螺旋式千斤顶(起重器)设计说明书

时间:2019-05-14 03:25:11下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《螺旋式千斤顶(起重器)设计说明书》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《螺旋式千斤顶(起重器)设计说明书》。

第一篇:螺旋式千斤顶(起重器)设计说明书

****大学

螺旋式千斤顶设计计算说明书

题目: 螺旋式千斤顶 学院: ********学院 班级: ********** 姓名: ****** 日期: 2011年10月8日

0

题目:设计螺旋式千斤顶

设计原始数据:

起重量F30kN, 最大起重高度L160mm。

说明:

螺旋起重器的结构见图,螺杆1 是它的主要零件。转动手柄4时,螺杆即转动并上下运动。托杯3直接顶住重物,不随螺杆转动。

对这一装置主要的要求是:保证各零件有足够的强度、耐磨性、能自锁、稳定性合格等。

设计任务:

1.设计计算说明书一份,主要包括千斤顶各部分尺寸的计算,强度,自锁性,稳定性校核等。

2.装配图一张,画出千斤顶的全部结构,标注出必要的尺寸与零件编号,填写标题栏与明细表。

3.零件图一套,画出千斤顶的主要零件,标注出必要的尺寸。

目录

第一章 螺杆的设计与计算...................................................................................3

1-1 螺杆螺纹类型的选择.....................................................................................3 1-2 选取螺杆材料.................................................................................................3 1-3 确定螺杆直径.................................................................................................3 1-4 自锁验算.........................................................................................................4 1-5 结构.................................................................................................................4 1-6 螺杆强度校核.................................................................................................5 1-7 稳定性计算.....................................................................................................5

第二章 螺母设计与计算.......................................................................................7

2-1 选取螺母材料.................................................................................................7 2-2 确定螺母高度H及螺纹工作圈数u.............................................................8 2-3 校核螺纹牙强度.............................................................................................8 2-4 安装要求.........................................................................................................9

第三章 托杯的设计与计算...................................................................................9

3-1 托杯的尺寸计算.............................................................................................9

第四章 手柄设计与计算.....................................................................................10

4-1手柄材料........................................................................................................10 4-2 手柄长度Lp..................................................................................................11 4-3 手柄直径dp..................................................................................................11

第五章 底座设计................................................................................................12

5-1 底座设计与计算...........................................................................................12

参考文献.............................................................................................................12

第一章 螺杆的设计与计算

1-1 螺杆螺纹类型的选择

螺纹有矩形、梯形与锯齿形,常用的是梯形螺纹。

梯形螺纹牙型为等腰梯形,牙形角30,梯形螺纹的内外螺纹以锥面贴紧不易松动。矩形螺纹牙根强度低,锯齿形螺纹牙型不为等腰梯形,加工成本高。从实用性考虑,故选梯形螺纹,它的基本牙型按GB5796.3—86的规定。1-2 选取螺杆材料

考虑到千斤顶转速较低,单个作用面受力不大,螺杆材料常用Q235、Q275、40、45、55等。此处选最常用的45钢。1-3 确定螺杆直径

按耐磨性条件确定螺杆中径d2。求出d2后,按标准选取相应公称直径d、螺距P及其它尺寸。

根据规定,对于整体螺母,由于磨损后不能调整间隙,为使受力比较均匀,螺纹工作圈数不宜过多,故取1.22.5,此处2。螺杆——螺母材料分别为钢——青铜,滑动速度为低速,得许用应力p为1825MPa。取p20MPa。摩擦系数起动时取大值,校核是为安全起见,应以起动时为准,由f值0.080.1,应取f0.1。代入F30kN

d20.8F30kN0.821.91mm [p]220MPa得d221.91mm

查《机械设计课程设计》表14-2,根据梯形螺纹的标准GB5796.3—86,取 螺纹公称直径d26mm,螺距为P5.00mm

其它尺寸:螺杆小径:d320.5mm,螺杆螺母中径:d2D223.5mm 螺母大径:D426.5mm,螺母小径:D121mm

螺母高度:Hd2223.547mm

1-4 自锁验算

自锁条件是v,式中:为螺纹中径处升角;v为当量摩擦角(当量摩擦角varctanf,为保证自锁,螺纹中径处升角至少要比当量摩擦角小1)。cosfarctanfv cosvarctan查《机械设计》教材表5-12,得f= 0.10(取启动时计算用的最大值)arctansnP15arctanarctan3.87 d2d23.14223.5f0.10arctan5.91 coscos15varctan故,3.87v14.91 所以自锁性可以保证。1-5 结构 如右图一:

螺杆上端用于支承托杯10并在其中插装手柄7,因此需要加大直径。手柄孔径dk的大小根据手柄直径dp决定,dkdp0.5mm。为了便于切制螺纹,螺纹上端应设有退刀槽。退刀槽的直径d4应比螺杆小径d3约小0.20.5mm,d4d30.5mm20.5mm0.5mm20mm。退刀槽的宽度可取为1.5P。为了便于螺杆旋入螺母,螺杆下端应有倒角或制成稍小于d3的圆柱体。为了防止工作时螺杆从螺母中脱出,在螺杆下端必须安置挡圈(GB892-86),挡圈用紧定螺钉固定在螺杆端部。

其中:退刀槽宽度为1.5P7.5mm

D13(1.71.9)d1.82646.8mm47mm

(1.41.6)d1.5d39mm

螺栓外径为:0.25d0.25266.5mm

(此处设计所用数据为后面校核后的数据)

1-6 螺杆强度校核

对受

224FT22ca323 3d30.2d3其中扭矩

TFtan(v)d223.5mm30103Ntan(3.875.91)60.76Nm 22式中:为螺纹中径处升角,v为当量摩擦角。

查手册GB/T5796.15796.4,45钢的s355Mpa,教材表5-13,安全系数35,取3。

s3355128.33Mpa,故,32234301060.763109.50MPa128.33MPa 233.14220.51030.220.5103 满足要求。1-7稳定性计算

细长的螺杆工作时受到较大的轴向压力可能失稳,为此应按稳定性条件验算螺杆的稳定性。

Fcr2.54 F螺杆的临界载荷Fcr与柔度s有关,sli,为螺杆的长度系数,与螺杆的端部结构有关,l为举起重物后托杯底面到螺母中部的高度,可近似取

Hd12lL(1.4~1.6)d,i为螺杆危险截面的惯性半径,危险截面面积A,24则

iId1A4(I为螺杆危险截面的轴惯性矩)当螺杆的柔度s40时,可以不必进行稳定性校核。计算时应注意正确确定。1-7-1计算柔度

(1)计算螺杆危险截面的轴惯性矩I和i Id43643.14220.51036448.67109m4 iId320.51035.125103m A44(2)求起重物后托杯底面到螺母中部的高度l

h1(1.82)d22652mm

D大杆(1.61.8)d1.72644.2mm

lHLh123.516052235.5mm 2(3)计算柔度

查教材,取2(一端固定,一端自由)

2235.5103s= 91.9040 3i5.12510l所以需要校核。

1-7-2稳定性计算

(1)计算临界载荷Fcr 6

2EI3.14222001098.67109Fcr77.16KN 232l2235.510(2)稳定性计算

Fcr77.161032.572,在nst2.54.0之内,3F3010所以,稳定性满足要求。1-7-3 挡圈参数选择

1底端挡圈: ○根据GB892-86,由d26mm,得

'¡'D235mm,H25mm,L210mm,d26.6mm,d¡123.2mm,c21mm,螺栓GB5783-85(推荐)M620,圆柱销GB119-86(推荐)A312,垫圈GB93-76(推荐)6mm。2顶端挡圈: ○根据GB892-86,由D1118.2mm,得

'¡'。D328mm,H34mm,L37.5mm,c30.5mm,d¡d35.5mm,132.1mm,螺栓GB5783-85(推荐)M516,圆柱销GB119-86(推荐)A210,垫圈GB93-76(推荐)5mm。

第二章 螺母设计与计算

2-1选取螺母材料

螺母材料一般可选用青铜,对于尺寸较大的螺母可采用钢或铸铁制造,其内孔浇注青铜或巴氏合金。

此处选青铜ZCuSn10Pl。

2-2 确定螺母高度H及螺纹工作圈数u

螺母高度Hd2223.5mm47mm,螺纹工作圈数uH479.4,考虑退刀槽的影响,实际螺纹圈数P5uu1.5(u应圆整)。考虑到螺纹圈数u越多,载荷分布越不均,故u不宜大于10。2-2-1求螺母高度H

Hd2223.5mm47mm 2-2-2 螺纹工作圈数u

uH479.4 P5uu1.510.9 u应圆整, u取11。

2-2-3 螺母实际高度H

HuP11555mm

2-3 校核螺纹牙强度

一般螺母的材料强度低于螺杆,故只校核螺母螺纹牙的强度。螺母的其它尺寸见图。必要时还应对螺母外径D3进行强度验算。2.3.1螺纹牙的剪切强度和弯曲强度计算 螺纹牙的剪切强度和弯曲强度条件分别为:

F; Dbu6Flb 螺纹牙危险截面的弯曲强度条件为 Db2u螺纹牙危险截面的剪切强度条件为 (b——螺纹牙根的厚度,且b0.65P;D——螺母的螺纹大径;

l——弯曲力, lDD2)2查表,b0.65P(梯形螺纹),h0.5P

取3040Mpa , b取4060Mpa

F3010310.88MPa 故,Dbu3.142270.655102723.56Fl235.15MPab 22Dbu3.14227(0.655)10630103皆满足要求。

2-4安装要求

见图1-2螺母压入底座上的孔内,圆柱接触面间的配合常采用

H8H或8等配合。r7n7为了安装简便,需在螺母下端和底座孔上端做出倒角。为了更可靠地防止螺母转动,还应装置紧定螺钉,紧定螺钉直径常根据举重量选取,一般为612mm。2-4-1 螺母的相关尺寸 已得:Dd126127mm 内螺纹小径D121mm

D31.5d1.52639mm

D41.4D31.43954.6mm55mm

H55mm

a(0.20.3)H0.255513.75mm14mm

第三章 托杯的设计与计算

3-1托杯的尺寸计算

托杯用来承托重物,可用铸钢铸成,也可用Q235钢模锻制成,取材料为Q235。其结构尺寸见右图。为了使其与重物接触良好和防止与重物之间出现相对滑动,在托杯上表面制有切口的沟纹。为了防止托杯从螺杆端部脱落,在螺杆上端应装有挡板。

当螺杆转动时,托杯和重物都不作相对转动。

因此在起重时,托杯底部与螺杆和接触面间有相对滑动,为了避免过快磨损,一方面需要润滑,另一方面还需要验算接触面间的压力强度。

pFp 22(D12D11)4式中:p——许用压强,应取托杯与螺杆材料p的小者。Q235: p杯225Mpa;

45钢:p杆570Mpa,取p杯。

D10(2.42.5)d2.452663.7mm64mm D11(0.60.8)d0.72618.2mm18mm D13(1.71.9)d1.82646.8mm47mm D12D13(24)46.8343.8mm44mm h1(1.82)d22652mm 故 pFp 22(D12D11)430103p24.06MPap 3.142(0.043820.01822)4托杯厚度812mm,此处取10mm;

杯底厚度为 1.313mm;沟纹宽度为1.515mm; 沟纹深度为25mm;托杯高度为1.8d1.82646.8mm47mm。

为保证托杯可以转动,螺杆顶端的垫片与托杯底部留有间隙,间隙值为

34mm,因承受力不大,故取值为3mm。

第四章 手柄设计与计算

4-1手柄材料

常用Q235和Q215。选择Q235。4-2手柄长度Lp

板动手柄的力矩:KL'PT1T2 则L'pT1T2 K式中:K——加于手柄上一个工人的臂力,间歇工作时,约为150~250N,工作时间较长时为100~150N。考虑一般为间歇工作,工作时间较长机会不多,故取为200N。

T1——螺旋副间的摩擦阻力矩,T1Ftan(v)d2 223.510360.76Nm 2T130103tan(3.875.91)T2——托杯与轴端支承面的摩擦力矩,T2(D12D11)fF/4。(f查手册取0.06)T2(43.818.2)1030.0630103/427.9Nm

则 Lp'T1T260.7627.9443.3mm K200手柄计算长度Lp是螺杆中心到人手施力点的距离,考虑螺杆头部尺寸及工人握手距离,D13(50150)mm。手柄实际长度不应超过千斤顶,使用时可在246.8'100566.7mm567mm 手柄上另加套管。因此,手柄实际长度LPLP2手柄实际长度还应加上4-3手柄直径dp

把手柄看成一个悬臂梁,按弯曲强度确定手柄直径dp,其强度条件为

FKLp0.1d3pF

KLp3200566.710321.14mm 故 dp30.1[F]0.1120106 dp取22mm

式中:F——手柄材料许用弯曲应力,当手柄材料为Q235时,F120Mpa。

第五章 底座设计

5-1 底座设计与计算

底座材料常用铸铁HT150及HT200,选用HT150。铸件的壁厚不应小于812mm,取10mm。为了增加底座的稳定性,底部尺寸应大些,因此将其外形制成1∶10的斜度。底座结构及尺寸如图

S(11.5)1.21012mm

H1L(1428)mm16020180mm

Ha5513.7541.25mm42mm

D339mm

D5D324mm39210463mm

D6D34mm394mm43mm

'D70.1HSHa12D620.11801241.25243210mm88.35mm88mmD81.4D71.488.35mm123.69mm124mm

参考文献

1.濮良贵,纪名刚,机械设计.八版.北京:高等教育出版社,2009 2.谈嘉祯,王小群,机械设计基础.北京:中国标准出版社,1996 3.吴宗泽,机械设计实用手册.二版.北京:化学工业出版社,2003 4.朱辉,曹桄,画法几何及工程制图.六版.上海:上海科学技术出版社,2007 5.王伯平,互换性与技术测量.二版.北京:机械工业出版社,2008

第二篇:千斤顶设计计算说明书

哈尔滨工业大学

机械设计作业设计计算说明书

题目:设计螺旋起重器(千斤顶)系别: 班号: 姓名:

日期:2014.10.12

哈尔滨工业大学 机械设计作业任务书

题 目:设计螺旋起重器

设计原始数据: 起重量:FQ=30KN 最大起重高度:H=180mm

目 录

1.选择螺杆、螺母的材料·······································3 2.耐磨性计算··················································3 3.螺杆强度校核················································4 4.螺母螺纹牙的强度校核······································4 5.自锁条件校核················································5 6.螺杆的稳定性校核···········································5 7.螺母外径及凸缘设计·········································6 8.手柄设计····················································6 9.底座设计····················································7 10.其他零件设计··············································8 11.绘制螺旋起重器(千斤顶)装配图·························8 12.参考文献···················································8

1.选择螺杆、螺母的材料

考虑到螺杆承受重载,需要有足够的强度,因此选用45钢,需要调质处理。由参考文献[3]表10.2查得45钢的抗拉强度σb=600MPa,屈服强度

σs=355MPa。

螺母是在重载低速的工况下使用的,并且要求与螺杆材料配合时的摩擦系数小、耐磨,因此,螺母的材料选择铸造铝青铜ZCuAl10Fe3。

2.耐磨性计算

螺杆选用45钢,螺母选用铸造铝青铜ZCuAl10Fe3,由参考文献[1]表5.8查得,钢对青铜的许用压强[p]=18~25MPa,由表5.8注释查得,人力驱动时,[p]值可提高约20%,即[p]=21.6~30MPa,取[p]=25MPa。由参考文献[1]表5.8查得,对于整体式螺母,系数ψ=1.2~2.5,取ψ=2.5。

按照耐磨性条件设计螺杆螺纹中径d2,选用梯形螺纹,则螺纹的耐磨性条件为

ps=

FQpd2hH≤[p]

H以消去H,得 d2计算螺纹中径d2时,引入系数ψ=

FQp

d2≥0.8h[p]FQ

对于梯形螺纹,h=0.5p,则

d2≥0.8[p]=0.830000=19.6mm 225以上三式中,FQ—螺旋的轴向载荷,N;

p —螺距,mm;

d2—螺纹中径,mm;

h —螺纹工作高度,mm;

H—螺母旋合高度,mm;

ps—螺纹工作面上的压强,MPa;

[p]—许用压强,MPa。

根据螺纹中径d2的取值范围,由文献[3]表11.5查得,取螺杆的公称直径d=32mm,螺距p=6mm,中径d2=29mm,小径d1=25mm,内螺纹大径D4=33mm。

说明:此处如果选择螺杆的公称直径d=24mm,螺距p=3mm,中径d2=22.5mm,小径d1=20.5mm,内螺纹大径D4=24.5mm,螺杆的强度校核不满足要求。

3.螺杆强度校核

螺杆的断面承受轴向载荷FQ和螺纹副摩擦转矩T1。根据第四强度理论,螺杆危险截面的强度理论为

4FQ16T1≤ [σ]

σ=

d23d311式中:FQ—轴向载荷,N;

d1—螺纹小径,mm;

T1—螺纹副摩擦力矩,N·mm,T1=FQtan(ψ+ρ’)

d2; 22

2[σ]—螺杆材料强度的许用应力,MPa,[σ]=

s。3~5查参考文献[1]表5.10,钢对青铜的当量摩擦系数f ‘=0.08~0.10,取 f ‘=0.09,则螺纹副当量摩擦角ρ’=arctan f ‘=arctan0.09=5.1427°。

ψ为螺纹升角,ψ=arctan

16np=arctan=3.7679°。

29d2把已知的数据带入T1的计算公式中,则得

T1=30000tan(3.7679°+5.1427°)=68201N·mm

2代入强度计算公式,则

43000016682013

σ==72.2MPa 23252522由参考文献[1]表5.9可以查得螺杆材料的许用应力[σ]=

s,3~5σs=355MPa,[σ]=71~118MPa,取[σ]=95MPa。

显然,σ≤[σ],螺杆满足强度条件。4.螺母螺纹牙的强度校核 由系数ψ=

H可求得螺母的旋合高度H=ψ×d2=2×29=58mm。d2螺母螺纹牙根部的剪切强度条件为

τ=

FQZD4b≤[τ]

式中:FQ—轴向载荷,N;

D4—螺母螺纹大径,mm;

Z—螺纹旋合圈数,Z=

H58==9.7,取Z=10; p64

b—螺纹牙根部厚度,对于梯形螺纹,b=0.65p=0.65×6=3.9mm。代入数值计算得

30000

τ==7.4MPa

10333.9查参考文献[1]表5.9得螺母材料的许用剪切应力[τ]=30~40MPa,显然,τ≤[τ]。

螺纹牙根部的弯曲强度条件为

σb=

3FQlZD4b2≤[σb]

式中:l—弯曲力臂,l=

D4d23329==2mm;

FQ—轴向载荷,N;

D4—螺母螺纹大径,mm;

Z—螺纹旋合圈数,Z=

H58==9.7,取Z=10; p6

b—螺纹牙根部厚度,对于梯形螺纹,b=0.65p=0.65×6=3.9mm。代入数值计算得

3300002

σb==11.4MPa

10333.92查参考文献[1]表5.9得螺母材料的许用弯曲应力[σb]=40~60MPa。显然,σb≤[σb],由上述计算分析可知,螺母螺纹牙满足强度条件。5.自锁条件校核 由ψ=3.7679°,ρ’=5.1427°,得

ψ≤ρ’ 因此,满足自锁性条件。6.螺杆的稳定性校核 受压螺杆的稳定性条件为

Fc≥2.5~4 FQ式中:Fc—螺杆稳定的临界载荷,N;

FQ—螺杆所受轴向载荷,N。

螺杆的柔度值为

λ=

4l d1式中:l—螺杆的最大工作长度,mm。当螺杆升到最高位置时,取其顶端承受载荷的截面到螺母高度中点的距离作为最大工作高度,则

l=180+

H螺母2+h手柄座+l退刀槽

查参考文献[3]表11.25得,l退刀槽=7.5mm。手柄直径d手柄=24mm(将在手柄设计中给出这一尺寸的计算),由结构尺寸经验公式得

h手柄座=(1.8~2)d手柄=43.2~48mm 取h手柄座=44mm。

代入数值计算得

l=180+29+44+7.5=260.5mm

μ—长度系数,对于千斤顶,可看作一端固定,一端自由,故取μ=2。代入以上数值计算得

λ=

42260.5=83.36

25对于45钢调质(淬火+高温回火),当λ<85时,有

d1490490252 Fc===100648.8 N 410.0002210.000283.36242于是有

Fc100648.8= =3.35≥2.5

30000FQ因此,螺杆满足稳定性条件。

7.螺母外径及凸缘设计

螺母外径由结构尺寸经验公式得

D2 ≈1.5d=1.5×32=48mm 螺母凸缘外径由结构尺寸经验公式得

D3 ≈1.4D2=1.4×48=67mm 螺母凸缘厚度由结构尺寸经验公式得

b=(0.2~0.3)H=(0.2~0.3)×58=11.6~17.4mm 取b=14mm。

8.手柄设计

加在手柄上的力需要克服螺纹副之间相对转动的阻力矩和托杯支撑面之间的摩擦力矩。

设F为加在手柄上的力,取F=200N,L为手柄长度,则

FL=T1+T2

式中:T1—螺纹副之间相对转动的阻力矩,N·mm;

T2—托杯支撑面之间的阻力矩,N·mm。由前述计算可得

T1=68201N·mm

331D2~4D12

T2=fFQ3D2~42D221

式中:D—手柄座直径,mm,由结构尺寸经验公式得

D=(1.6~1.8)d=(1.6~1.8)×32=51.2~57.6mm 取D=52mm;

D1—螺柱与托杯连接处直径,mm,由结构尺寸经验公式得

D1=(0.6~0.8)d=(0.6~0.8)×32=19.2~25.6mm 取D1=22mm。

托杯选用铸铁,手柄选用Q215,摩擦因数f=0.12,则

524222=67200N·mm T2=0.123000035242222233于是有

L=T1T26820167200=≈677mm

200F取L=200mm,加套筒长500mm。

手柄直径

d手柄≥3FL

0.1b查教材可知[σb]=

s1.5~2,查参考文献[3]可知,σs=205MPa,则

[σb]=102.5~136.7MPa,取[σb]=110MPa。

代入数值计算得

d手柄≥3200677=23.1mm

0.1110取手柄直径d手柄=24mm。

9.底座设计

螺杆下落到最低点,再留10~30mm空间,底座铸造拔模斜度1:10,厚度选择8mm。

D5由结构设计确定,则D5=128mm。由结构尺寸经验公式得

D4=1.4D5=1.4×128=179mm 结构确定后,校核底面的挤压应力

σp=

FQD424D52=

3000017947

21282=2.4MPa

底面材料选用HT100,查参考文献[3]表10.3得,当铸件壁厚δ=2.5~10

时,σb≥130MPa,[σp]=(0.4~0.5)σb=(0.4~0.5)×130=52~65MPa。

显然,σp≤[σp],满足设计要求。

10.其他零件设计

⑴ 螺杆顶部和底部的挡圈及螺钉尺寸设计

螺杆底部必须有一个挡圈,并用螺钉加以固定,以防止螺杆全部从螺母中旋出。托杯在相应的位置也要设置挡圈,以防止托杯与螺杆脱离。

挡圈的直径略大于螺杆外径,所以,顶部挡圈直径取为26mm,底部挡圈直径取为36mm。

根据结构尺寸经验公式得螺钉大径为

d3=(0.25~0.3)D1=(0.25~0.4)×22=5.5~8.8mm 取其直径为M8,根据GB/T 5783—2000确定其他尺寸。

⑵ 紧定螺钉尺寸设计

对于螺母与底座分开的结构,为了防止螺母随螺母转动,必须用紧定螺钉加以固定,紧定螺钉的直径取为M6,根据GB/T71—1985确定其他尺寸。

⑶ 托杯尺寸设计

托杯直径根据结构尺寸设计经验公式得

DT=(2.0~2.5)d=(2.0~2.5)×32=64~80mm 取DT=70mm。

托杯高度根据结构尺寸设计经验公式得 h=(0.8~1)D=(0.8~1)×52=41.6~52mm 取h=42mm。

托杯顶部开槽的槽深和槽宽根据经验公式得

a=6~8mm

t=6~8mm 取a=8mm,t=8mm。

⑷ 倒角、铸造圆角及拔模斜度设计 所有加工表面需要倒角。拔模斜度取为1:10。铸造圆角R=2mm。

11.绘制螺旋起重器(千斤顶)装配图 见附A2图纸。

参考文献

[1] 王黎钦,陈铁鸣.机械设计.4版.哈尔滨:哈尔滨工业大学出版社,2008.[2] 张锋,宋宝玉.机械设计大作业指导书.北京:高等教育出版社,2009.[3] 王连明,宋宝玉.机械设计课程设计.4版.哈尔滨:哈尔滨工业大学

出版社,2010.

第三篇:螺旋千斤顶设计说明书

螺旋千斤顶设计说明书

姓名:班级: 学号: 2012年11月3日

设计要求:

一、设计题目:设计一螺旋千斤顶,已知起重重量50kN,起重高度250mm。

画3# 装配图一张,设计说明书一份。

二、结构原理、结构简图、组成、受力分析。

三、螺杆的设计计算

四、螺母的设计计算

五、底座的设计

六、手柄的设计计算

七、托杯的设计

图1 结构原理图

1.螺杆的设计与计算

1.1螺杆螺纹类型的选择

选择梯形螺纹,牙型角α=30˚,梯形螺纹的内外螺纹以锥面贴紧不易松动;它的基本牙型按GB/T5796.1-2005的规定。选取螺杆材料为45钢。确定螺杆直径:

按耐磨性条件确定中径d2对于梯形螺纹,其设计公式为:

d20.8F/[p]

对于整体式螺母,为使受力分布均匀,螺纹工作圈数不宜过多,宜取1.2~2.5;此处取

1.5,许用压力P2Mpa从滑动螺旋传动的许用压强表中查得:人力驱动时,P可提高20%。故得

P201200024Mpa

带入设计公式,得

d224.5mm

按国家标准选择公称直径和螺距为:

Dd32mmd2d329mmP6mm1.2自锁验算

自锁验算条件是v d2d725mm

varctanf/cosarctan0.08/cos15o 4.73onp/d2arctanarvtan6/29

3.77ov

且螺纹中径处升角满足比当量摩擦角小1°,符合自锁条件。

1.3结构设计

根据图2进行螺母的结构设计

(1)螺杆上端用于支承托杯10并在其中插装手柄7,因此需要加大直径。手柄孔径dk的大小根据手柄直径dp决定,dk≥dp十0.5mm。

(2)为了便于切制螺纹,螺纹上端应设有退刀槽。退刀槽的直径d4应比螺杆小径d1约小0.2~0.5mm。退刀槽的宽度可取为1.5P,取d4d10.528.5mm。(3)为了便于螺杆旋入螺母,螺杆下端应有倒角或制成稍小于d1的圆柱体。

图2 螺杆顶端

1.4螺杆强度计算

螺杆受力较大,应根据第四强度理论校核螺杆的强度

强度计算公式为:

ca232F/A23T/W2

其中T为扭矩

TFtanvd2/2

查书上表5—8可得s360MPa

s/3120MPa

已知F50kN,又 TFtanvd2/2108.35Nm2A1/4d2490.625mm2

Wd133066.4mm3代入校核公式,得

ca118MPa

ca满足强度要求。

1.5稳定性计算

细长螺杆工作时受到较大的轴向压力可能失稳,为此应按稳定性条件验算螺杆的稳定性。

Fcr/F2.5~4

螺杆的临界载荷Fcr与柔度s有关 其中sl/i 取2

lH5t1.5d(2505*61.532)mm328mmiI/A1/2d125/4mm6.25mm其中I为螺杆危险截面的轴惯性矩。将以上数据代入柔度计算公式,得

s23286.25104.9640

需进行稳定性校核。实际应力的计算公式为:

2Fcr2EI/l

其中IiAi12d2431400

E210GPa 将上述数据代入公式得

Fcr210309.4kN Fcr/F2.5~4

螺杆满足稳定性要求

2.螺母设计计算

2.1选取螺母材料为青铜

确定螺母高度H'及工作圈数u'

H'd21.52943.5mm

u'H'/t43.567.25mm

考虑退刀槽的影响,取实际工作圈数为

u'u1.57.251.58.75

'应当圆整,又考虑到螺纹圈数u越多,载荷分布越不均,故u不宜大于10,故取

'9

H'u't9654mm

图3 螺母

2.2校核螺纹牙强度

螺母的其它尺寸见图3,螺纹牙多发生剪切与弯曲破坏。由于螺母的材料强度低于螺杆,故只需校核螺母螺纹牙的强度。

(1)剪切强度校核

已知Dd32mm

D2d229mm 剪切强度条件为:

F≤[] Dbb0.65P0.656mm3.9mm []30~40MPa,查书上表5—13得:梯形螺纹:则剪切强度为 5000014.17MPa

323.99[]

符合剪切强度条件。

(2)弯曲条件校核

弯曲强度条件为:

3Fh[b]

Db2查书上表5—13得:[b]40~60MPa,h0.5P0.56mm3mm 则弯曲强度为

3453=29.44Mpa 323.929[b]

符合弯曲强度条件。

2.3配合:

(1)采用H8配合。r7(2)为了安装简便,需在螺母下端(图1―3)和底座孔上端(图1―7)做出倒角。(3)为了更可靠地防止螺母转动,还应装置紧定螺钉,查书上表5—2选择紧定螺钉。

3.托环的设计与计算

3.1托杯材料的选择

选择托环材料为Q235钢。

3.2结构设计

结构尺寸见图4。

为了使其与重物接触良好和防止与重物之间出现相对滑动,应在托杯上表面制有切口的沟纹。为了防止托杯从螺杆端部脱落,在螺杆上端应装有挡板。

3.3接触面强度校核

查表得Q235钢的许用压强为P225MPa 为避免工作时过度磨损,接触面间的压强应满足

PFP 22(D12D11)4根据图1-4,取相关尺寸为:

D110.6d0.632mm19.2mm

D102.5d80mmD131.8d58mmD12D134mm54mm

P5000025.3MPaP

(54219.22)4接触面压强满足要求,选材合理。

图4 托杯顶端

4.手柄的设计计算

4.1手柄材料的选择

选择手柄材料为Q235钢

4.2计算手柄长度Lp 扳动手柄的力矩:KLpT1T2,则

LpT1T2 K取K200N

v)又 T1Ftan(d297.51Nm 2T2(D12D11)fF/4(19.266)0.08345/488.39NmLP

T1T297.5188.39m929.5mm K200手柄实际长度为:

Lp929.5581001058.5mm 2由于手柄长度不超过千斤顶,因此取Lp350mm,使用时在手柄上另加套筒。

4.3手柄直径dp的确定

把手柄看成一个悬臂梁,按弯曲强度确定手柄直径Dp,强度条件为

FKLp0.1d3p[F]

得设计公式为

dp3KLp0.1[F]

已知[F]120MPa

dp32001058mm26.03mm

0.1120取dp30mm

4.4结构

手柄插入螺杆上端的孔中,为防止手柄从孔中滑出,在手柄两端面应加上挡环,并用螺钉固定,选择开槽沉头螺钉GB/T67 M816

5.底座设计

5.1选择底座材料

选择底座材料为HT200,其p2MPa

5.2结构设计

图5 底座

H1(H20)mm(25020)mm270mmD6(D38)mm(548)mm62mmH1250(62)mm112mm 554F450000D8D721122mm210mmp2D7D6取10mm,则有

H'a(5418)mm36mm

参考文献

【1】 吴宗泽,罗圣国;机械设计课程设计手册;北京:高等教育出版社;2006.05 【2】 濮良贵;机械设计;北京:高等教育出版社;2012.02

第四篇:液压千斤顶设计说明书

液压千斤顶研究设计报告

一、液压千斤顶功能分析。

千斤顶是一种起重高度小(小于1m)的最简单的起重设备。它有机械式和液压式两种。机械式千斤顶又有齿条式与螺旋式两种,由于起重量小,操作费力,一般只用于机械维修工作,在修桥过程中不适用。液压式千斤顶又称油压千斤顶,是一种采用柱塞或液压缸作为刚性顶举件的千斤顶,其结构紧凑,工作平稳,有自锁作用,故使用广泛。其缺点是起重高度有限,起升速度慢。

液压千斤顶充分运用了帕斯卡原理,实现了力的传递和放大,使得用微小的力就可以顶起重量很大的物体。在液压千斤顶中,除了其自身所具有的元件外,还需要一种很重要的介质,即工作介质,又叫液压油。液压油的好坏直接影响到千斤顶能否正常地工作。因此,就需要液压油具有良好的性能。在液压千斤顶中,液压油所应该具备的功能有以下几点:

1.传动,即把千斤顶中活塞赋予的能量传递给执行元件。

2.润滑,对活塞、单向阀、回油阀杆和执行元件等运动元件进行润滑。3.冷却,吸收并带出千斤顶液压装置所产生的热量。

4.防锈,防止对液压千斤顶内的液压元件所用的金属产生锈蚀。除此之外,液压油还需要有以下这些工作性能的要求。1.可压缩性。可压缩性小可以确保传动的准确性。2.粘温特性。要有一个合适的粘度并随温度的变化小。

3.润滑性。油膜对材料表面要有牢固的吸附力,同时油膜的抗挤压强度要高。

4.安定性。油不能因热、氧化或水解而变化,使用的寿命要长。5.相容性。对金属、密封件、橡胶软管、涂料等有良好的相容性。液压千斤顶广泛使用在电力维护,桥梁维修,重物顶升,静力压桩,基础沉降,桥梁及船舶修造,特别在公路铁路建设当中及机械校调、设备拆卸等方面。由于液压用途广泛,所以行程范围也需要比较广。

二、液压千斤顶工作原理

液压千斤顶工作时,扳手往上走带动小活塞向上,油箱里的油通过油管和单向阀门被吸进小活塞下部,扳手往下压时带动小活塞向下,油箱与小活塞下部油路被单向阀门堵上,小活塞下部的油通过内部油路和单向阀门被压进大活塞下部,因杠杆作用小活塞下部压力增大数十倍,大活塞面积又是小活塞面积的数十倍,由手动产生的油压被挤进大活塞,由帕斯卡原理(液压传递压强不变的原理,受力面积越大压力越大,面积越小压力越小)知大小活塞面积比与压力比相同。这样一来,手上的力通过扳手到小活塞上增大了十多倍(暂按15倍),小活塞到大活塞力有增大十多倍(暂按

图1帕斯卡原理图

15倍),到大活塞(顶车时伸出的活动部分)力=15X15=225倍的力量了,假若手上用每20公斤力,就可以产生20X225=4500公斤(4.5吨)的力量。工作原理就是如此。当用完后,有一个平时关闭的阀门手动打开,油就靠汽车重量将油挤回油箱。

三、自锁原理

图2单向阀自锁

单向阀自锁:为了能实现千斤顶在支撑中实现自锁,此设计采用单向阀组成设计回路。在液压千斤顶在小油缸与大油缸之间设置有一个单向阀。在手柄向上提升带动小油缸中的小活塞时,由于小油缸与大油缸之间设有单向阀,此时单向阀处于关闭状态,大油缸中的油液并不会回流至小油缸。在手柄下压带动活塞压油液时,小油缸与大油缸之间的单向阀处于开启状态,而小油缸与储油装置之间的单向阀处于关闭状态,油液进入大油缸将负载顶起。将负载顶到目标高度后,大油缸与小油缸之间的单向阀仍处于工作状态,油液只能存在大油缸之中,负载无法下行,形成自锁。

液压千斤顶顶起重物后,靠液压单向阀能起锁紧作用,但专业人士都知道,液压系统都有泄漏现象,压力越大泄漏越严重,液压缸内高压油一泄漏液压杆肯定要下行,时间越长下滑越明显。这说明液压千斤顶顶起的重物自锁时间不能过长,这势必对操作者造成一定的心里压力,为了避免液压系统因泄漏而造成的不良后果,消除操作者心里负担,我们的设计除液压自锁外,还设置了机械自锁装置。

机械自锁:在大活塞螺旋杆和液压千斤顶外壳设计锁紧螺母,当液压千斤顶在任意高度顶起重物需要锁紧时,旋紧锁紧螺母,使之与液压千斤顶外壳顶端完全接触,外载荷由锁紧螺母传给液压千斤顶的外壳,液压缸活塞不承受载荷,液压系统可以卸荷。锁紧螺母与螺旋杆采用梯形螺纹传动,顶起重物后,由手动旋合锁紧螺母,达到锁紧目的(如图3)。

四、结构设计

(1)螺旋传动机构,增大起重行程

液压千斤顶中的活塞杆是千斤顶顶起重物的执行部件,液压杆的长度,就是千斤顶顶起重物的最大行程。要增大液压千斤顶顶起重物的行程,就必须增加活塞杆的长度,这势必增大了液压千斤顶的体积和输油量。为了避免这些困惑,将活塞杆进行改良设计,如图4所示,加设螺旋配合机构,采用梯形螺纹传动,能承受较大的载荷,由于螺旋杆能上下螺旋移动,就增大了液压千斤顶的有效行程。螺旋杆顶部设计通孔,可以利用加长杆与之配合,旋转螺杆,便能在顶起重物的状态下增大顶起高度行程,当然也可以在没有顶起重物时预先旋转螺纹提升螺旋杆达到提高行程的目的。在不需要增大起重行程时,螺旋杆旋进活塞杆,保持原

图4

图3螺母锁紧装置

来的起重行程。

(2)扳手省力结构

液压千斤顶虽然能利用帕斯卡原理,利用大油缸面积大于油缸截面面积缩小力。但考虑到材料强度及设备体积原因(小油缸面积不能过小,要保证一定的壁厚及小活塞的压杆

图5油泵扳手

稳定,大油缸面积不能过大),大油缸与小油缸的截面积之比一般设计在10到20 之间(我们设计取15)。我们发现这个面积比只能将力缩小到原载荷的十五分之一。这是远远不够的,所以我们将手动油泵扳手设计成杠杆(如图5)。最左端竖直杆与底座相连,右边与滑套相连的为活塞杆,横杆为扳手。根据杠杆原理,各部分设计合理距离以及杆长设计合理,这个可将力缩小为小活塞受力的十五分之一。这样就可将力缩小至负载的1/225。(3)出油装置

图6底部油通道

上述已阐明如何将负载顶起。在工作结束的时候需要卸载,这就需要一个将大油缸中的油液排除的装置。图6为底部油通道示意图。可以看出,1通道为油液进入手动油泵的通道(油液存储在外油箱中)。图6中的2出口就是工作结束卸载时油液的通道。考虑到千斤顶正常工作时油液不能从大油缸中流出,因此在2通道口装有一个手动阀,在工作结束后打开手动阀,让油在负载的作用下流回外油箱中,完成卸载。

五、设计心得

这次设计的大作业,是现代机械设备中应用较为广泛的一种伸缩传动装置——千斤顶。由于理论知识不足,而且平时几乎没有设计的经验,在一开始的时候有些手忙脚乱,不知道该从什么地方入手。在本次大作业的完成过程中,让我感触最深的就是要不断地查阅资料和修改图纸使得我们的设计更加符合现实生活中的标准。我们作为机械工程专业的学生,最重要的就是要时时刻刻与实际相结合,所设计的每一个机械部件、每一个零件都必须不离实际。与艺术家可以尽情的幻想不同,一切不切实际的构想就永远只能是幻想,永远无法成为设计。与此同时,在设计的过程中,需要用到AutoCAD软件进行制图。因此为了更加有效率地绘制各种零件图、装配图,我们必须学会熟练的掌握它。

在设计过程结束后,我自己学到了不少的知识,也让我捡起了很多遗忘的知识。在整个设计中我明白了很多东西,也培养了我工作和与人合作的能力,而且我也充分地体会道路在创造设计过程的艰辛和成功时的喜悦。尽管这个设计做得并不优秀,但这个在设计过程中所学到的东西将是我人生路上强有力的垫脚石,对我日后的工作、设计都会有很大的益处。

第五篇:螺旋千斤顶设计计算说明书

螺旋千斤顶设计计算说明书

精04 张为昭 2010010591

目录

一、基本结构和使用方法-----------3

二、设计要求---------------------3

三、基本材料选择和尺寸计算-------3

(一)螺纹材料和尺寸---------3

(二)手柄材料和尺寸---------8

(三)底座尺寸---------------9

四、主要部件基本尺寸及材料-------9

五、创新性设计-------------------9

一、基本结构及使用方法

要求设计的螺旋千斤顶主要包括螺纹举升结构、手柄、外壳体、和托举部件几个部分,其基本结构如下图所示:

AA

该螺旋千斤顶的使用方法是:将千斤顶平稳放在木质支承面上,调整千 斤顶托举部件到被托举重物合适的托举作用点,然后插入并双手或单手转动 手柄,即可将重物举起。

二、设计要求

(1)最大起重量:Fmax25kN;(2)最大升距:hmax200mm;(3)可以自锁;

(4)千斤顶工作时,下支承面为木材,其许用挤压应力:[p]3MPa;(5)操作时,人手最大可以提供的操作约为:200N。

三、基本部件材料选择及尺寸计算

(一)螺纹材料和尺寸

考虑到螺旋千斤顶螺纹的传力特性选择的螺纹类型为梯形螺纹。(1)材料选择

千斤顶螺杆的工作场合是:经常运动,受力不太大,转速较低,故材料选用不热处理的45号钢。千斤顶螺母的工作场合是:低速、手动、不重要,故材料选用耐磨铸铁HT200。(2)螺杆尺寸设计

螺旋副受力如下图所示:

1、耐磨性设计

由上图螺旋副的受力分析可知,螺纹传动在旋合接触表面的工作压力为:

pFPF d2hHZd2h其中,轴向载荷:F=25kN。螺纹高:h,由选择螺纹的公称直径确定。

为了方便满足自锁性要求,采用单头螺旋,一般旋合圈数:Z10。

为方便计算,设螺纹参数中间变量:高径比耐磨性的要求是:

p[p]

H。d2其中[p]为满足耐磨性条件时螺纹副的许用压力。对于钢-铸铁螺纹螺母材料,由于千斤顶的工作速度较低,可认为滑动速度不大于3m/s。千斤顶中螺母为整体结构,螺母磨损后不能调整,但螺母兼作支承作用,故设计时可先认为 f=2.5,则可取此时的许用压力[p]为17MPa。

由螺旋副接触表面压力公式及耐磨性公式得到耐磨性设计公式:

d2FP h[p]对梯形螺纹,h0.5,代入上式求得: Pd2³19.352mm

查国标选梯形螺纹为公称直径d为Tr36,导程P为10mm,中径d2=31mm满足要求。代入高径比计算公式:

f=HZP==2.5 d2d2求得实际旋和圈数Z=7.75。

故暂定螺纹尺寸是公称直径d为Tr36,导程P为10mm,旋合 圈数Z=7.75。

2、强度设计

已知最大载荷为25kN,则在载荷最大时,螺杆受到扭矩:

dTmax=Fmax2tan(g+rn)

2其中螺纹中径:d2=31mm; 螺纹升角:g=arctannP»5.863°; pd2当量摩擦角:rn=arctanfn; 当量摩擦系数:fn=fcosa。

2由于螺杆-螺母为钢-铸铁材料,考虑到千斤顶既有稳定自锁,又有上升运动过程,故取摩擦系数f=0.14。又由于采用梯形螺纹,故牙型角a=30°。

联立以上各式解得螺杆受到的最大扭矩:

Tmax»97.408N×m

已知小径:d1=25mm,则由第四强度理论,危险截面应力:

sca=(4Fmax2Tmax2)+3()»74.220MPa 23pd10.2d1 已知45号钢屈服强度为355MPa,载荷稳定故取许用当量应

力:

[s]=ss4=88.75MPa

则有:sca<[s],即已选定螺纹可以达到强度条件。

3、自锁性设计

千斤顶由于其用途,要求具有自锁功能。由于自锁是针对停止状态所说,故摩擦系数f可取较大值0.14,由强度设计中的计算结果,此时当量摩擦角:rn»8.247°大于螺旋升角:g=arctan

nP»5.863°,所以自锁性条件可以满足。pd25

4、稳定性设计

稳定性条件:

Sc=Fcr³[S] Fmax由于千斤顶为传力螺旋,故取安全系数[S]=3.5。

由千斤顶结构,螺杆端部结构为一端固定,一自由式支承,长度 系数m为2.0。要求最大升距hmax为200mm,由装配图测量得到此 时从支承螺母中心到千斤顶顶部的等效长度L为325mm,螺杆的 柔度:

4L104 d1已知使用45号钢且不做热处理,则临界载荷:

2EIa2Ed12Fcr89.585kN(L)2(L)264Sc3.583.5故稳定性条件可以满足。

综上所述,螺杆选择Tr36,导程P=10mm即可满足设计条件。

(3)螺母尺寸设计

由螺杆中的设计,将旋和圈数Z定为7.75。一般来说螺母只需校核螺纹牙即可,而且由于螺母材料为铸铁,强度小于螺杆材料,故只需要校核螺母螺纹牙的剪切强度、弯曲强度和抗挤压强度即可,螺杆上的螺纹牙强度则不用校核。螺母螺纹牙受力如下图所示:

1、剪切强度校核

剪切强度条件:

t=Fmax£[t] Zpdb其中旋合圈数:Z为7.75; 螺纹公称直径:d=36mm;螺纹牙根部厚度:b=0.65P=6.5mm。耐磨铸铁许用剪切应力取为:[t]=40MPa。

代入各项数据得上述剪切强度不等式成立,即剪切强度满足要求。

2、弯曲强度校核

弯曲强度条件:

sb=其中牙高:h=5.5mm;

3Fmaxh£[sb] 2Zpdb耐磨铸铁许用弯曲应力取为:[sb]=50MPa。

代入各项数据得上述弯曲强度不等式成立,即弯曲强度满足要求。

3、抗挤压强度校核

由螺母螺纹牙受力图可得平均挤压应力:

a2=Fmax»6.023MPa sp=aZpd2hZpd2h/cos2Fmax/cos 已知螺母许用挤压应力:[sp]»1.5[sb]=75MPa,显然满足

sp<[sp]的抗挤压强度准则。

4、螺母外部尺寸设计

由基本结构图可以看到,螺母的外部形状可以看作是两个半径不同的同心圆柱连接在一起,这样设计的目的是保证螺母的定位。为了保证千斤顶的正常工作,需要设计这两个圆柱的尺寸以使其在工作中不会失效。

由前述计算已知的螺母尺寸为:H=ZP=77.5mm,圆整后高度H=78mm,内螺纹大径D4=37mm。设螺母外部形状:小圆柱外径为D1=60mm,大圆柱外径为D2及小圆柱的高度为H1未知待求。

为防止大圆柱与千斤顶壳体的接触面被压坏,需要满足:

Fmax

sp=£[s]p2p(D2-D12)/4

对耐磨铸铁HT200,许用的抗压应力[sp]=设计大圆柱外径为:

1.5sb=100MPa,最后 3D280mm

为了防止大圆柱突出部分被剪断,需要满足:

t=Fmax£[t]

pD1(H-H1)对耐磨铸铁许用剪切应力为40MPa,最后设计小圆柱高度为:

H1=60mm 综上所述,螺旋千斤顶的螺纹选为公称直径d为Tr36,导程P=10mm。此

时螺母高度H=78mm,螺母外部小圆柱外径60mm,高60mm,大圆柱外径80mm。小圆柱表面与外壳体之间有基轴制配合关系,故选其公差带为h7。查标准 得:所选螺纹配合为中等旋合长度。由于千斤顶为中等精度机械设备,故查 标准得内螺纹公差带为6H,外螺纹公差带为6g。螺母外部小圆柱装配时对 精度要求不高,圆柱度公差取为9。螺母外部小圆柱与内部螺孔需要有一定 同轴度以保证千斤顶工作正常,但形位度要求不高,取同轴度公差为9。螺 母外部小圆柱轴线与大圆柱和外壳体的接触面还有垂直度的要求,也取公差 为9。整个螺母接触面都较重要,表面粗糙度Ra值选为3.2,未接触面Ra 可选为12.5以降低加工成本。

(二)手柄材料及尺寸(1)材料选择

综合考虑成本和强度,手柄的材料选用普通未经热处理的45号钢。(2)长度设计

由螺杆的强度设计可知,手柄需要提供最大97.408Nm的扭矩,则 手柄的有效作用长度应为:

TL=max»488mm

200N在实际设计中,由于手柄还要满足插入螺杆上部接头的要求,同时考虑 到千斤顶本身运动部件具有摩擦力,因此实际设计长度还要在此长度上 加上一部分,最终应设计长度为520mm。(3)直径设计

手柄在操作时会受到剪力和弯矩的作用,最大操作力为200N,最大扭矩为97.408Nm,则力的分布图如下所示:

剪力图

弯矩图

可见,危险截面在手柄与螺杆接头处。手柄的材料选为未经热处理的45号钢,设计手柄直径为D,则危险截面最大剪应力:

4200N t=23pD/4 危险截面最大弯曲正应力:

97.408N×m s=30.1D由第四强度理论,要使手柄正常工作,需要满足条件:

sca=s2+3t2£[s]

当安全系数为2时,许用应力[s]=600MPa=300MPa,代入第

s2 四强度理论计算式,并联立剪应力、切应力计算公式,求得手柄直径:

D=15mm 综上所述,手柄长520mm,直径15mm。

(三)底座尺寸

千斤顶使用时的下支承面为木材,许用挤压应力为3MPa,则由抗击压强度准则:

Fsp=max£[sp]=3MPa

S=其中S为下支承面尺寸,解上述不等式,得S³8334mm2,为满足易于组

sb装及各方向受力均匀的要求,选择下支承面为环形结构,内径尺寸为100mm可以满足准则要求,综合考虑到千斤顶本身具有的重量、体积和使用时的稳定性,将外径尺寸设计为180mm。

综上所述,下支承面设计为环形,内径100mm,外径180mm。

四、主要部件基本尺寸及材料

(1)螺杆螺纹:Tr36´10-6g,45号钢;

(2)螺母螺纹:Tr36´10-6H,HT200耐磨铸铁;(3)手柄:长度500mm,直径15mm,45号钢;

(4)底座:外径180mm,内径100mm,HT200灰铸铁。

五、创新性设计

(1)手柄加上橡胶手柄球而非普通塑料手柄球,既节约成本,又易于拆卸,减少千斤顶存放的体积;

(2)为了携带方便,给千斤顶外壳加上把手;(3)为提高外壳强度,给外壳加上肋板;

(4)为了使用过程中省力,在托举部分和旋转的螺杆间加入推力轴承51105,并在相关旋转部件处涂润滑油以减小使用阻力;(5)为了增强千斤顶对托举点形状的适应能力,将托举部件顶部由杯状改成平顶,同时为了减小对被托举物的损害,给托件部分加上橡胶保护套;(6)在千斤顶底部设计成密封用的橡胶盖,使千斤顶在存放时,螺旋运动部件免受灰尘侵扰。

下载螺旋式千斤顶(起重器)设计说明书word格式文档
下载螺旋式千斤顶(起重器)设计说明书.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    螺纹千斤顶设计计算说明书(小编整理)

    螺纹千斤顶设计计算说明书 1. 设计任务书 1.1 设计题目:设计螺旋千斤顶 1.2 原始数据 最大起重量: F = 50 kN最大升程 : H = 200 mm 1.3 设计工作量 1.3.1 绘制出总装配图......

    螺旋千斤顶设计计算说明书PB12009032-杜文文

    《精密机械设计基础》大作业 螺旋千斤顶 设计计算说明书 PB12009032 杜文文 目录 1.设计题目......................................................2 2.设计任务..............

    液压千斤顶设计论文

    XXXX学院xxxx届毕业论文 目 录 1、引言 .................................................................. 1 1.1 液压千斤顶的分类 .......................................

    螺旋千斤顶设计指导书

    螺旋千斤顶设计指导书 螺旋千斤顶的设计 千斤顶一般由底座1,螺杆4、螺母5、托杯10,手柄7等零件所组成(见图1—1)。螺杆在固定螺母中旋转,并上下升降,把托杯上的重物举起或放落。......

    proe课程设计 千斤顶的设计

    《Pro/E》课程设计说明书 班级:*** 姓名:*** 学号:*** 指导老师: *** 榆林学院能源工程学院2011年04月30日1 《Pro/E》课程设计任务书 一、课程设计名称 Pro/E应用实训 二、......

    汽车电动千斤顶设计-设计任务书

    江苏技术师范学院2012届毕业设计(论文)任务书 学院 机械与汽车工程学院班级 08汽服4Z 姓名张祥 题目设计 汽车电动千斤顶设计指导教师 蒋科军论文来源其他主要内容及基本......

    基于PROE液压千斤顶设计解读[全文5篇]

    基于PROE 基于PROE 液压千斤顶设计设计 学士学位论文原创性申明 本人郑重申明:所呈交的设计(设计)是本人在指导老师的指导下独立进行 研究,所取得的研究成果。除了文中特别加以......

    设计说明书格式

    设计说明书怎么写/r/n 一、写出你所做设计的工程概况(工程类型,面积,空间功能要求等)和业主的设计要求;/r/n 二、设计理念(风格等)和设计目标(你所想达到的空间视觉效果等等)......