第一篇:力学实验课实验失败反思报告
“实验一”失败反思报告
一、实验目的:
实验预期目的:
1.观察低碳钢、铸铁和铝合金在拉伸过程中的各种现象(包括屈服,强化和颈缩等现象),特别是外力和变形间的关系,并绘制拉伸图。2.测定低碳钢的屈服极限,强度极限,延伸率和截面收缩率。
3.测定铸铁和铝合金的强度极限。
4.观察断口,比较低碳钢、铸铁、铝合金三种材料的拉伸性能和破坏特点,并对其断裂形式从微观角度进行分析。
实际达到效果:
1.基本观察到了实验现象,但是对于材料破坏方式这一点前两次实验结果与预期明显偏离。
2.屈服极限,强度极限已测,但是延伸率和截面收缩率因为实验失败,所以没有结论。
3.铸铁和铝合金的曲线已经由实际实验数据给出了分析和结果。4.对于三种材料的拉伸性能和破坏特点,以及微观角度已做分析。
二、已知材料特性:
抗拉能力:铝合金最弱,铸铁其次,低碳钢较强。铝合金:高塑性,破坏形式为纯剪断,抗拉能力弱。
低碳钢:强度低、硬度低而软。有明显的弹性阶段、屈服阶段、强化阶段、局部变形阶段。低碳钢虽然也是剪断的,但在之前有明显的颈缩。
铸铁:强度高,脆性材料。几乎只有弹性阶段,破坏形式为拉断。
三、实验结果及问题分析:
图一:三种材料实际载荷—位移曲线
如图一所示为我们小组三种材料的实际测量曲线,显然,铝合金以及低碳钢曲线与预期不符。
这次实验问题主要有以下几个方面:
1.整个实验未达实验目的,比如某些参数忘记测量。第一次实验忘记测量原始标距和断口直径;此外,测量直径时没有在每一横截面处沿相互垂直的两个方向各测一次取其平均值,导致计算截面积时误差可能会偏大。2.由于操作不熟练,在夹持试件时,没有保证试件夹持后上下对称且全部在夹头内部;此外,此操作可能对试样预先加上了荷载。3.对于实验中的某些关键图像没有意识到应该及时拍照记录。4.实验过程中,小组内部分工没有细化,没有发挥整体的作用。5.关键步骤的误操作,直接导致实验失败。
接下来单独分析每个实验。
铝合金拉伸:
图二:铝合金实际应力应变曲线
从图二中我们可以看到,在加载的前半段,曲线呈线性,是铝合金的线弹性区,符合预期。对此区间线性拟合得到小框图所示拟合曲线。测得材料弹性模量。
然而,过了图中的点后,不再符合预期。
我参考了别组同学曲线,如下图三,发现,曲线应该继续平缓上升,直至被剪断。
图三:铝合金理论拉伸曲线
实验过程我们有两个地方不符合要求:
加载速度设定没按照预先规定的3mm,而是改为了5mm,但是这对于实验是否存在影响还未知。
在上空间拉伸和下空间拉伸的选项上第一次选错,导致有一个压缩阶段,这个可能是造成实验失败的原因之一。
实验结果是:铝合金材料最后被拉断,且有明显界面收缩现象,不是预期的被剪断。
铝合金材料的断裂面与轴向夹角应该是在45度左右,是剪切破坏。微观上,材料在这里发生了滑移。铝的材料结构是面心立方结构,滑移断裂是由于受剪应力的作用破坏了晶体原子间的结合力而引起断裂。沿45度方向破坏是因为单向应力状态最大剪力在这个方向。此外,在老师看过后,分析可能试件不是标准铝合金,被换过了。结合铝合金模量在6.7GPa左右,我们的测量结果是5.4GPa,明显小于预期值,支持这一观点,这可能是一个原因。
低碳钢拉伸:
图四:低碳钢实际曲线
我们的实验进行了一半,只得到了弹性阶段和屈服阶段图像,在冷却时操作失误,载荷卸载时低于了14kN,导致试验机最后直接停止实验,没有继续加载。最后由仅有的数据测得。
低碳钢拉伸破坏,预期截面应该呈杯状,断口处有45度剪切唇,断口组织为暗灰色纤维状。其断裂机制也可以用滑移断裂解释,铁在室温下为体心立方结构,与铝有所差别。另外由于铁晶体内部原子作用力比铝要大,其断口与铝有所差别,铝合金是纯“剪断”的,而低碳钢则出现滑移线。
铸铁拉伸:
图五:铸铁拉伸实际曲线
经过前两次实验的失败,总结经验,第三次做出了比较好的曲线。最后测得。
铸铁是典型的脆性材料,它的破坏断口预期是横截面方向。铸铁的断裂是由拉应力引起。
下图六是断口图像:断裂点靠近夹持端,应该是夹持时附加了扭矩的影响。
图六:铸铁断口实际图像
四、总结与反思:
经过两次实验失败,我们小组总结出了很多经验,也收获了很多东西。意识到科学实验需要相当高的严谨性,任何一个疏忽都可能导致实验失败。我们决定以后实验先做预习,提前熟悉具体的实验过程。同时,加强组内协作,让实验分工更加合理。
后来在网上查阅了一些资料,我认为实验细节有这样一些重要事项: 1.断口移中法:用于测量拉断后的标记长度,即是若断口不在初标距长度中部三分之一区段内时,应该要采用断口移中的办法,以计算试件拉断后的标距长度,减小误差。
2.测量断裂面的截面积应该至少取两个方向各测一次直径,取平均值。3.环境温度的修正:环境温度对材料拉伸性能有一定影响,由于力学实验没有精度要求,所以可以忽略。
4.试件夹持:试件夹持后务必应该与拉伸方向平行,否则会带来较大误差。夹持不正可能会导致试件夹持端有较大扭矩,造成端口不在试件中间1/3区间内。此外,试件务必夹紧后数据清零,尽可能减少实验刚刚开始时由于系统夹头变形、打滑带来的一段很小的波动段。
5.加载速率:经过查阅,拉伸速率直接影响材料的应力应变曲线,因为不同材料对速度的敏感程度不同,直接会影响屈服阶段的变形和材料强化阶段性能,尤其是对于铝合金这类较软的材料。据此,可以认为,我们第一次试验速率由3变为5应该可能会是造成实验图像明显偏离预期的主要原因之一。(这里我们试验时问过老师,当时老师认为没影响,我认为具体需要实验检验,因为国标对于拉伸速度也有明确规定。)
第二篇:实验力学学习心得
实验力学学习心得
曾经对力学的认识很懵懂,以前在我心中力学是一个很抽象的东西,我一直认为力学更多的是在图纸上的演算与推导,凡是与力相关的事物都属于力学范畴。对于力学应用方面的理解,也只是粗略的知道它会应用于航空航天、机械、土木、交通、能源、化工、材料、环境、船舶与海洋等等,但原理是什么,方法是怎样的,我想也绝不只是我最初理解的只是一些受力分析那么简单。而对实验力学这门课的学习则是让我们知道了目前所学的这些知识与它所应用的工程实际相联系的途径和方法。
简单的来说,实验力学就是用实验的方法求解力学问题。即用实验方法测量在力的作用下,物体产生的位移、速度、加速度、应变(形变)、应力、振动频率等物理量。工程实验力学中对实验力学的定义是用实验方法测量应变、应力和位移。也称为实验应力分析。在我现在学习了这门课之后的理解,实验力学是解决工程问题中力学问题的一个重要环节,是求解其力学问题的中间环节,通过实验力学方法测得所需物理量,最终求出结果。
通过课程认知,我了解了解决力学问题的方法主要有两个:理论方法和实验方法。理论方法就是理论方法就是将实际问题转化为数学模型,建立方程,然后求解。它主要有解析法和数值法,理论方法的解答是数学模型的解答,只有实际问题与数学模型相符时才是精确的,这也是它的局限性。而我们这学期学的实验力学的方法就是在实际问题上直接测量。我们这学期做了三个实验力学的实验,分别是测量电桥特性,动态应变测量和光测弹性学方法。这三个实验就用到了实验应力分析的方法——电测,振动测量,光测。实验力学的实验结果更可靠,并且可以发现新问题,开创新领域。不过它也有它的缺点就是测量都有误差,并且实验仪器和材料昂贵,这也导致了费用高。不过,理论分析和实验分析是相辅相成。理论的建立需要实验分析的成果,发现新问题,建立新理论。实验设计和实施需要理论分析做指导。复杂问题需要需要理论与实验共同完成。
正如我刚刚说的,误差是实验方法的一个弊端,也是不可避免的,但随着测试手段的改进和测量者水平的提高,可以减少误差,或者减少误差的影响,提高实验准确程度。实验误差按其产生原因和性质,可以分为系统性误差、偶然性误差和过失误差(粗差)三种。实验力学这门课,同样教会了我们如何去减少误差。比如对称法、初载荷法、增量法消除系统误差。还有通过分析给出修正公式用来消除系统误差,或者定期用更准确的仪器校准实验仪器以减少实验误差,校准时做好记录供以后修正数据用。偶然性误差难以排除,但可以用改进测量方法和数据处理方法,减少对测量结果的影响。例如用多次测量取平均值配合增量法,可以使偶然性误差相互抵消一部分,得到最佳值。过失误差是指明显与实际不符,没有一定的规律。这在我们实验中也会经常出现,通常这些都是由于疏忽大意、操作不当或设备出了故障引起明显不合理的错值或异常值,一般都可以从测量结果中加以剔除。
我们主要做了三个实验,测量电桥特性,动态应变测量和光测弹性学方法。给自己印象最深刻的就是第一个实验。桥路变换接线实验是在等强度实验梁上进行,当时是要在梁的上下表面哥粘贴两个应变片。当时老师在黑板上画了三个图,可是我当时连最基本的图都看不懂,根本不知道哪个是应变片哪个是电阻的意思。接下来在粘应变片的时候也遇到了各种麻烦,应变片倒是没粘好几个,但是手上已经一团糟。好不容易把应变片粘好后,需要用焊锡把电线连上,在仔细琢磨过到底那根线连哪个之后,又遇到了新的麻烦就是那个怎么焊都焊不上,后来找来老师才知道原来是我们那一组的电烙铁有问题,换了个,才继续把这个艰辛的实验做完。这个实验做了不少时间,也着实费了不少的功夫,不过通过这个实验我认识到了自己身上很多的不足但确实学到了不少的东西。对应变电测法有了更深刻的认识。比如电阻应变的半桥接线法和全桥接线法,拉压、扭转、弯曲以及组合变形的电测原理还有记忆犹新的贴片、应变计的正确使用。
我们第二个实验动态应变测量当时是完全用电脑软件操作的。随时间而变的应变叫做动态应变。它会在处在一定的运动状态以及承受的载荷按一 定的规律变化的情况下产生。动态应变测量目的主要有1)记录动态波形2)最大动态应变3)频谱(频率及振幅)4)疲劳强度校核。通过实验,也让我认识到了应变波的两种传播形式:(1)应变从构件表面传递到敏感栅。(2)应变波沿栅长方向的传播。第三个实验是光测弹性学方法,它是利用偏振光通过具有双折射效应的透明受力模型,从而获得干涉条纹图,由于干涉条纹与模型内主应力的大小和方向有一定关系,因此可以直接观察到模型内应力分布情况。但是这种方法的缺点是周期长,成本较高。光弹法是一种模型实验,它的一大特点就是直观性强以及全场显示与分析。它的条纹可直接表示应力分布情况,特别是用于有应力集中的情况。至今想起当时观察到的图像还是会不由的感叹力学模型奇特的美丽。
力学是基础学科,又是技术科学,其发展横跨理工,与各行业的结合是非常密切的。实验力学是将我们所学的基础知识同实际应用相联系的一个重要的桥梁。由于相关行业的发展与国名经济和科学技术的发展同步,使得力学在其中多项技术的发展中起着重要的甚至是关键的作用。我们以后的方向会有很多,既可以从事力学教育与研究工作,又可以从事与力学相关的机械、土木、航空航天、交通、能源、化工等工程专业的设计与研究工作,还可以从事数学、物理、化学、天文、地球或生命等基础学科的教育与研究工作。不仅如此,随着力学学科的发展,本世纪将产生一些新的学科结合点,如生物医学工程、环境与资源、数字化信息等。经典力学与纳米技术一起孕育了微纳米力学将力学知识应用于生物领域产生量生物力学和仿生力学:这些都是近年来力学学科发展的亮点。可以预计,随着社会的发展,力学学科与环境和人居工程等专业的学科交叉也将进一步加强。从这个意义上讲,实验力学的应用也将更为广泛并且不断进步。
很感谢老师这学期为我们传授的知识,受益匪浅。
第三篇:力学实验教学大纲
更多免费资料请访问:豆丁教育百科
普通物理实验(力学)教学大纲
(物理系物理教育专业用)
实验目的:本课程是对理科学生进行科学实验训练的一门必修课程,通过本课程的学习,使学生了解科学实验的主要过程与基本方法,培养学生熟练、扎实的实验基本知识、方法和技能,培养学生良好的科学素质,创新精神和实践能力,为今后的学习和工作奠定基础。
基本要求:本课程要求学生对基本物理现象进行观察和研究,学习基本物理量的测量方法,学习常用测量仪器的结构原理和测量方法,提高学生的基本实验能力、分析能力、表达能力和综合设计能力。通过完成一定数量的力学、热学实验,应达到如下要求:
1、掌握常用基本物理实验仪器的原理和性能,学会正确使用、调节和读数。
2、了解一些物理量的测量方法,知道如何根据实验要求确定实验方案、选择实验仪器、设备,如何减少实验误差。学会对实验进行误差分析和不确定度评定的基本方法,正确运用有效数字,学会定性判断和定量估算实验结果的可靠性。
3、养成良好的实验习惯和严谨的科学作风,特别是严肃认真对待实验数据,杜绝弄虚作假,树立实事求是的科学态度和道德。
第一部分 力学实验(36 学时)
绪论(误差理论)4 学时
实验一 长度测量
要求:练习使用测长度的几种仪器;做好实验记录和计算不确定度。实验类型:验证实验 学时分配:2 学时
实验二 自由落体运动
要求:学习用自由落下的物体测量重力加速度,对组合测量进行数据处理。实验类型:验证实验 学时分配:2 学时
实验三 密度的测量
要求:熟习物质密度的测量方法,测定规则和不规则物体的密度。实验类型:验证实验 学时分配:2 学时
实验四 倾斜气垫导轨上滑块运动的研究
要求:用倾斜气垫导轨测定重力加速度,分析和修正实验中的部分系统误差分量。实验类型:综合实验 学时分配:2 学时
实验五 阻尼振动
要求:观察弹簧振子在有阻尼情况下的振动,测定表征阻尼振动特征的一些参量,利用动态法测定
滑块和导轨之间的粘性阻尼常量。更多免费资料请访问:豆丁教育百科
实验类型:综合实验 学时分配:2 学时
实验六 单摆
要求:使用停表和米尺测单摆周期和长度,求出当地重力加速度g 值,考查单摆的系统误差对测重
力加速度的影响。实验类型:验证实验 分配学时:2 学时
实验七 杨氏弹性模量测量
要求:用伸长法测定金属丝的杨氏模量,学习光杠杆的原理并掌握使用方法。实验类型:综合实验 学时分配:2 学时
实验八 转动惯量的测定
要求:测量不同形状物体的转动惯量。实验类型:综合实验 学时分配:2 学时
实验九 弦振动的研究
要求:观察弦振动时形成的驻波,测量均匀弦线上横波的传播速度及均匀弦线的线密度。实验类型:综合实验 学时分配:2 学时
实验十 复摆振动的研究
要求:考查复摆振动时振动周期与质心到支点距离的关系,测出重力加速度、回转半径和转动惯量。
实验类型:综合实验 学时分配:2 学时
实验十一 牛顿第二定律的验证
要求:学习在气垫导轨上验证牛顿第二定律 实验类型:验证实验 学时分配:2 学时
实验十二 弹簧振子的研究
要求:研究弹簧本身质量对振动的影响 实验类型:综合实验 学时分配:2 学时
实验十三 碰撞实验
要求:验证动量守恒定理,了解非完全弹性碰撞和完全非弹性碰撞的特点。实验类型:验证实验 分配学时:2 学时
实验十四 惯性秤
要求:掌握用惯性秤测定物体质量的原理和方法,了解仪器的定标和使用。实验类型:综合实验 学时分配:2 学时
第四篇:力学七个实验小结
力学七个实验小结
1.研究匀变速直线运动
主要原理:用△x=at2和v=△x/△t来解题 2.探究弹力和弹簧伸长的关系 主要原理:用F=Kx来解题和做图 3.验证平行四边形法则
主要方法:用等效替代法验证平行四边形定则 4.验证牛顿第二定律 方法:控制变量法。装置:斜面装置
要得出的结论 : ① a正比于合外力。
② a正比于小车的质量。
注意:合外力等于细绳所吊的物体重量,故:
⑴ 必须要把斜面固定打点计时器的一端垫高,用小车重力的分力去平衡木板对小车的摩擦阻力和打点计时器限位孔对纸带的阻力(记住不能挂细绳)。
⑵ 使小车的总质量远远大于所挂物体的质量。5.探究动能定理
常见的有三种方法:① 用橡皮筋弹射小车来验证。
② 用牛顿第二实验中的斜面装置来验证。
③用自由落体装置来验证
实验原理:W=△EK2-△EK1 主要结论:得出力与速度的平方的关系图象并用图象来回答问题 6.验证机械能守恒定律
主要用自由落体的装置来加以验证
原理:验证过程守恒量。△EP=△EK
(验证重力势能的减小量等于动能的增加量)误差主要来自于纸带与打点计时器限位孔的阻力和空气阻力。减小误差的方法,把纸带所吊的重锤质量增大。7.验证动量守恒定律 常用方法:
① 用平抛运动的方案来验证
(用天平测质量,用位移代替速度)② 用摆球方案来验证(用完全非弹性碰撞来加以验证)③ 用气垫导轨来验证 {用类似爆炸或反冲(就是两滑块中间加以压缩的弹簧)来加以验证} 原理:m1v1+m2v2= m1v1’+m2v2’
第五篇:物理演示实验感想 力学
物理实验感想
这是我上大学的第一次物理实验课,记忆深刻。还没上课时,我有些紧张,以为会是有难度的实验,可能还要像高中实验课一样做很多记录和数据计算,没想到一进教室门,看到的是满教室的实验仪器,大家都忍不住东摸西看,小声讨论着各种仪器的实验方法,好像对着各种玩具似的。
老师让大家集中在一起,开始挨个讲解实验仪器的原理和操作,有验证各种物理定律的实验,有让波可视化的仪器,林林总总,都很有趣。
让我印象最深的就是进门口处的“鱼洗”了。看起来好像从历史博物馆或者古玩店直接拿来的东西,上面满是绿色的铜锈,只有两个把手被磨得发亮。把手放进盆里沾点水,手掌对着把手摩擦,水面就出现了鱼鳞样的波纹,还伴随着震耳的声音,一盘水居然像变戏法一样神奇,据说鱼洗的原理还没有得到科学解释,这更给它添了几分神秘感。物理世界果然令人感到趣味无穷,不像冷冰冰的定律和公式,这些现象让物理灵动起来,这恐怕就是设置物理实验课的原因吧。
另一个有趣的实验是关于重心的实验。两条斜杆上架着一个扁的杠铃样的重物,由于重心的改变,重物会自动向斜杆的高处滚动,看起来十分不可思议,却是在遵循物理的基本原理。这样的物理现象也出现在生活的很多地方,比如一些坡道明明看起来是斜向下的,车停在上面却会向上自己滑动,其实也和视线的错觉有关。
还有关于风洞的实验,验证运动定理的实验,声波的传递演示,许许多多有趣的实验,大家围着不同的仪器一一摆弄讨论,这节课的时间很快就过去了,我们还有些意犹未尽。物理是一门和实验紧密相连的科学,许多定理都是从物理现象中推出来或者被证明的,把实验和定理结合到一起,可以更好的让我们学习物理的奥妙。这堂实验课让我们学到了很多东西。