硅薄膜太阳电池的年销售量增长很快, 形成了非晶硅薄膜、多晶硅和单晶硅的三分天下的局面。

2.2发展中出现的问题和应对措施

尽管非晶硅薄膜太阳电池具有上述诸多优点, 然而在发展中也显现出一些明显的问题.主要是电池的光电转换效率在强光作用下呈逐渐衰退的态势, 这一问题是阻碍非晶硅薄膜太阳电池进一步发展的主要障碍.初期产品的光电转换效率本来就低(仅4-5%), 再加上30%左右的衰退率, 使非晶硅薄膜太阳电池的低成本的优势被较低的效率所抵消.这样就造成了非晶硅薄膜太阳电池的产量从80年代末到90年代初期间处在停滞不前的徘徊阶段.对此学术界自90年代起围绕如何提高非晶硅薄膜太阳电池光电转换效率稳定性的问题, 从材料、器件结构等多个层面进行研究.特别针对光电转换效率在强光作用下衰退的机理进行了不懈的探索, 初步结论是本征非晶硅材料的S-W效应.为了揭示S-W效应的起因, 在理论上人们提出了各种微观模型: 如Si-Si 弱键模型;电荷转移模型;再杂化双位模型;Si-H弱键模型以及桥键模型等。

了减少材料中的氢的含量, 最成熟的技术是在沉积薄膜的过程中用氢气稀释反应气体法。由于这种方法,工艺简单易行,而且效果明显,因此是当前普遍采用的技术。研究表明,用氢气稀释法制备的本征非晶硅的太阳电池,其光电转换效率的衰退率从25%以上降到20%。

除上述通过改善非晶硅材料的S-W效应来提高电池的光电转换效率的稳定性以外, 人们还从电池结构上采取措施, 其中最重要的就是采用多带隙叠层电池结构, 即多个不同带隙的p-i-n结叠加的结构, 这样可减薄每个子电池的i层厚度, 使每个电池的内电场增强, 从而增加了每个子电池的载流子收集效率。经过十几年的不断探索, 目前在提高非晶硅薄膜太阳电池的效率稳定性方面取得了很大的进步, 其光电转换效率的衰退率已达到小于15%.光电转换效率本身也有明显的提高, 如小面积的已达到13%, 大面积的已超过10%, 组件的达到7.1%。技术上的突破与进步带来了更大规模的发展, 如九十年代中期, 国际上先后建立了数条5-10MW的薄膜太阳电池组件生产线, 生产能力增加了25MW.生产流程实现了全自动化, 组件面积为平方米量级, 采用新型封装技术, 产品组件寿命达到10年以上.我国自70年代末开始研究非晶硅薄膜太阳电池, 到80年代末小面积电池效率达到11.2%, 大面积电池效率超过8%, 均达到国际先进水平.然而在产业化方面落后于国外, 至今没有一条具有自主知识产权的非晶硅薄膜太阳电池生产线。

目前研究、开发和生产非晶硅基太阳电池的大企业主要是:

(1)日本的Kaneka公司。发展a-Si太阳电池有20多年历史,1999年达到规模生产,他们最先开发了在200℃沉积a-Si/μc-Si叠层电池结构,並申请了专利。这种a-Si/μc-Si叠层电池的成本(按40MWp/年来计算), 只及c-Si太阳电池的一半。2002年其生产能力达25MWp/年,出口15MWp,2003年将增至40MWp.他们生产的a-Si太阳电池组件效率为8%,並保证在20年内效率不会低于原来的80%。2005年生产的效率达12%,系统价格120万日元/3KWp;2006年生产的效率达13%,系统的价格为100万日元/3KWp。

(2)日本三菱重工。2002年投产a-Si太阳电池,产量达10MWp/年,单结太阳电池效率达8%(初始为10%,3-4月后稳定在8%),寿命可达20-25年。2005年他们利用μc-Si/a-Si 叠层电池结构改进效率达到12%。其组件面积3600cm2,有50-100V的高压,功率输出24-100Wp,100日元/Wp。

(3)日本三洋公司。75年开始研发a-Si,80年形成规模生产能力,生产用于计算器的a-Si太阳电池。目前他们的a-Si太阳电池组件生产能力为5MWp/年。

(4)美国的United Solar 公司。该公司是ECD公司和BESS Europc合资经营的。2001年销售3。8MWp不锈钢衬底的a-Si/a-SiGe/a-SiGe三结叠层太阳电池,2002年以前的年产量为5MWp。2002年6月24日开典的新厂,生产能力为30MWp/a,生产高度自动化,可同时在6卷不锈钢带上生产非晶硅太阳电池,每卷1。5英里。

2004年全世界薄膜太阳电池(包括a-Si、CdTe、CIS)组件约为63MWp,仅佔太阳电池产量的5%,其中美国约佔36。5%,日本约佔27。7%。a-Si薄膜太阳电池佔了整个薄膜太阳电池的74。6%,其中日本佔37。2%,美国佔29。7%。

2005年全球薄膜太阳电池增长4成,达88MWp,美再生能源实验室予测2009年,全球薄膜太阳电池的年产量可扩大到280MWp,美国为最高达166MWp,其中非晶硅的年产量为55MWp。微(多)晶硅薄膜太阳电池

现有的非晶硅薄膜太阳电池的光致不稳定性是由非晶硅材料的微结构的亚稳态属性所决定的, 因此也是不易完全克服的.为了提高效率及其稳定性,近年来又出现了微晶硅(μc-Si)薄膜电池和多晶硅(poly-Si)薄膜电池.实验证明用微晶硅和多晶硅薄膜来替代非晶硅薄膜制作太阳电池的有源层, 在长期强光照射下没有任何衰退现象.因此发展晶化的硅薄膜太阳电池是实现高稳定、高效率、低成本最有前途的方法.目前研究的焦点是如何利用低成本工艺技术, 获得大面积优质的晶体硅薄膜, 以及新型薄膜电池结构的优化设计.制备晶体硅薄膜的技术很多, 基本可分成两大类, 一类是高温技术, 温度高于600℃, 另一类是低温晶化技术, 温度低于600℃.目前制备多晶硅薄膜的方法主要有:

(1)低压化学气相沉积(LPCVD)

这是一种直接生成多晶硅的方法。LPCVD是集成电路中普遍采用的标准方法,具有生长速度快,成膜致密、均匀、装片容量大等特点。多晶硅薄膜可采用硅烷气体通过LPCVD法直接沉积在衬底上,典型的沉积参数是:硅烷压力为13.3~26.6Pa,沉积温度Td=580~630℃,生长速率5~10nm/min。由于沉积温度较高,如普通玻璃的软化温度处于500~600℃,则不能采用廉价的普通玻璃而必须使用昂贵的石英玻璃作衬底。

该法生长的多晶硅薄膜,晶粒具有择优取向,形貌呈“V”字形,内含高密度的微挛晶缺陷,且晶粒尺寸小,载流子迁移率不够大,使其在器件应用方面受到一定限制。虽然减少硅烷压力有助于增大晶粒尺寸,但往往伴随着表面粗糙度的增加,对载流子的迁移率与器件的电学稳定性产生不利影响。

(2)固相晶化(SPC)

所谓固相晶化,是指非晶固体发生晶化的温度低于其熔融后结晶的温度。这是一种间接生成多晶硅的方法,先以硅烷气体作为原材料,用LPCVD方法在550℃左右沉积a-Si:H薄膜,然后将薄膜在 600℃以上的高温下使其熔化,再在温度稍低的时候出现晶核,随着温度的降低熔融的硅在晶核上继续晶化而使晶粒增大转化为多晶硅薄膜。使用这种方法,多晶硅薄膜的晶粒大小依赖于薄膜的厚度和结晶温度。退火温度是影响晶化效果的重要因素,在700℃以下的退火温度范围内,温度越低,成核速率越低,退火时间相等时所能得到的晶粒尺寸越大;而在 700℃以上,由于此时晶界移动引起了晶粒的相互吞并,使得在此温度范围内,晶粒尺寸随温度的升高而增大。经大量研究表明,利用该方法制得的多晶硅晶粒尺寸还与初始薄膜样品的无序程度密切相关,初始材料越无序,固相晶化过程中成核速率越低,晶粒尺寸越大。由于在结晶过程中晶核的形成是自发的,因此,SPC多晶硅薄膜晶粒的晶面取向是随机的。相邻晶粒晶面取向不同将形成较高的势垒,需要进行氢化处理来提高 SPC多晶硅的性能。这种技术的优点是能制备大面积的薄膜,晶粒尺寸大于直接沉积的多晶硅。可进行原位掺杂,成本低,工艺简单,易于形成生产线。由于SPC是在非晶硅熔融温度下结晶,属于高温晶化过程,温度高于 600℃,通常需要1100℃左右,退火时间长达10个小时以上,不宜用玻璃为基底,基底材料采用石英或单晶硅,用于制作小尺寸器件,如液晶光阀、摄像机取景器等。

(3)准分子激光晶化(ELA)

激光晶化相对于固相晶化制备多晶硅来说更为理想,其利用瞬间激光脉冲产生的高能量入射到非晶硅薄膜表面,仅在薄膜表层100nm厚的深度产生热能效应,使a-Si薄膜在瞬间达到1000℃左右,从而实现a-Si向p-Si的转变。在此过程中,激光脉冲的瞬间(15~50ns)能量被a-Si薄膜吸收并转化为相变能,因此,不会有过多的热能传导到薄膜衬底,合理选择激光的波长和功率,使用激光加热就能够使a-Si薄膜达到熔化的温度且保证基片的温度低于450℃.可以采用玻璃基板作为衬底,其主要优点为脉冲宽度短(15~50ns),衬底发热小。通过选择还可获得混合晶化,即多晶硅和非晶硅的混合体。

ELA法制备的多晶硅薄膜晶粒大、空间选择性好,掺杂效率高、晶内缺陷少、电学特性好、迁移率高达到 400cm2/v.s,是目前综合性能最好的低温多晶硅薄膜。工艺成熟度高,已有大型的生产线设备,但它也有自身的缺点,晶粒尺寸对激光功率敏感,大面积均匀性较差。重复性差、设备成本高,维护复杂.(4)快速热退火(RTA)

一般而言,快速退火处理过程包含三个阶段:升温阶段、稳定阶段和冷却阶段。当退火炉的电源一打开,温度就随着时间而上升,这一阶段称为升温阶段。单位时间内温度的变化量是很容易控制的。在升温过程结束后,温度就处于一个稳定阶段。最后,当退火炉的电源关掉后,温度就随着时间而降低,这一阶段称为冷却阶段。用含氢非晶硅作为初始材料,进行退火处理。平衡温度控制在600℃以上,纳米硅晶粒能在非晶硅薄膜中形成,而且所形成的纳米硅晶粒的大小随着退火过程中的升温快慢而变化。在升温过程中,若单位时间内温度变化量较大时(如100℃/s),则所形成纳米硅晶粒较小(1.6~15nm);若单位时间内温度变化量较小(如1℃/s),则纳米硅粒较大(23~46nm)。进一步的实验表明:延长退火时间和提高退火温度并不能改变所形成的纳米硅晶粒的大小;而在退火时,温度上升快慢直接影响着所形成的纳米硅晶粒大小。

RTA退火法制备的多晶硅晶粒尺寸小,晶体内部晶界密度大,材料缺陷密度高,而且属于高温退火方法,不适合于以玻璃为衬底制备多晶硅。

(5)等离子体增强化学反应气相沉积(PECVD)

通过加大氢气稀释和微量掺硼可以获得微晶硅薄膜.这种工艺技术与非晶硅薄膜的制造技术相同,属低温工艺,便于大面积生产,因而受到普遍重视.目前用这种技术制备的太阳能电池效率已达到8.5%.该技术的缺点是薄膜生长速率较低(约1à/S), 不利于降低制造成本.当前提高微晶硅生长速率的方法主要是增加等离子体的激发频率, 如用超高频技术(UHF)可使微晶硅生长速率提高到10à/S, 并已获得7.2%的电池效率.不过这种微晶薄膜的晶粒尺寸太小,一般不超过50nm, 晶内缺陷多, 晶界也多.对于采用 PECVD技术制备多晶体硅薄膜的晶化过程,目前有两种主要的观点:一种认为是活性粒子先吸附到衬底表面,再发生各种迁移、反应、解离等表面过程, 从而形成晶相结构.因此,衬底的表面状态对薄膜的晶化起到非常重要的作用;另一种认为是空间气相反应对薄膜的低温晶化起到更为重要的作用, 即具有晶相结构的颗粒首先在空间等离子体区形成, 而后再扩散到衬底表面长大成多晶膜。

(6)金属横向诱导法(MILC)

20世纪90年代初发现a-Si中加入一些金属如Al,Cu,Au,Ag,Ni等沉积在a-Si∶H上或离子注入到a-Si∶H薄膜的内部,能够降低a-Si向p-Si转变的相变能量.之后对Ni/a-Si:H进行退火处理以使a-Si薄膜晶化,晶化温度可低于500℃。但由于存在金属污染未能在薄膜晶体管(TFT)中应用。随后发现Ni横向诱导晶化可以避免孪晶产生,镍硅化合物的晶格常数与单晶硅相近、低互溶性和适当的相变能量,使用镍金属诱导a-Si薄膜的方法得到了横向结晶的多晶硅薄膜。横向结晶的多晶硅薄膜的表面平滑,具有长晶粒和连续晶界的特征,晶界势垒高度低于SPC多晶硅的晶界势垒高度,因此,MILC TFT具有优良的性能而且不必要进行氢化处理。

该法制备多晶硅薄膜具有均匀性高、成本低, 生长温度在500℃等特点。但是MILC目前它的晶化速率仍然不高,并且随着热处理时间的增长, 速率会降低。有人采用MILC和光脉冲辐射相结合的方法,实现了 a-Si薄膜在低温环境下快速横向晶化,得到高迁移率、低金属污染的多晶硅带。

(7)其他方法

除了上述几种制备多晶硅薄膜的主要方法外,还有超高真空化学气相沉积(UHV/CVD)、电子束蒸发等。用UHV/CVD生长多晶硅,当生长温度低于550℃时能生成高质量细颗粒多晶硅薄膜,不用再结晶处理,这是传统CVD做不到的,因此该法很适用于低温多晶硅薄膜晶体管制备。另外,日立公司研究指出,多晶硅还可用电子束蒸发来实现,温度低于 530℃。因此,我们相信随着上述几种多晶硅制备方法的日益成熟和新的制备方法的出现,多晶硅技术的发展必将跨上一个新的台阶,从而推动整个半导体产业和相关行业的发展。

总的来说,高温技术晶化的材料具有较大的晶粒尺寸,用这种材料制备的电池效率在10%以上.其缺点是能耗高、工艺复杂,衬底材料成本高.低温晶化技术制备的薄膜晶粒尺寸小, 电池效率也低, 但其最大的优点是便于采用玻璃等廉价材料作衬底,工艺较简单,能耗低.如将微晶硅薄膜或多晶硅薄膜作为窄带隙材料与非晶硅薄膜组成叠层电池结构, 则可更充分地利用太阳光谱.因微晶硅薄膜和多晶硅薄膜比非晶硅锗(a-SiGe)具有更窄的带隙(1.12eV),用a-Si/μc-Si和a-Si/poly-Si叠层结构代替a-Si/a-SiGe/a-SiGe三结叠层结构,可将太阳电池光谱响应的长波限从目前的0.9μm扩展到 1.1μm, 这样可提高10% 的太阳能的利用率.目前非晶硅和微晶硅叠层太阳电池的稳定效率已达12%.理论上a-Si/poly-Si叠层电池的效率可达28%.Kaneka公司设计的STAR结构的多晶硅薄膜电池, 效率已达10.7%, 且无光致衰退现象;另一种SOI结构的多晶硅薄膜电池10cmχ10cm, 获得了14.22%的效率, H.Morikawa 等制出了效率为16% 的多晶硅太阳电池.理论和实验均表明多晶硅太阳电池很可能成为21世纪最有前途的一种薄膜太阳电池.大面积多(微)晶硅薄膜的获得及与非晶硅的最佳优化设计,将使硅基薄膜太阳电池性质跃上新的台阶。

铟硒(CIS)薄膜和铜铟镓硒(CIGS)薄膜太阳电池

铜铟硒薄膜是一种Ⅰ-Ⅲ-Ⅵ族化合物半导体,具有黄铜矿闪锌矿两个同素异形的晶体结构.掺入镓即形成四元化合物.铜铟硒薄膜和铜铟镓硒薄膜的制备方法很多,大致有物理方法和化学方法两种.经过多年的研究和开发, CdS/CuInSe2电池组件的效率已达11%, CdS/CuInGaSe2 电池组件的效率已达18%, 並已建立起了工业化生产线.该电池的主要优点是: 材料具有较高的光吸收(∝>105cm-1), 所需材料厚度小于1μm, 90% 以上的光子可被吸收;生产成本低, 仅为硅太阳电池的1/3-1/2, CIGS材料随着铟镓含量不同, 其光学带隙可从1.02eV变至1.68eV, 这点对于制造多结叠层太阳电池极为有利;电池的光电转换效率比较高.主要问题是: 制造过程比较复杂;关键原料如铟的供应, 其天然储量相当有限;太阳电池中的缓冲层材料 CdS是必不可少的, 其毒性对环境的危害, 极大地影响了它的广泛应用.美国的Shell Solar公司正在进行这种电池的商业化生产, 建立了世界上第一条CIS薄膜太阳电池生产线,组件效率达11%。2001年销售CIS组件0。4MWp,生产能力达25MW/年,2002年出口15MWp,2003年增加到40MWp。ISET公司提出了利用纳米技术以类似油墨的制造过程, 制备层状结构, 已获成功, 能否发展成规模化的制造过程, 还有待时间.另外美国的NREL公司亦成功地开发了一种三级制造过程, 在实验室获得了19.2% 的光电转换效率.不过其制造过程太复杂,花费亦大,放大亦不易.化镉(CdTe)薄膜太阳电池

这种太阳电池系由CdTe、CdS和Ⅱ-Ⅵ族化合物通过相对简单且成本低的工艺沉积在衬底上经干燥和烧结而成,其研究历史悠久.1982年Kodak公司做出了转换效率超过10%的电池,目前实验室的效率达到16.5%, 中试线的效率达到10%, 已由实验室的研究阶段走向规模化工业生产.典型的CdTe太阳电池结构是由约2μm层的p型碲化镉层和0.1μm厚的n型硫化镉形成, 光子吸收发生在碲化镉层, 光的吸收系数大于105cm-1, 因此数微米厚的材料可吸收大于90%的光子.目前已开发了多种CeTe薄膜的制造工艺, 如溅射法、化学气相反应法、原子层外延法、网印法、电流沉积法、化学喷塗法、密堆积升华法等.其中电流沉积法是最便宜的, 也是目前工业生产的主要方法.沉积时温度较低,所消耗的碲元素也最少.这种薄膜太阳电池难以大批量生产的原因是:鎘的毒性会对环境造成的危害;组件和衬底材料成本太高, 占总成本的53%, 而半导体材料只占5.5%;碲的天然储量有限。

料敏化太阳电池(DSSC)

此类太阳电池源自19世纪照相技术的概念.直到1991年瑞士科学家Gratzel采用纳米结构的电极材料, 以及配以适当的染料, 做出了光电转换效率大于7%的太阳电池.此后该领域的开发研究才引起人们的关注.这种概念的太阳电池完全不同于传统的半导体光伏发电原理, 可说是第三代太阳电池。其原理是借助于染料作为吸光材料, 染料中的价电子受光激发跃迁到高能态, 进而传导到纳米多孔二氧化钛半导体电极上, 经由电路引至外部, 失去电子的染料则经由电池中的电解质获得电子, 电解质是含碘的有机溶剂。

这类电池的结构一般有两种, 实验室制备的通常为三明治结构, 上下均为玻璃, 玻璃内侧涂有TCO, 当中包括含有染料的二氧化钛以及电解质.为利用已较成熟的薄膜太阳电池制造技术, Gratzel等于1996年研究出三层式的单片电池结构, 用碳电极取代一层TCO薄膜, 各层的制备可直接沉积在另一层的TCO薄膜上.玻璃並非为必然的基材, 其他可挠性透明材料均可使用, 因此roll-to-roll的制造工艺亦可应用于此.德国的 ISE公司已开发出丝网印刷方式的生产工艺, 制造过程非常简单。

染料敏化太阳电池如要成为具有商业竞争力,甚至达到具有高的市场占有率, 如下几点是必需考虑:

1)太阳电池本身的长期稳定性,尽管有一些测试,估推算出使用十年没问题, 但毕竟缺乏长期使用的实测数。

2)对于大面积的制造技术仍有待开发。

3)对整体电池组件的研究开发仍有许多工作要做。

用光稳定性更好的半导体材料代替多孔的二氧化钛理论上应较易获得更耐久的染料太阳电池, 有关这方面的研究有部分研究单位正在积极投入.此外开发新式染料来取代迄今公认的最佳染料有机钌金属亦是一项热门研究课题, 如获成功则可免除使用贵金属钌, 染料成本可大幅降低。机薄膜太阳电池

有机薄膜太阳电池是把两层有机半导体薄膜结合在一起, 其光电转换效率约为1%.近期日本产业技术综合研究所宣布已开发出一种新型的有机薄膜太阳电池, 即在原有的二层构造中间加入一种混合薄膜变成三层结构 ,这样就增加了产生电能的分子之间的接触面积, 从而大大提高了太阳电池的转换效率, 达到4%, 比原来二层结构的提高了4倍。

有机薄膜太阳电池使用塑料等质轻柔软的材料为基板,有机小分子光电转换材料本身具有低成本,可以加工成大面积,合成、表征相对简单,化学结构容易修饰,可根据需要增减功能基团,可通过不同的方式互相组合,以达到不同的目的。因此对它的实用化期待很高, 研究人员表示, 通过进一步研究有望开发出光电转换效率达20% 的可投入实用的有机薄膜太阳电池, 也许在不久的将来, 塑料材料的太阳电池将出现在人们的日常生活中。与无机光伏材料相比,有机光伏材料的激子结合能大,不容易自然分离成正负电荷,这样吸收光就不一定产生光电流;电子不是通过能带,而是通过能级间的跃迁而传输,电子迁移率明显较低;许多材料在氧和水的环境下不稳定;温度变化对光电流的产生有很大影响。这些问题限制了有机太阳电池的发展。最近有人提出充分利用有机材料和无机材料的优点制备有机/无机材料的复合器件,成为当前研究的一个新热点。

结语

从以上所述的各类薄膜太阳电池的发展情况, 不难发现努力提高光电转换效率和大幅降低太阳电池的成本是各类薄膜太阳电池的共同课题.当前太阳电池产业呈现35% 的年增长率.薄膜太阳电池亦发展很快, 但传统硅太阳电池的技术发展已日臻成熟, 其主要成本来自硅晶体材料, 能进一步压缩成本的空间十分有限.而薄膜太阳电池则不然, 大量新材料、新技术、新工艺的采用使它在降低成本提高效率方面还有很大的周旋余地.此外薄膜太阳电池一般而言, 其制造时的能耗不及传统硅晶体太阳电池的一半, 即所消耗能源的回偿时间较短,传统硅晶体的约为20年, 而薄膜的则小于10年.部分薄膜的甚至小于5年, 如非晶硅薄膜太阳电池与染料敏化太阳电池.加上薄膜太阳电池所使用的材料较少, 整体而言薄膜太阳电池是较为环保、能源效率较高的产品

第二篇:太阳能电池专业英语

A 1.中文:暗饱和电流

英文:Dark Saturation Current 解释:没有光照的条件下,将PN结反偏达到饱和时的电流。降低暗饱和电流利于提高电池品质

在以下的理想二极管公式中,I =流过二极管的总电流;I0 = “暗饱和电流”, V = 加在二极管两端的电压

B 1.中文:包装密度

英文:Packing density 解释:组件中被太阳能电池覆盖的面积对比于整个组件的面积。它影响了组件的输出功率及工作温度

2.中文:背电场

英文:Back Surface Field 解释:在电池背面由于重掺杂引起的电场。该电场会排斥少数载流子以使它们远离高复合率的背表面

3.中文:背面反射/底面反射

英文:Rear Surface Reflection 解释:穿过电池而未被吸收的长波光会被电池背面的金属或染料反射回电池,增大吸收概率

4.中文:本底掺杂 英文:Background Doping 解释:电池衬底的掺杂浓度

5.中文:表面制绒

英文:Surface Texturing 解释:用物理或化学的方法将平滑的硅电池表面变得粗糙,增大光捕获,减小反射

6.中文:并网系统

英文:Grid-connected Systems 解释:并网系统指由光伏组件供电的,接入公用电网的光伏系统。这类系统无须蓄电池

7.中文:薄膜太阳能电池

英文:Thin-film Solar Cells 解释:薄膜太阳能电池是通过在衬底上镀光伏材料薄层制成的,厚度从几微米到几十微米不等。成本较低

但效率普遍较低

8.中文:复合

英文:Recommbination 解释:又称为载流子复合,是指半导体中的载流子(电子和空穴)成对消失的过程。

9.中文:表面复合速率

英文:Surface Recombination Velocity 解释:当少子在表面消失时,由于浓度梯度,少子会从电池体流向表面。表面复合速度表征表面复合的强弱。C 1.中文:掺杂

英文:Doping 解释:在本征半导体里加入施主或受主杂质(通常是磷或硼)使半导体内自由载流子浓度变高并使其具有p型或n型半导体的性质

2.中文:串联电阻

英文:Series Resistance 解释:由电池体、电极接触等产生的分压电阻。电池运作时,部分电压降在电池的串联电阻上,影响了电池输出效率

D 1.中文:大气质量/大气光学质量

英文:Air Mass 解释:定义为1/cos(太阳与法线夹角)。表征太阳光到达电池前穿越的大气厚度。不同的AM值还对应不同的太阳光谱

2.中文:带隙

英文:Band Gap 解释:半导体导带与价带之间的能级差。常温下,本征硅的带隙是1.1eV 3.中文:导带 英文:Conduction Band 解释:又名传导带,是指半导体或是绝缘体材料中,一个电子所具有能量的范围。这个能量的范围高于价带(valence band),而所有在导带中的电子均可经由外在的电场加速而形成电流。

4.中文:电池工作温度

英文:Cell Operating Temperature 解释:太阳能电池在受到光照激发产生电流时的实际温度。工作温度通常高于标准测试条件(STC)规定的25摄氏度,并且会影响电池的开路电压

5.中文:电池互联

英文:Cell Interconnection 解释:将电池板串联一起组成电池组件

6.中文:电池降格

英文:Cell Degradation 解释:电池降格指组件在户外工作一段时间后,效能降低。对晶硅电池来说原因包括:电极脱落或被腐蚀,电极金属迁移透过P-N节而降低了并联电阻,减反膜老化,P型材料中形成了硼氧化物 等

7.中文:电流电压特性

英文:Current-Voltage Charateristic 解释:又称为伏安特性,是电子器件的在外部电压偏置的情况下电流随外部变压变化的特性,常用伏安特性曲线来表征。8.中文:电子空穴对

英文:Electron-hole Pair 解释:半导体中,吸收了一个光子能量的电子离开原子束缚,成为自由载流电子,原来的原子则产生了正电荷,等效于一个孔穴,它们合称电子空穴对

9.中文:独立系统

英文:Stand-alone Systems 解释:不接入公用电网的独立光伏发电系统,通常需要蓄电池蓄能以备夜间及阴天使用,也常装备柴油发电机作为补充

10.中文:短路电流

英文:Short Circuit Current(Isc)

解释:在光照下将电池短路,此时流过电池的电流为短路电流。表征电池能产生的光电流强度。

11.中文:多晶硅

英文:Polycrystalline/Multicrystalline silicon

解释:在硅晶体里面,晶向的分布式随机的而不是同一的,相较于单晶硅生产成本低但材料品质也较差

12.中文:等离子增强化学气相沉积法

英文:Plasma enhanced, Chemical Vapor Deposition(PECVD)

解释:一种镀膜技术。常用于在晶硅电池表面镀氮化硅,二氧化硅,氧化铝等薄膜。

E 1.中文:额定功率

英文:Rated Power/Rated Watt 解释:太阳能电池板在国际通行标准条件下(光谱AM1.5,光强1000W/平米,温度25C)测试出来的输出功率,实际的输出功率受使用环境影响

F 1.中文:反偏

英文:Reverse Bias 解释:对于p-n节来说,指n-type接高电势,p-type接低电势

2.中文:方块电阻率/薄层电阻率

英文:Sheet Resistivity 解释:通常表征发射极掺杂浓度的高低。高掺杂则电阻率低但削弱蓝光响应。可通过四点探针测量

3.中文:非晶硅/无定形硅

英文:Amorphous Silicon 解释:硅的一种同素异形体,它的原子间的晶格网络呈无序排列,不存在晶体硅的延展性晶格结构。无定形硅中的部分原子含有悬空键(dangling bond),虽然可以被氢所填充,但在光的照射下,氢化无定形硅的导电性能将会显著衰退。

4.中文:分布式光伏系统

英文:Distributed PV Systems 解释:小型模块化、分散式、布置在用户附近的,依靠光伏组件发电的电力系统。

5.中文:分流电阻/并联电阻

英文:Shunt Resistance 解释:在太阳能电池等效电路中,并联于电池两端的漏电阻。该电阻会分流掉部分光电流,因此并联电阻越大越好

6.中文:封装

英文:Encapsulation 解释:指将已互联的电池通过层压密封到电池组件里。封装可以实现电池组件防水,防潮,并且增强电池的机械性能。

7.中文:峰瓦

英文:Peak Watts 解释:组件在理想的标准测试条件下的输出功率,该功率值也是组件的额定功率。

8.中文:峰值日照小时数

英文:Peak Sun Hours 解释:这是一个等效概念,表征一天中太阳的辐射总能量。数值上等于一天中太阳的总辐射能量(千瓦时/平方米)除以1 千瓦/平方米

9.中文:伏安特性曲线

英文:I-V Curve 解释:用来表征电子器件的在外部电压偏置的情况下电流随外部变压变化的特性曲线。10.中文:复合

英文:Recommbination

解释:又称为载流子复合,是指半导体中的载流子(电子和空穴)成对消失的过程。

11.中文:复合损失

英文:Recombination Loss

解释:在被电极收集之前 电子与空穴的复合使电能流失。

12.中文:副栅线

英文:Fingers

解释:太阳能电池的电极的一部分,用于收集积累于电池表面的电荷从而形成外电路电流。副栅线通常由丝网印刷金属浆料或者电镀金属形成,宽度小于130微米,与主栅(bus bar)相连。

G 1.中文:跟踪

英文:Tracking 解释:在电池组件上安装智能的制动系统使组件始终朝向太阳以获得最大辐射量

2.中文:光捕获/光陷阱

英文:Light Trapping 解释:通过散射与折射使光进入电池后就被限制在电池内部传播直至大部分被完全吸收

3.中文:光伏效应 英文:Photovoltaic Effect 解释:指在光照激发下的半导体或半导体与金属组合的部位间产生电势差的现象。由于材料内部的参杂不均匀,在内建电场的作用下,受到激励的电子和失去电子的空穴向相反方向移动,而形成了正负两级。此效应最早于1839年由法国物理学家亚历山大·埃德蒙·贝克勒尔发现。

4.中文:光谱响应

英文:Spectral Response 解释:指电池对不同波长的单色光的响应。通常以量子效率来呈现这种响应。

5.中文:光学损失

英文:Optical Loss 解释:入射光由于受到电池的表面反射,电极遮挡等因素影响而无法在电池中激发载流子形成的损失。通过光陷阱的设计和对电极遮挡的优化可以有效减少光学损失。

6.中文:光照强度

英文:Light Intensity 解释:单位面积接收到的光照功率,单位是 瓦/平方米

7.中文:光子

英文:Photon 解释:是传递电磁相互作用的基本粒子,也是电磁辐射的载体。光子具有波利二象性:既能表现经典波的折射、干涉和衍射等性质,作为粒子性的光子只能传递量子化的能量,即: E=hv,其中h是普朗克常数,v是光波的频率。8.中文:光伏建筑一体化

英文:Building Integrated PV(BIPV)解释:是使用太阳能光伏材料取代传统建筑材的一种应用方式,通常利用天窗和外墙是作为最大的接光面,使建筑物本身能够为自身提供能源,可以部分或全部供应建筑用电,而不必用外加方式加装太阳能板。由于在建筑设计阶段提前规划,所以发电率和成本比值最佳。

H 1.中文:耗尽区/耗尽层

英文:Depletion Region 解释:指在P-N节中P型与N型的交界面周围的区域,通常有几个微米宽。由于该区域内建电场的存在,多数载流子被排斥而形成耗尽区。

J 1.中文:激光刻槽埋栅太阳能电池

英文:Laser Grooved, Buried Contact Solar Cells 解释:由新南威尔士大学研究中心开发的电极设计。激光刻槽使副栅线深埋入电池,在减少电极遮光的同时保持良好的导电。

2.中文:寄生电阻

英文:Parasitic Resistance 解释:电池串联电阻与并联电阻的总称。

3.中文:价带 英文:Valence Band 解释:通常是指半导体中在绝对零度下能被电子占满的最高能带。全充满的价带中的电子不能在固体中自由运动。

4.中文:交错背接触电池

英文:Interdigitated Back Contact(IBC)Cell 解释:电池的正负极接触都在背面,并且相互交叉,其结构如图所示。

5.中文:减反膜

英文:Antireflection Coating 解释:在电池表面镀上的薄膜,它使入射光由于干涉相消而减少反射率,理想情况下,单层减反膜可使一个特定波长的光的反射率降为零

6.中文:金属化(形成电极)

英文:Metallisation 解释:在电池的正表面或背表面上加上金属使电池形成电极接触 7.中文:金字塔(表面制绒结构)

英文:Pyramids 解释:碱溶液对单晶硅的腐蚀是各项异性的,在制绒过程中单晶硅的特定晶面会暴露出来,使得制绒后的硅表面出现数微米高的金字塔

8.中文:禁带

英文:Forbidden Gap 解释:在能带结构中能态密度为零的能量区间。常用来表示价带和导带之间的能态密度为零的能量区间。

9.中文:单晶硅/晶体硅

英文:Crystalline Silicon/Monocrystalline Silicon 解释:硅的单晶体,具有基本完整的点阵结构,纯度高。

10.中文:接触电阻

英文:Contact Resistance

解释:指电流流过半导体与电极金属界面所克服的电阻。该电阻是电池总串联电阻的一部分

11.中文:间接带隙半导体

英文:Indirect Band-gap semiconductor

解释:指半导体的能带图上导带底与价带顶不在同一动量上。需要光子与声子共同作用来激发电子孔穴对。硅就是常见的间接带隙半导体

12.中文:聚光光伏

英文:Concentrator PV(CPV)

解释:通过光学器件将太阳光聚集到电池表面,等效于太阳能电池有了更大的受光面积

K 1.中文:开路电压

英文:Open Circuit Voltage(Voc)解释:电池光照下并且电路处于开路状态时,正负电极之间产生的电势差。开路电压衡量了电池可以达到的最高电压。

2.中文:扩散

英文:Diffusion 解释:是粒子通过随机运动从高浓度区域向低浓度区域的网状的传播。在光伏应用中,扩散用于向衬底中参杂施主或受主原子以形成p-n结或高低结

3.中文:扩散长度/载流子扩散长度

英文:Diffusion Length 解释:半导体中载流子在复合前平均移动的距离。与少子寿命及扩散系数成正比,一般扩散长度越长材料的质量越高。

L 1.中文:理想二极管定律

英文:Ideal Diode Law 解释:电池在无光照情况下的电流电压关系满足如下理想二极管公式 I=I_0*(exp(qV/kT)-1)2.中文:理想因子

英文:Ideality Factor 解释:用于描述电池等效电路模型中的二极管和理想二极管的接近程度。由于理想二极管方程有一些前提假设,而实际二极管会因一些二阶效应的影响表现出与理想二极管不同,理想因子被用于表征这种差异。

3.中文:硫化(蓄电池)

英文:Sulfation 解释:由于长期处在低充电量状态下,蓄电池电极出现硫酸铅晶体的现象称为硫化。硫化会使电池容量及充放电效率降低。

M 1.中文:漫射辐射

英文:Diffuse Radiation 解释:通常指阴天条件下的太阳光辐射,其特点是辐射能量沿各个方向传播且光强低。

2.中文:冥王星电池

英文:Pluto solar cells 解释:由尚德电力主导研发的一种高效率太阳能电池。它具备激光参杂,选择性发射级,以及背表面局部接触等特点。2012年初,其在6英寸直拉单晶硅片转换效率达到20.3%。

N 1.中文:N 型(半导体)

英文:N-type(semiconductor)解释:在半导体中由于掺入施主元素而使得电子成为半导体内的多数载流子。常用来制成N型半导体的施主元素为磷

2.中文:逆变器

英文:Inverter 解释:又称变流器、反流器,或称反用换流器、电压转换器,是一个利用高频电桥电路将直流电变换成交流电的电子器件,其目的与整流器相反。

P 1.中文:P-N 结

英文:p-n junction 解释:P型与N型半导体相接处形成的特殊界面。由于内建电场存在,电流容易从P型流向N型,反之则困难。太阳能电池利用P-N节将被光激发的少数载流子从P-N节的一端迁移到另一端

2.中文:P 型(半导体)

英文:p-type(semiconductor)解释:在半导体中由于掺入受主元素而使得空穴成为半导体内的多数载流子。常用来制成P型半导体的施主元素为硼

3.中文:旁路二极管 英文:Bypass diode 解释:是电池组件中用于防止组件由于遮挡产生局部过热而附加的安全器件。旁路二极管与其所保护的电池并联,但是二极管极性与电池相反。

R 1.中文:日照常数

英文:Solar Constant 解释:数值上等于峰值日照小时数,没有单位。

S 1.中文:砷化镓

英文:Gallium Arsenide 解释:由ⅢA族元素Ga和ⅤA族元素As化合而成的半导体材料。分子式为GaAs。室温下禁带宽度为1.42eV,属直接跃迁型能带结构。

2.中文:失谐损失

英文:Mismatch Losses 解释:如果组件中串联的电池板输出电流的不一致,则总电流受最小电流限制,因而造成功率损失。

3.中文:死层

英文:Dead Layer 解释:参杂浓度过高的电池前表面参杂区域。这会导致表层载流子寿命显著减少,电池对短波长光谱反映严重衰减。T 1.中文:体电阻

英文:Bulk Resistance 解释:电流流穿电池衬底时所需克服的电阻。由电池的本底掺杂浓度决定

2.中文:填充因子

英文:Fill Factor 解释:定义了电池最大输出功率和开路电压与短路电流乘积的比值。在图形上,填充因子描述了电池伏安特性曲线的“直方性”。填充因子越大,伏安曲线约接近于方形。

3.中文:铜铟镓硒薄膜电池

英文:CuInxGa(1-x)Se2(CIGS)解释:具有稳定性好、抗辐照性能好、成本低、效率高等优点。但也面临三个主要的问题:制程复杂,投资成本高;关键原料的供应不足;缓冲层CdS具有潜在的毒性。

4.中文:同质节

英文:Homojunctions 解释:P-N节两端由同种半导体组成,例如晶硅太阳能电池

5.中文:太阳光谱

英文:solar spectrum 解释:太阳光在各个波长的辐射能量分布。不同的太阳光谱可能导致不同的电池效率,即使总光强一致。通常测试所用光谱的 AM1.5的太阳光谱

X 1.中文:吸收系数

英文:absorption coefficient 解释:吸收系数决定了某一波长的光在材料中被吸收前能穿透的深度。例如蓝光在硅中的吸收系数高,所以蓝光在穿透很薄的硅后就被吸收了

2.中文:效率

英文:efficiency 解释:又称为光电转换效率,是衡量电池质量的最重要标准之一。电池效率由电池的最大输出功率和输入功率的比值决定。在标准测试条件(STC)下,输入功率为:1瓦每平方米 X 电池面积。

Y 1.中文:异质结

英文:Heterojunctions 解释:P-N节两端由不同的半导体组成

Z 1.中文:载流子寿命

英文:carrier lifetime 解释:是一个等效概念,指载流子从产生到复合经历的平均时长。载流子寿命高的材料通常能做出电压更高的电池。

2.中文:遮光

英文:shading 解释:电池运作时部分面积被遮挡而接收不到光照。

3.中文:遮光损失

英文:shading losses 解释:由于遮光到来的光电流乃至效率的损失

4.中文:折射率

英文:refractive index 解释:简单来说,某材料的折射率表征光在真空中的速度与光在该材料中的速度之比率。

5.中文:主栅线

英文:busbars 解释:电池受光面上较粗的导电电极。通常有两三根贯穿整个电池,宽度几毫米

6.中文:阻流二极管 /阻滞二极管

英文:blocking diode 解释:串联在组件上,阻止与之并联的其它组件向其输送电流的二极管

7.中文:组件 英文:modules 解释:具有封装及内部连接的、能单独提供直流电输出的、不可分割的太阳能电池组合装置。通常由太阳能电池片、钢化玻璃、EVA、透明TPT背板以及铝合金边框组成。

8.中文:最大功率点

英文:maximum power point 解释:指电池或组件在特定光照条件下输出功率最大的工作点

9.中文:最大功率点跟踪器

英文:maximum power point tractor 解释:整合到光伏系统电路中能自动调整组件运作电压使其输出功率达到最大的电子器件

10.中文:载流子注入

英文:carrier injection

解释:指多过剩流子的注入。可以通过在电池上加正偏电压或提供光照来实现

11.中文:杂质

英文:Impurities

解释:半导体中除了半导体材料本身以外的其它杂质。

12.中文:直接带隙半导体

英文:direct band-gap semiconductor

解释:指半导体的能带图上导带底与价带顶在同一动量上。单一光子作用即可激发电子空穴对。砷化镓是常见的直接带隙半导体

第三篇:太阳能电池最新政策

太阳能光电建筑应用财政补助资金管理暂行办法

第一条 根据国务院《关于印发节能减排综合性工作方案的通知》(国发[2007]15号)及《财政部建设部关于印发<可再生能源建筑应用专项资金管理暂行办法>的通知》(财建[2006]460号)精神,中央财政从可再生能源专项资金中安排部分资金,支持太阳能光电在城乡建筑领域应用的示范推广。为加强太阳能光电建筑应用财政补助资金(以下简称补助资金)的管理,提高资金使用效益,特制定本办法。

第二条 补助资金使用范围

(一)城市光电建筑一体化应用,农村及偏远地区建筑光电利用等给予定额补助。

(二)太阳能光电产品建筑安装技术标准规程的编制。

(三)太阳能光电建筑应用共性关键技术的集成与推广。

第三条 补助资金支持项目应满足以下条件:

(一)单项工程应用太阳能光电产品装机容量应不小于50kWp;

(二)应用的太阳能光电产品发电效率应达到先进水平,其中单晶硅光电产品效率应超过16%,多晶硅光电产品效率应超过14%,非晶硅光电产品效率应超过6%;

(三)优先支持太阳能光伏组件应与建筑物实现构件化、一体化项目;

(四)优先支持并网式太阳能光电建筑应用项目;

(五)优先支持学校、医院、政府机关等公共建筑应用光电项目。

第四条 鼓励地方出台与落实有关支持光电发展的扶持政策。满足以下条件的地区,其项目将优先获得支持。

(一)落实上网电价分摊政策;

(二)实施财政补贴等其他经济激励政策;

(三)制定出台相关技术标准、规程及工法、图集;

第五条 本通知印发之日前已完成的项目不予支持。

第六条 2009年补助标准原则上定为20元/Wp,具体标准将根据与建筑结合程度、光电产品技术先进程度等因素分类确定。以后补助标准将根据产业发展状况予以适当调整。

第七条 申请补助资金的单位应为太阳能光电应用项目业主单位或太阳能光电产品生产企业,申请补助资金单位应提供以下材料:

(一)项目立项审批文件(复印件);

(二)太阳能光电建筑应用技术方案;

(三)太阳能光电产品生产企业与建筑项目等业主单位签署的中标协议;

(四)其他需要提供的材料。

第八条 申请补助资金单位的申请材料按照属地原则,经当地财政、建设部门审核后,报省级财政、建设部门。

第九条 省级财政、建设部门对申请补助资金单位的申请材料进行汇总和核查,并于每年的4月30日、8月30日前联合上报财政部、住房和城乡建设部(附表)。

第十条 财政部会同住房城乡建设部对各地上报的资金申请材料进行审查与评估,确定示范项目及补助资金的额度。

第十一条 财政部将项目补贴总额预算的70%下达到省级财政部门。省级财政部门在收到补助资金后,会同建设部门及时将资金落实到具体项目。

第十二条 示范项目完成后,财政部根据示范项目验收评估报告,达到预期效果的,通过地方财政部门将项目剩余补助资金拨付给项目承担单位。

第十三条 补助资金支付管理按照财政国库管理制度有关规定执行。

第十四条 各级财政、建设部门要切实加强补助资金的管理,确保补助资金专款专用。对弄虚作假、冒领、截留、挪用补助资金的,一经查实,按国家有关规定执行。

第十五条 本办法由财政部、住房城乡建设部负责解释。

第十六条 本办法自印发之日起执行。

附表:太阳能光电技术建筑应用财政补助资金申请汇总表(略)

第四篇:优缺点

主要优缺点

1. 优点:乐于助人,善于团结,吃苦耐劳,平易近人。

缺点:工作作风过于拘谨不够大胆

2.优点:尊敬师长,团结同学,乐于助人,是老师的好帮手,同学的好朋友,学习勤奋,积极向上,喜欢和同学讨论并解决问题,积极参加班级学校组织的各种课内外活动。缺点:思想不够成熟,理论联系实际能力较弱。

3.优点:心地善良,为人诚实,一心一意,精明能干,个性稳重,积极主动。

缺点:平时做事太注重于细节,有可能忽视了对整体的把握。

4.优点:关心他人,积极主动、独立工作能力强,并有良好的交际技能,愿意在压力下工作,并具领导素质。

缺点:在为人处事方面经验不够。

5.优点:做事有恒心、有毅力,处事有自己的见解,而不人云己云。缺点:理论学习需要进一步深化。

6.优点:学习上有自己的方法,学习新的的东西效率高,学习新的技能上手快。缺点:工作经验较少还需要进一步锻炼。

7.优点:有积极的工作态度,勇于挑重担,愿意和能够在没有监督的情况下勤奋地工作;公正严明,上进心强,有良好的交际技能。

缺点:有时对有的事情想得过多。

第五篇:优缺点

能够认真学习党的路线方针政策,学习党的十七大精神,学习科学发展观,理论素养有一定提高。学习刻苦努力,成绩优异。积极参加学校班级组织的各项活动。团结同学,乐于助人。按时交纳党费,积极参加组织生活。按照党员标准严格要求自己,起到了党员的先锋模范作用。

优点:

(1)能够认真学习党的路线方针政策,与党中央保持一致,认真学习党的十七大精神和各个会议的重要内容,深入学习科学发展观,政治方面把握、辨别力、敏锐性等。

(2)学习刻苦努力,成绩优异。具有很强的科研能能力,积极参加导师的科研项目,并取得了很好的成绩。

(3)积极参加学校班级组织的各项活动。团结同学,乐于助人。

(4)按照优秀党员标准严格要求自己,履行党员义务,知行合一。

缺点:

(1)在遇到问题和困难的时候,考虑不全面,有时会对一些细节把握的不够。

(3)由于自己还没有进入工作,在理论联系实际的能力还有所欠缺。

总之,以上的优点将继续坚持,缺点要及时的改正,要继续努力,进一步严格要求自己,积极地进行批评与自我批评,愿意接受党组织对自己的进一步考察和考验,时刻保持严以律己、埋头苦干的行为准则与工作作风,以一名优秀共产党员的要求严格要求自己!

.缺点和不足:

一年来,自己在党组织和同事们的帮助和支持下取得了一定的成绩,但我深知自己还存在一些缺点和不足,主要表现在以下几个方面:

1、政治理论基础不够扎实,理论联系实际的能力较差;

2、向党组织思想汇报和老党员们的思想交流不够;

3、自己的综合素质还有待进一步的提高。

下载各种太阳能电池的优缺点[共5篇]word格式文档
下载各种太阳能电池的优缺点[共5篇].doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    太阳能电池专业自荐信

    我是一名好范文,马上就要面临毕业,即将走上工作岗位,这将关系到我的前途,所以我做了一次慎重的选择,贵医院一直是我的第一就业目标,因此我决定递交这封自荐信! 感谢您能继......

    太阳能电池车间生产管理

    太阳能电池车间生产管理 太阳能电池车间生产管理包括很多基础管理。 一、各工序生产人员配备情况: 电池车间各工序人员的配备情况:前清洗工序每台RENA机器配7人,视实际生产情况......

    太阳能电池未来发展趋势前途分析(共五篇)

    太阳能电池未来发展趋势前途分析 李主 (2010126105) 摘要:能源危机和环境污染已经成为当今世界各国面临的共同问题。随着能源日益紧缺和环保压力的不断增大,石油的枯竭几乎像......

    优缺点自我介绍(共5则)

    优缺点自我介绍当来到一个陌生的地方时,需要我们进行自我介绍,自我介绍可以给陌生人留下一个好的印象。那么自我介绍有什么格式呢?以下是小编为大家收集的优缺点自我介绍,欢迎大......

    自我介绍优缺点(共14篇)

    篇1:优缺点自我介绍优缺点自我介绍自我介绍不仅要说自己的优势还要把自己的缺点也说出来,这样显得自己更加真诚,那么怎么才能巧妙地在自我介绍的时候把自己的优缺点陈述出来呢?......

    各种电池优缺点(共5篇)

    一、铅酸电池 主要优点: 1、原料易得,价格相对低廉; 2、高倍率放电性能良好; 3、温度性能良好,可在-40~+60℃的环境下工作; 4、适合于浮充电使用,使用寿命长,无记忆效应; 5、废旧......

    计件工资优缺点(共5篇)

    计件工资制度的优缺点? 什么行业最合适计件工资制度 计件工资的特点: 1.能够从劳动成果上准确反映出劳动者实际付出的劳动量,并按体现劳动量的劳动成果计酬,不但劳动激励性强,而......

    太阳能电池环境监测系统研究论文(大全)

    摘要:根据太阳能电池环境监测具有分散、灵活、偏远等特点以及传统有线网络布线繁琐、维护困难等问题,本设计提出一种基于CC2530-Zigbee的由太阳能电池进行供电的无线网络电池......