第一篇:数据结构课程设计(矩阵的运算)
数 据 结 构
课程设计报告
题 目: 专 业: 班 级: 学 号: 姓 名: 指导老师: 时 间:
一、课程设计题目及所涉及知识点
设计题目是“矩阵的运算”,所涉及的知识点主要是:
1、数据结构中的对于结构体的定义,用typedef struct来实现,根据所设计的问题在结构体里面定义数据类型及其变量,用define定义数组的大小,然后利用typedef 来实现对于变量的未知类型确定正确的类型。
2、利用数组的形式来储存数据,在实现不同操作过程中,有的用一维结构体数组(三元组顺序表)来存储,有的用二维数组来储存。
3、转置的过程中利用的是快速转置的方法,附设了num和cpot两个辅助变量。
4、矩阵的加法、减法、乘法、逆运算的基本算法方式。
5、通过调用每个函数,来实现每个算法的功能。
二、课程设计思路及算法描述
设计思路:
1、首先是对于转置的考虑,要运用快速转置的方法实现,必须用三元组顺序表来储存数据,所以在第一个结构体中存在int类型的行数(mu)列数(nu)以及非零元素的个数(tu);然后第二个结构体中分别有非零元素的行下标(i)、列下标(j)和元素数值(e),最后在第一个结构体中实现对第二个结构体成为数组结构体类型。
2、对于其余加法、减法、乘法和逆运算则是运用另一个结构体来实现,里面只有矩阵的行数、列数和一个二维数组(用float来定义类型)。
3、在main函数里面,来实现对于数据的输入操作,利用if语句进行选择来执行操作,利用do……while语句来实现功能的循环操作。
4、分五个函数调用分别来实现转置、加法、乘法、和逆运算,每个里面都有最终输出结果的方式。
算法1:矩阵的转置
输入:mu中存放矩阵的行数,tu存放矩阵的列数,i接收行下标的数值,j接收列下标的数值,e来存储数据。输出:转置后的新矩阵。
输入两行两列数据,在第二行第一列中有个数据为12,其余都为0,则输出的结果为第一行第二列数据为12,其余为0。
算法2:矩阵的加法运算 输入:i中存放矩阵的行数,j中存放矩阵的列数,二维数组b中存放每个数据。
输出:矩阵加完后的另一个新矩阵。
输入两个两行三列的矩阵,在第一个矩阵里面第一行第一列有个数据20,其余为0,在第二个矩阵里面第一行第二列中有个数据30,其余为0,则输出的结果为一个两行三列的矩阵,其中第一行第一列数据为20,第一行第二列数据为30,其余为0。
算法3:矩阵的减法运算
输入:i中存放矩阵的行数,j中存放矩阵的列数,二维数组b中存放每个数据。
输出:矩阵相减后的另一个新矩阵。
输入两个两行三列的矩阵,在第一个矩阵里面第一行第一列有个数据20,其余为0,在第二个矩阵里面第一行第一列中有个数据30,其余为0,则输出的结果为一个两行三列的矩阵,其中第一行第一列数据为-10,其余为0。
算法4:矩阵的乘法运算
输入:i中存放矩阵的行数,j中存放矩阵的列数,二维数组b中存放每个数据。
输出:矩阵加完后的另一个新矩阵。
输入两行两列的矩阵,第一个矩阵里面第一行第一列有个数据2第二列有个数据3,其余为0,在第二个矩阵里面第一行第一列有个数据2第二列中有个数据3,其余为0,则输出的结果为一个两行两列的矩阵,其中第一行第一列数据为4,第二列为6,第一行第二列数据为30,其余为0。
算法五:矩阵的逆运算
输入:i中存放矩阵的行数,j中存放矩阵的列数,二维数组b中存放每个数据。
输出:矩阵进行逆运算完后的另一个新矩阵。
输入三行三列的矩阵,第一个矩阵里面第一行第一列有个数据3个数据分别为1,2,3;第二行的数据分别为2,2,1;第三行的暑假分别为3,4,3;则输出的结果为三行三列矩阵,其中第一行的数据为1,3,-2;第二行的数据分别为-1.5,-3,2.5;
第三行的数据分别为1,1,-1。
三、课程设计中遇到的难点及解决办法
1、在转置的过程中,要求把转置后的矩阵输出出来,因为用的是三元组顺序表的存储形式,所以不知道怎么去实现,然后通过进一步思考,运用先把一个矩阵存入零元素,然后在对其进行更改,最后完成了此项的工作。
2、就是对于矩阵的乘法运算和逆运算,掌握的不够熟练,先是通过书籍对于矩阵的乘 法和逆运算得到更深的了解,然后通过一步步写程序最后实现了矩阵的乘法运算和逆运算。
四、总结
通过此次课程设计,让我对于编程有了更深的认识,老师的精心指导让我学会到了很多,不仅仅是代码,最主要的让我的思维开阔了很多,在这个过程中,通过不断的尝试,不断的修改,最终克服了困难,完成了自己的任务,心里有种无比的喜悦,但同时又感觉到了自己的知识面的狭隘,还有好多知识的海洋还没有畅游,等待自己将是一回更大的考验。
对于现在的自己,对学习程序还是有很大的兴趣,它让我体验到了很多的快乐,我要进步跟进现在的课程,努力去发展自己,按照老师说的最主要的是具有了编程的思想,则具有了编程的能力,我想我可以成功完成自己的目标。
五、附录—主要源程序代码及运行结果
1、主要源程序代码: # include
elemtype e;}triple;typedef struct { triple data[maxsize+1];//非零元三元组,data[0]未用 int mu,nu,tu;//矩阵的行数、列数和非零元个数 }sqlist;void zhuanzhi(sqlist s1,tsmatrix &l2)//矩阵的转置
{ sqlist s2;int col,t9,p,q,a1,b1;int num[100],copt[100];s2.mu=s1.mu;s2.nu=s1.nu;s2.tu=s1.tu;if(s2.tu>0){ for(col=1;col<=s1.nu;++col)num[col]=0;for(t9=1;t9<=s1.tu;++t9)
++num[s1.data[t9].j];//求s1中每一列含非零元个数
copt[1]=1;//求第col列中第一个非零元在s2.data中序号
for(col=2;col<=s1.nu;++col)copt[col]=copt[col-1]+num[col-1];for(p=1;p<=s1.tu;++p)
{ col=s1.data[p].j;
q=copt[col];
s2.data[q].i=s1.data[q].j;s2.data[q].j=s1.data[q].i;s2.data[q].e=s1.data[q].e;++copt[col];
l2.b[s2.data[q].i][s2.data[q].j]=s2.data[q].e;} printf(“转置后的数据是:n”);printf(“**************************************n”);for(a1=1;a1<=s1.nu;a1++){ for(b1=1;b1<=s1.mu;b1++){printf(“%10.3f”,l2.b[a1][b1]);
printf(“t”);} printf(“n”);} printf(“************************************”);printf(“n”);} } void jiafa(tsmatrix l4, tsmatrix l5)//矩阵的加法 {tsmatrix l6;for(int t=0;t for(j=0;j<(2*s.i);j++) { if(j else if(j==s.i+i)s1.b[i][j]=1.0; else s1.b[i][j]=0.0; } for(i=0;i { for(k=0;k {if(k!=i) { t=s1.b[k][i]/s1.b[i][i]; for(j=0;j<(2*s.i);j++) { x=s1.b[i][j]*t; s1.b[k][j]=s1.b[k][j]-x; } } }} for(i=0;i s1.b[i][j]=s1.b[i][j]/t;} float y=1.0;for(i=0;i printf(“对不起,您输入的矩阵没有逆矩阵”); else { for(i=0;i for(j=0;j { for(j=0;j printf(“%10.3f”,s.b[i][j]); printf(“n”);}}} void main(){ tsmatrix l,l1,l3;sqlist s;int m,n,m1,n1,n4,n5,t,t1,t2,t3,t4,t5,t6,t7,t8;do{ printf(“请输入你要进行的操作:n”); printf(“******************************n”); printf(“矩阵转置运算请按1n矩阵的加法运算请按2n矩阵的乘法运算请按3n矩阵的减法运算请按4n矩阵的逆运算请按5n结束请按0:n”);printf(“******************************n”);scanf(“%d”,&m1);if(m1==1){ printf(“您选择进行的操作是矩阵的转置运算nn”); printf(“请输入你要转置矩阵的行数、列数和非零元的个数n”);scanf(“%d”,&t1); scanf(“%d”,&t2);scanf(“%d”,&t3);s.mu=t1;s.nu=t2;s.tu=t3;printf(“请输入你要转置矩阵非零元的行下标、列下标(从[1][1]开始由左至右由上到下)及其数据(按行逐个输入)n”);for(t4=1;t4<=s.tu;t4++){scanf(“%d”,&t5);scanf(“%d”,&t6); s.data[t4].i=t5;s.data[t4].j=t6; scanf(“%f”,&s.data[t4].e);} for(t7=1;t7<=s.nu;t7++){ for(t8=1;t8<=s.mu;t8++)l1.b[t7][t8]=0.0;} zhuanzhi(s,l1);} if(m1==2){ printf(“您选择进行的操作是矩阵的加法运算nn”);printf(“请输入矩阵的行数和列数:n”);scanf(“%d”,&n);scanf(“%d”,&m);l.i=n;l.j=m;l3.i=n;l3.j=m;printf(“******************************n”);printf(“请输入第一个%d行%d列的矩阵n”,l.i,l.j);{ for(t=0;t if(m1==5){ printf(“您选择进行的操作是矩阵的逆运算nn”);printf(“请输入矩阵的维数(即行和列相等的矩阵):n”);scanf(“%d”,&n);l.i=n;l.j=n;printf(“******************************n”);printf(“请输入%d行%d列的矩阵n”,l.i,l.j);{ for(t=0;t 2、运行结果(如下图): (1)、执行的首界面: (2)、矩阵的转置运算: (3)、矩阵的加法运算: (4)、矩阵的减法运算: (5)、矩阵的乘法 (6)、矩阵的逆运算: (7)、矩阵可以循环运算: 六、指导老师评语及成绩 数据结构 课程设计报告 设计题目: n维矩阵乘法:A B-1 专 业 计算机科学与技术 班 级 计本 学 生 学 号 指导教师 起止时间 2007.X.3-2007.X.11 学年第I 学期 一、具体任务 功能: 设计一个矩阵相乘的程序,首先从键盘输入两个矩阵a,b的内容,并输出两个矩阵,输出ab-1结果。 分步实施: 1.初步完成总体设计,搭好框架,确定人机对话的界面,确定函数个数; 2.完成最低要求:建立一个文件,可完成2维矩阵的情况; 3.进一步要求:通过键盘输入维数n。有兴趣的同学可以自己扩充系统功能。 要求: 1.界面友好,函数功能要划分好 2.总体设计应画一流程图 3.程序要加必要的注释 4.要提供程序测试方案 5.程序一定要经得起测试,宁可功能少一些,也要能运行起来,不能运行的程序是没有价值的。 二、软件环境 Microsoft Visual C++ 6.0 三、问题的需求分析 程序以二维数组作为矩阵的存储结构,通过键盘输入矩阵维数n,动态分配内存空间,创建n维矩阵。矩阵建立后再通过键盘输入矩阵的各个元素值;也可以通过文件读入矩阵的各项数据(维数及各元素值)。 当要对矩阵作进一步操作(A*B或A*B^(-1))时,先判断内存中是否已经有相关的数据存在,若还未有数据存在则提示用户先输入相关数据。 当要对矩阵进行求逆时,先利用矩阵可逆的充要条件:|A| != 0 判断矩阵是否可逆,若矩阵的行列式 |A| = = 0 则提示该矩阵为不可逆的;若 |A| !=0 则求其逆矩阵,并在终端显示其逆矩阵。 四、算法设计思想及流程图 1.抽象数据类型 ADT MatrixMulti{ 数据对象:D = {a(I,j)|i = 1,2,3,…,n;j = 1,2,…,n;a(i,j)∈ElemSet,n为矩阵维数} 数据关系: R = {Row,Col} Row = {| <= i <= n,1 <= j <= n-1} Col = {| <= i <= n-1,1 <= j <= n} 基本操作: Swap(&a,&b); 初始条件:记录a,b已存在。 操作结果:交换记录a,b的值。 CreateMatrix(n); 操作结果:创建n维矩阵,返回该矩阵。 Input(&M); 初始条件:矩阵M已存在。 操作结果:从终端读入矩阵M的各个元素值。 Print(&M) 初始条件:矩阵M已存在。 操作结果:在终端显示矩阵M的各个元素值。 ReadFromFile(); 操作结果:从文件读入矩阵的相关数据。 Menu_Select(); 操作结果:返回菜单选项。 MultMatrix(&M1,&M2,&R); 初始条件:矩阵M1,M2,R已存在。 操作结果:矩阵M1,M2作乘法运算,结果放在R中。 DinV(&M,&V); 初始条件:矩阵M,V已存在。 操作结果:求矩阵M的逆矩阵,结果放入矩阵V中。 MatrixDeterm(&M,n); 初始条件:矩阵M已存在。 操作结果:求矩阵M的行列式的值。 } ADT MatrixMulti 2.矩阵求逆算法设计思想 算法采用高斯-约旦法(全选主元)求逆,主要思想如下: 首先,对于k从0到n-1作如下几步: ① 从第k行、第k列开始的右下角子阵中选取绝对值最大的元素,并记住此元素所在的行号与列号,再通过行交换和列交换将它交换到主元素位置上。这一步称为全选主元。 ② 主元求倒:M(k,k) = / M(k,k) ③ M(k,j) = M(k,j) * M(k,k);j = 0,1,…,n-1;j != k ④ M(i,j) = M(i,j) – M(i,k) * M(k,j);i,j = 0,1,…,n-1;i,j!=k ⑤ M(i,k) = M(i,k) * M(k,k),i = 0,1…,n-1;i != k 最后,根据在全选主元过程中所记录的行、列交换的信息进行恢复,恢复原则如下: 在全选主元过程中,先交换的行(列)后进行恢复;原来的行(列)交换用列(行)交换来恢复。 3.矩阵行列式求值运算算法设计思想 利用行列式的性质:行列式等于它的任一行(列)各元素与其对应的代数余子式乘积,即 D = ∑a(i,k)*A(i,k) ; k = 1,2,…,n; D = ∑a(k,j)*A(k,j) ; k = 1,2,…,n; 再利用函数的递归调用法实现求其值。 4.各函数间的调用关系 Main() ReadFromFile() DinV() Swap () Print() Menu_Select() MatrixDeterm() CreateMatrix() MultMatrix() Input() 5.流程图 否 否 是 否 是 是 否 是 否 否 是 开始 switch(Menu_Select()) case 1: case 3: case 2: n 0 ? 是 输入矩阵维数n 输入矩阵A,B 输出矩阵维数n system(“pause”); 通过键盘输入需对哪个矩阵求逆,求出相应该的逆阵,并显示求得的逆阵system(“pause”);若矩阵不可逆则返回主菜单 case 4: R=A*B并显示矩阵R system(“pause”); case 5: 是 否 是 R=A*B^(-1)显示矩阵R system(“pause”);若B不可逆,则返回主菜单 case 6: 从指定文件中读入矩阵数据 case 0: exit(0); 结果 否 五、源代码 #include #include #include #include #include #include #define YES #define NO 0 typedef float ElemType; ElemType **A; //矩阵A ElemType **B; //矩阵B ElemType **R; //矩阵R,用于存放运算结果 ElemType **V; //矩阵V,存放逆矩阵 int n=0; //矩阵维数 int flag=-1; //标记 void swap(ElemType *a,ElemType *b) //交换记录a,b的值 { ElemType c; c=*a; *a=*b; *b=c; } ElemType **CreateMatrix(int n) //创建n维矩阵,返回该矩阵 { int i,j; ElemType **M; M = (ElemType **)malloc(sizeof(ElemType *)*n); if(M == NULL) exit(1); for(i=0;i { *(M+i) = (ElemType *)malloc(sizeof(ElemType)*n); for(j=0;j *(*(M+i)+j) = 0; } return M; } ElemType MatrixDeterm(ElemType **M,int n) /*递归法求n维矩阵行列式的值,返回运算结果*/ { int i,j,k,l,s; ElemType **T1; ElemType **T2; T1=CreateMatrix(n); T2=CreateMatrix(n); ElemType u; ElemType value=0; //运算结果 for(i=0;i { for(j=0;j { T1[i][j]=M[i][j]; T2[i][j]=M[i][j]; } } if(n==2) //若为2维矩阵,则直接运算并返回运算结果 { value=T2[0][0]*T2[1][1]-T2[0][1]*T2[1][0]; return value; } else { for(j=0;j //将矩阵的行列式以第一行展开 { u=T1[0][j]; for(i=1,l=0;i //求矩阵行列式的余子式M(0,j) { for(k=0,s=0;k { if(k==j) continue; else { T2[l][s]=T1[i][k]; s++; } } l++; } value=value+u*((int)pow(-1,j))*MatrixDeterm(T2,n-1); /*行列式等于某一行的各个元素与其代数余子式的乘积之和*/ } return value; } } int DinV(ElemType **M,ElemType **V) /*全选主元法求矩阵M的逆矩阵,结果存入矩阵V中*/ { int i,j,k; ElemType d; ElemType u; int *JS,*IS; JS=(int *)malloc(sizeof(int)*n); IS=(int *)malloc(sizeof(int)*n); u=MatrixDeterm(M,n); //返回矩阵A的行列式值 if(u==0) return -1; for(i=0;i for(j=0;j V[i][j]=M[i][j]; for(k=0;k { d=0; for(i=k;i //找出矩阵M从M[k][k]开始绝对值最大的元素 { for(j=k;j { if(fabs(V[i][j])>d) { d=fabs(V[i][j]); //d记录绝对值最大的元素的值 /*把绝对值最大的元素在数组中的行、列坐标分别存入IS[K],JS[K]*/ IS[k]=i; JS[k]=j; } } } if(d+1.0 == 1.0) return 0; //所有元素都为0 if(IS[k] != k) /*若绝对值最大的元素不在第k行,则将矩阵IS[K]行的元素与k行的元素相交换*/ for(j=0;j swap(&V[k][j],&V[IS[k]][j]); if(JS[k]!=k) /*若绝对值最大的元素不在第k列,则将矩阵JS[K]列的元素与k列的元素相交换*/ for(i=0;i swap(&V[i][k],&V[i][JS[k]]); V[k][k]=1/V[k][k]; //绝对值最大的元素求倒 for(j=0;j /*矩阵M第k行除元素M[k][k]本身外都乘以M[k][k]*/ if(j!=k) V[k][j]=V[k][j]*V[k][k]; for(i=0;i /*矩阵除第k行的所有元素与第k列的所有元素外,都拿本身减去M[i][k]*M[k][j],其中i,j为元素本身在矩阵的位置坐标*/ if(i!=k) for(j=0;j if(j!=k) V[i][j]=V[i][j]-V[i][k]*V[k][j]; for(i=0;i /*矩阵M第k列除元素M[k][k]本身外都乘以-M[k][k]*/ if(i!=k) V[i][k]=-V[i][k]*V[k][k]; } for(k=n-1;k>=0;k--) /*根据上面记录的行IS[k],列JS[k]信息恢复元素*/ { for(j=0;j if(JS[k]!=k) swap(&V[k][j],&V[JS[k]][j]); for(i=0;i if(IS[k]!=k) swap(&V[i][k],&V[i][IS[k]]); } free(IS); free(JS); return 0; } void MultMatrix(ElemType **M1,ElemType **M2,ElemType **R) /*矩阵M1乘M2 结果存入矩阵R*/ { int i,j,k; for(i=0;i { for(j=0;j { R[i][j]=0; } } for(i=0;i { for(j=0;j { for(k=0;k { R[i][j]=R[i][j]+M1[i][k]*M2[k][j]; } } } } void Input(ElemType **M) //输入矩阵M的各个元素值 { int i,j; char str[10]; char c='A'; if(flag==1) c='B'; system(“cls“); printf(“\n\n输入矩阵%c(%d*%d)\n“,c,n,n); for(i=0;i { for(j=0;j { scanf(“%f“,*(M+i)+j); } } flag=1; gets(str); //吸收多余的字符 } void Print(ElemType **M) //显示矩阵M的各个元素值 { int i,j; printf(“\t“); for(i=0;i { for(j=0;j { printf(“ %.3f“,M[i][j]); } puts(““); printf(“\t\t“); } } int Menu_Select() { char c; do{ system(“cls“); puts(“\t\t*************n维矩阵乘法器*************“); puts(“\t\t| 1.通过键盘输入各项数据 |“); puts(“\t\t| 2.显示矩阵A,B |“); puts(“\t\t| 3.矩阵求逆,并显示逆矩阵 |“); puts(“\t\t| 4.求矩阵运算A*B,并显示运算结果 |“); puts(“\t\t| 5.求矩阵运算A*B^(-1),并显示运算结果|“); puts(“\t\t| 6.从文件读入矩阵A,B与维数n |“); puts(“\t\t| 0.退出 |“); puts(“\t\t***************************************“); printf(“\t\t请选择(0-6):“); c=getchar(); }while(c<'0'||c>'6'); return (c-'0'); } void ReadFromFile() //从指定文件读入矩阵的维数及矩阵各元素的值 { int i,j; FILE *fp; if((fp=fopen(“tx.txt“,“r“))==NULL) { puts(“无法打开文件!!“); system(“pause“); exit(0); } fscanf(fp,“%d“,&n); //读入矩阵维数 A=CreateMatrix(n); //创建矩阵A B V R B=CreateMatrix(n); V=CreateMatrix(n); R=CreateMatrix(n); for(i=0;i //读入矩阵A { for(j=0;j { fscanf(fp,“%f“,&A[i][j]); } } for(i=0;i //读入矩阵A { for(j=0;j { fscanf(fp,“%f“,&B[i][j]); } } puts(“\n\n读文件成功“); fclose(fp); flag=1; } int main() { int i; char c,h; char str[10]; for(;;) { switch(Menu_Select()) { case 1: flag=-1; for(;;) { system(“cls“); printf(“\n\n\t矩阵维数n:“); scanf(“%d“,&n); gets(str); if(n>0) break; else { printf(“\n\t输入有误,请重新输入!\n“); puts(““); system(“pause“); } } A=CreateMatrix(n); B=CreateMatrix(n); V=CreateMatrix(n); R=CreateMatrix(n); Input(A); Input(B); break; case 2: system(“cls“); if(flag==-1) { puts(“\n\n\t不存在任何矩阵数据,请先输入数据“); system(“pause“); break; } puts(“\n“); printf(“\tA = “); Print(A); puts(“\n“); printf(“\tB = “); Print(B); puts(““); system(“pause“); break; case 3: system(“cls“); if(flag==-1) { puts(“\n\n\t不存在任何矩阵数据,请先输入数据“); system(“pause“); break; } for(;;) { printf(“\n\n\t输入需要求逆的矩阵(A/B):“); h=getchar(); c=getchar(); //h=getchar(); if(c=='A'||c=='a') { i=DinV(A,V); if(i==-1) { puts(“\n\n\t矩阵A的行列式等于0,不可逆!“); system(“pause“); break; } printf(“\tA = “); Print(A); puts(“\n“); printf(“A^(-1) = “); Print(V); puts(““); system(“pause“); break; } else if(c=='B'||c=='b') { i=DinV(B,V); if(i==-1) { puts(“\n\n\t矩阵B的行列式等于0,不可逆!“); system(“pause“); break; } printf(“\tB = “); Print(B); puts(“\n“); printf(“B^(-1) = “); Print(V); puts(““); system(“pause“); break; } else puts(“\n\n\t输入有误,请重新输入!\n“); } break; case 4: system(“cls“); if(flag==-1) { puts(“\n\n\t不存在任何矩阵数据,请先输入数据“); system(“pause“); break; } MultMatrix(A,B,R); printf(“\n\n\tA*B = “); Print(R); puts(““); system(“pause“); break; case 5: system(“cls“); if(flag==-1) { puts(“\n\n\t不存在任何矩阵数据,请先输入数据“); system(“pause“); break; } i=DinV(B,V); if(i==-1) { puts(“\n\n\t矩阵B的行列式等于0,不可逆!“); system(“pause“); break; } MultMatrix(A,V,R); printf(“\n\nA*B^(-1) = “); Print(R); puts(““); system(“pause“); break; case 6: system(“cls“); ReadFromFile(); puts(““); system(“pause“); break; case 0: puts(“\t\t正常退出“); exit(0); break; } } return 0; } 六、运行结果 1.主界面: 2.输入6,回车,从文本文件tx.txt中读入矩阵数据: 3.回车,回到主菜单界面;输入2回车,显示从文件读入的矩阵数据: 4.回车,回到主菜单界面;输入3回车,对指定矩阵求逆:(由于这里矩阵A是不可逆的,因此仅以矩阵B为例) 5.回车,回到主菜单界面;输入4回车,求矩阵运算A*B: 6.回车回到主菜单界面,输入5回车,求A*B^(-1)的值: 7.回车回到主菜单界面,输入0回车,退出程序;如果需要自定矩阵维数及各元素值,请利用主菜单里的1号功能自行输入数据,再进行以上几种运算操作。 七、收获及体会 通过这次课程设计,让我再次复习了线性代数里矩阵的相关知识,比如n维矩阵的求逆、矩阵可逆的充分必要条件(|A| != 0)、矩阵与矩阵的乘法运算、行列式求值方法等。同样的,还让我复习了大量C语言里有关数组的一些重要概念,比如多维数组的动态分配问题、数组与指针的关系等。 记得在这个学期新开设的单片机基础课上,吴涛老师曾多次强调,让我们一定要经常锻炼自己的编程能力,他常对我们说:“编程是思维的体操。”尽管我在这方面的能力 和实力非常得有限,也远远不及班上的其他同学,但我通过这次课程设计充分体会到了这句话的精华。 电脑程序作为人体大脑思维的延伸,程序的功能也会因为大脑思维的不断完善而变得更加强大,所以我决定今后要加强在这方面的锻炼和学习,以此来激励自己不断前进! 八、参考文献 《数据结构(C语言版)》 严蔚敏,吴伟民 编著 清华大学出版社 《C语言程序设计》 洪维恩 编著 中国铁道出版社 《C语言程序设计教程》 谭浩强 张基温 唐永炎 编著 高等教育出版社 《工程数学——线性代数 第四版》 同济大学应用数学系 编 高等教育出版社 计本 2007-12 实验五 数组的运算 实验目的: 掌握稀疏矩阵的压缩存储方法及主要运算的实现。实验内容与要求: 设计一个稀疏矩阵计算器,要求能够:⑴输入并建立稀疏矩阵;⑵输出稀疏矩阵;⑶执行两个矩阵相加;⑷求一个矩阵的转置矩阵。 程序代码: #include typedef struct { int i,j; datatype v; }node;typedef struct { node data[smax]; int m,n,t; }spmatrix; void creat(spmatrix a)创建输出稀疏矩阵 { int k=0; printf(“请输入稀疏矩阵:n”); scanf(“%d,%d,%d”,&a.m,&a.n,&a.t); scanf(“%d,%d,%d”,&a.data[0].i,&a.data[0].j,&a.data[0].v); while(a.data[k].v!=0)以0元素作为结束标志,因为稀疏矩阵不包含0元素 {k++; scanf(“%d,%d,%d”,&a.data[k].i,&a.data[k].j,&a.data[k].v); } printf(“输出的稀疏矩阵是:n”); printf(“%d,%d,%dn”,a.m,a.n,a.t); for(k=0;k printf(“%d,%d,%dn”,a.data[k].i,a.data[k].j,a.data[k].v); printf(“n”);} void transpose(spmatrix a)转置函数 { int p,q,k=0; printf(“请输入稀疏矩阵:n”); scanf(“%d,%d,%d”,&a.m,&a.n,&a.t); scanf(“%d,%d,%d”,&a.data[0].i,&a.data[0].j,&a.data[0].v); while(a.data[k].v!=0) {k++; scanf(“%d,%d,%d”,&a.data[k].i,&a.data[k].j,&a.data[k].v); } for(k=0;k {p=a.data[k].i;a.data[k].i=a.data[k].j;a.data[k].j=p;} printf(“输出转置后的初步矩阵元素:n”); for(k=0;k printf(“%d,%d,%dn”,a.data[k].i,a.data[k].j,a.data[k].v); for(p=0;p for(k=0;k<(a.t-p);k++) {if(a.data[k].i>a.data[k+1].i ||(a.data[k].i==a.data[k+1].i && a.data[k].j>a.data[k+1].j)) {q=a.data[k].i;a.data[k].i=a.data[k+1].i;a.data[k+1].i=q; q=a.data[k].j;a.data[k].j=a.data[k+1].j;a.data[k+1].j=q; q=a.data[k].v;a.data[k].v=a.data[k+1].v;a.data[k+1].v=q; } } printf(“输出转置后的稀疏矩阵:n”);printf(“%d,%d,%dn”,a.n,a.m,a.t);for(k=1;k<(a.t+1);k++)此处下标加1是根据输出结果判定而来,不知道原因 printf(“%d,%d,%dn”,a.data[k].i,a.data[k].j,a.data[k].v);printf(“n”);} void add(spmatrix a,spmatrix b)求和函数 {spmatrix c;int x=0,y=0,z=0;int p,q,r=0;printf(“请输入稀疏矩阵a:n”);scanf(“%d,%d,%d”,&a.m,&a.n,&a.t);scanf(“%d,%d,%d”,&a.data[0].i,&a.data[0].j,&a.data[0].v);while(a.data[x].v!=0) {x++; scanf(“%d,%d,%d”,&a.data[x].i,&a.data[x].j,&a.data[x].v); } printf(“请输入稀疏矩阵b:n”);scanf(“%d,%d,%d”,&b.m,&b.n,&b.t);scanf(“%d,%d,%d”,&b.data[0].i,&b.data[0].j,&b.data[0].v); while(a.data[y].v!=0) {y++; scanf(“%d,%d,%d”,&b.data[y].i,&b.data[y].j,&b.data[y].v); }以上为重新创建两个稀疏矩阵,方便运算 if(a.m==b.m && a.n==b.n)首先行列相等的稀疏矩阵才能相加 {for(x=0;x {c.data[z].i=a.data[x].i; c.data[z].j=a.data[x].j; c.data[z].v=a.data[x].v; z++; } for(y=0;y {c.data[z].i=b.data[y].i; c.data[z].j=b.data[y].j; c.data[z].v=b.data[y].v; z++; }两个for循环先后把a,b两个稀疏矩阵元素放到一个新的稀疏矩阵c里去 printf(“输出结合后的初步稀疏矩阵C的元素:n”);进行一次打印 for(z=0;z<(a.t+b.t);z++)printf(“%d,%d,%dn”,c.data[z].i,c.data[z].j,c.data[z].v); for(p=0;p<(a.t+b.t);p++)冒泡排序法对新矩阵元素排序 for(z=0;z<(a.t+b.t-p);z++){if(c.data[z].i>c.data[z+1].i ||(c.data[z].i==c.data[z+1].i && c.data[z].j>c.data[z+1].j))有这几种情况需要重新排序,首先是进行行对比(前行大于后行进行交换),然后当行相等时在进行列对比(前列大于后列时在进行交换),其他情况均不用交换 {q=c.data[z].i;c.data[z].i=c.data[z+1].i;c.data[z+1].i=q; q=c.data[z].j;c.data[z].j=c.data[z+1].j;c.data[z+1].j=q; q=c.data[z].v;c.data[z].v=c.data[z+1].v;c.data[z+1].v=q;} } printf(“输出排序后的稀疏矩阵C的元素:n”);进行一次打印 for(z=1;z<(a.t+b.t+1);z++)printf(“%d,%d,%dn”,c.data[z].i,c.data[z].j,c.data[z].v); for(z=1;z<(a.t+b.t+1-r);z++)主循环,保证阅读每一个数组元素 if(c.data[z].i==c.data[z+1].i && c.data[z].j==c.data[z+1].j)在对排好序后的矩阵进行相等行列元素的合并 {c.data[z].v=c.data[z].v+c.data[z+1].v; r++;此处是关键,记录此时的步骤,如果进行一次运算后,那么后面的循环就要少一次,包括再回到主循环时也要少一次 for(z+1;(z+1)<(a.t+b.t+1-r);z++)小循环是让后面的每一个数组元素向前移动一个位置,掩盖掉相等行列元素 {c.data[z+1].i=c.data[z+2].i; c.data[z+1].j=c.data[z+2].j; c.data[z+1].v=c.data[z+2].j; } } printf(“输出最终结果的稀疏矩阵C:n”);printf(“%d,%d,%dn”,a.m,a.n,(a.t+b.t-r));输出稀疏矩阵表头时只需将行列元素交换输出即可,元素个数输出时要注意相等行列元素合并进行了几次操作,即用r记录操作步骤的次数,每进行一次操作那么最终稀疏矩阵就少一个数组元素,同时r又是伴随步骤增加的 for(z=1;z<(a.t+b.t+1-r);z++)原理同上 printf(“%d,%d,%dn”,c.data[z].i,c.data[z].j,c.data[z].v);} Else给出稀疏矩阵表开头行列总和不等时则无法计算 printf(“输入的稀疏矩阵a,b不是行列相等的矩阵。n”);} void main()主函数 {spmatrix a,b;creat(a);transpose(a);add(a,b);} 心得体会:程序开头老师指点了一下,后面的算法以及函数全为自己长时间编写,全用一维数组包含多个数据的思想去操作,抓住主的数组元素值的变化,步步为营,一个目标一个目标的实现,在操作时最好对这次操作结果做一次打印,就像程序中进行前后元素交换的时候主数组下标加1是为什么没有研究透,不过通过每步打印发现了这个规律,要不然找死都找不出结果为何少一个元素,开头元素为何是一串数字乱码。 数 据 结 构 课程设计报告 题 目: 一元多项式计算 专 业: 信息管理与信息系统 班 级: 2012级普本班 学 号: 201201011367 姓 名: 左帅帅 指导老师: 郝慎学 时 间: 一、课程设计题目分析 本课程设计要求利用C语言或C++编写,本程序实现了一元多项式的加法、减法、乘法、除法运算等功能。 二、设计思路 本程序采用C语言来完成课程设计。 1、首先,利用顺序存储结构来构造两个存储多项式A(x)和 B(x)的结构。 2、然后把输入,加,减,乘,除运算分成五个主要的模块:实现多项式输入模块、实现加法的模块、实现减法的模块、实现乘法的模块、实现除法的模块。 3、然后各个模块里面还要分成若干种情况来考虑并通过函数的嵌套调用来实现其功能,尽量减少程序运行时错误的出现。 4、最后编写main()主函数以实现对多项式输入输出以及加、减、乘、除,调试程序并将不足的地方加以修改。 三、设计算法分析 1、相关函数说明: (1)定义数据结构类型为线性表的链式存储结构类型变量 typedef struct Polynomial{} (2)其他功能函数 插入函数void Insert(Polyn p,Polyn h) 比较函数int compare(Polyn a,Polyn b) 建立一元多项式函数Polyn Create(Polyn head,int m) 求解并建立多项式a+b,Polyn Add(Polyn pa,Polyn pb) 求解并建立多项式a-b,Polyn Subtract(Polyn pa,Polyn pb)2 求解并建立多项式a*b,Polyn Multiply(Polyn pa,Polyn pb) 求解并建立多项式a/b,void Device(Polyn pa,Polyn pb) 输出函数输出多项式,void Print(Polyn P) 销毁多项式函数释放内存,void Destroy(Polyn p) 主函数,void main() 2、主程序的流程基函数调用说明(1)typedef struct Polynomial { float coef; int expn; struct Polynomial *next;} *Polyn,Polynomial; 在这个结构体变量中coef表示每一项前的系数,expn表示每一项的指数,polyn为结点指针类型,属于抽象数据类型通常由用户自行定义,Polynomial表示的是结构体中的数据对象名。 (2)当用户输入两个一元多项式的系数和指数后,建立链表,存储这两个多项式,主要说明如下: Polyn CreatePolyn(Polyn head,int m)建立一个头指针为head、项数为m的一元多项式 p=head=(Polyn)malloc(sizeof(struct Polynomial));为输入的多项式申请足够的存储空间 p=(Polyn)malloc(sizeof(struct Polynomial));建立新结点以接收数据 Insert(p,head);调用Insert函数插入结点 这就建立一元多项式的关键步骤 (3)由于多项式的系数和指数都是随即输入的,所以根据要求需要对多项式按指数进行降幂排序。在这个程序模块中,使用链表,根据对指数大小的比较,对各种情况进行处理,此处由于反复使用指针对各个结点进行定位,找到合适的位置再利用void Insert(Polyn p,Polyn h)进行插入操作。(4)加、减、乘、除、的算法实现: 在该程序中,最关键的一步是实现四则运算和输出,由于加减算法原则是一样,减法可通过系数为负的加法实现;对于乘除算法的大致流程都是:首先建立多项式a*b,a/b,然后使用链表存储所求出的乘积,商和余数。这就实现了多项式计算模块的主要功能。 (5)另一个子函数是输出函数 PrintPolyn(); 输出最终的结果,算法是将最后计算合并的链表逐个结点依次输出,便得到整链表,也就是最后的计算式计算结果。由于考虑各个结点的指数情况不同,分别进行了判断处理。 四、程序新点 通过多次写程序,发现在程序在控制台运行时总是黑色的,本次写程序就想着改变一下,于是经过查资料利用system(“Color E0”);可以函数解决,这里“E0,”E是控制台背景颜色,0是控制台输出字体颜色。 五、设计中遇到的问题及解决办法 首先是,由于此次课程设计里使用指针使用比较多,自己在指针多的时候易脑子混乱出错,对于此问题我是采取比较笨的办法在稿纸上写明白后开始进行 4 代码编写。 其次是,在写除法模块时比较复杂,自己通过查资料最后成功写出除法模块功能。 最后是,前期分析不足开始急于写代码,中途出现各种问题,算是给自己以后设计时的一个经验吧。 六、测试(程序截图) 1.数据输入及主菜单 2.加法和减法模块 3.乘法和除法模块 七、总结 通过本次应用C语言设计一元多项式基本计算程序,使我更加巩固了C语言程序设计的知识,以前对指针这一点使用是比较模糊,现在通过此次课程设计对指针理解的比较深刻了。而且对于数据结构的相关算法和函数的调用方面知识的加深。本次的课程设计,一方面提高了自己独立思考处理问题的能力;另一方面使自己再设计开发程序方面有了一定的小经验和想法,对自己以后学习其他语言程序设计奠定了一定的基础。 八、指导老师评语及成绩 附录:(课程设计代码) #include float coef;6 int expn; struct Polynomial *next;} *Polyn,Polynomial; //Polyn为结点指针类型 void Insert(Polyn p,Polyn h){ if(p->coef==0)free(p); //系数为0的话释放结点 else { Polyn q1,q2; q1=h;q2=h->next; while(q2&&p->expn { q1=q2;q2=q2->next;} if(q2&&p->expn==q2->expn)//将指数相同相合并 { q2->coef+=p->coef; free(p); if(!q2->coef)//系数为0的话释放结点 { q1->next=q2->next;free(q2);} } else { p->next=q2;q1->next=p; }//指数为新时将结点插入 } 7 } //建立一个头指针为head、项数为m的一元多项式 Polyn Create(Polyn head,int m){ int i; Polyn p; p=head=(Polyn)malloc(sizeof(struct Polynomial)); head->next=NULL; for(i=0;i { p=(Polyn)malloc(sizeof(struct Polynomial));//建立新结点以接收数据 printf(“请输入第%d项的系数与指数:”,i+1); scanf(“%f %d”,&p->coef,&p->expn); Insert(p,head); //调用Insert函数插入结点 } return head;} //销毁多项式p void Destroy(Polyn p){ Polyn q1,q2; q1=p->next;8 q2=q1->next; while(q1->next) { free(q1); q1=q2;//指针后移 q2=q2->next; } } //输出多项式p int Print(Polyn P){ Polyn q=P->next; int flag=1;//项数计数器 if(!q)//若多项式为空,输出0 { putchar('0'); printf(“n”); return; } while(q) { if(q->coef>0&&flag!=1)putchar('+');//系数大于0且不是第一项 9 if(q->coef!=1&&q->coef!=-1)//系数非1或-1的普通情况 { printf(“%g”,q->coef); if(q->expn==1)putchar('X'); else if(q->expn)printf(“X^%d”,q->expn); } else { if(q->coef==1){ if(!q->expn)putchar('1'); else if(q->expn==1)putchar('X'); else printf(“X^%d”,q->expn);} if(q->coef==-1){ if(!q->expn)printf(“-1”); else if(q->expn==1)printf(“-X”); else printf(“-X^%d”,q->expn);} } q=q->next; flag++; } printf(“n”);} int compare(Polyn a,Polyn b){ if(a&&b) { if(!b||a->expn>b->expn)return 1; else if(!a||a->expn else return 0; } else if(!a&&b)return-1;//a多项式已空,但b多项式非空 else return 1;//b多项式已空,但a多项式非空 } //求解并建立多项式a+b,返回其头指针 Polyn Add(Polyn pa,Polyn pb){ Polyn qa=pa->next; Polyn qb=pb->next; Polyn headc,hc,qc; hc=(Polyn)malloc(sizeof(struct Polynomial));//建立头结点 11 hc->next=NULL; headc=hc; while(qa||qb){ qc=(Polyn)malloc(sizeof(struct Polynomial)); switch(compare(qa,qb)) { case 1: qc->coef=qa->coef; qc->expn=qa->expn; qa=qa->next; break; case 0: qc->coef=qa->coef+qb->coef; qc->expn=qa->expn; qa=qa->next; qb=qb->next; break; case-1: qc->coef=qb->coef; qc->expn=qb->expn; qb=qb->next; break;12 } if(qc->coef!=0) { qc->next=hc->next; hc->next=qc; hc=qc; } else free(qc);//当相加系数为0时,释放该结点 } return headc;} //求解并建立多项式a-b,返回其头指针 Polyn Subtract(Polyn pa,Polyn pb){ Polyn h=pb; Polyn p=pb->next; Polyn pd; while(p)//将pb的系数取反 { p->coef*=-1;p=p->next;} pd=Add(pa,h); for(p=h->next;p;p=p->next) //恢复pb的系数 p->coef*=-1;13 return pd;} //求解并建立多项式a*b,返回其头指针 Polyn Multiply(Polyn pa,Polyn pb){ Polyn hf,pf; Polyn qa=pa->next; Polyn qb=pb->next; hf=(Polyn)malloc(sizeof(struct Polynomial));//建立头结点 hf->next=NULL; for(;qa;qa=qa->next) { for(qb=pb->next;qb;qb=qb->next) { pf=(Polyn)malloc(sizeof(struct Polynomial)); pf->coef=qa->coef*qb->coef; pf->expn=qa->expn+qb->expn; Insert(pf,hf);//调用Insert函数以合并指数相同的项 } } return hf;} //求解并建立多项式a/b,返回其头指针 void Device(Polyn pa,Polyn pb){ Polyn hf,pf,temp1,temp2; Polyn qa=pa->next; Polyn qb=pb->next; hf=(Polyn)malloc(sizeof(struct Polynomial));//建立头结点,存储商 hf->next=NULL; pf=(Polyn)malloc(sizeof(struct Polynomial));//建立头结点,存储余数 pf->next=NULL; temp1=(Polyn)malloc(sizeof(struct Polynomial)); temp1->next=NULL; temp2=(Polyn)malloc(sizeof(struct Polynomial)); temp2->next=NULL; temp1=Add(temp1,pa); while(qa!=NULL&&qa->expn>=qb->expn) { temp2->next=(Polyn)malloc(sizeof(struct Polynomial)); temp2->next->coef=(qa->coef)/(qb->coef); temp2->next->expn=(qa->expn)-(qb->expn); Insert(temp2->next,hf); pa=Subtract(pa,Multiply(pb,temp2));15 qa=pa->next; temp2->next=NULL; } pf=Subtract(temp1,Multiply(hf,pb)); pb=temp1; printf(“商是:”); Print(hf); printf(“余数是:”); Print(pf);} void main(){ int choose=1;int m,n,flag=0;system(“Color E0”);Polyn pa=0,pb=0,pc,pd,pf;//定义各式的头指针,pa与pb在使用前付初值NULL printf(“请输入A(x)的项数:”);scanf(“%d”,&m);printf(“n”);pa=Create(pa,m);//建立多项式A printf(“n”);printf(“请输入B(x)的项数:”);16 scanf(“%d”,&n);printf(“n”);pb=Create(pb,n);//建立多项式B printf(“n”);printf(“**********************************************n”);printf(“* 多项式操作菜单 printf(”**********************************************n“);printf(”tt 1.输出操作n“);printf(”tt 2.加法操作n“);printf(”tt 3.减法操作n“);printf(”tt 4.乘法操作n“);printf(”tt 5.除法操作n“);printf(”tt 6.退出操作n“);printf(”**********************************************n“);while(choose){ printf(”执行操作:“); scanf(”%d“,&flag); switch(flag) { case 1: printf(”多项式A(x):“);Print(pa);*n”); printf(“多项式B(x):”);Print(pb); break; case 2: pc=Add(pa,pb); printf(“多项式A(x)+B(x):”);Print(pc); Destroy(pc);break; case 3: pd=Subtract(pa,pb); printf(“多项式A(x)-B(x):”);Print(pd); Destroy(pd);break; case 4: pf=Multiply(pa,pb); printf(“多项式A(x)*B(x):”); Print(pf); Destroy(pf); break; case 5: Device(pa,pb);18 break; case 6: exit(0); break; } } Destroy(pa); Destroy(pb);} 数据结构课程设计 1.赫夫曼编码器 设计一个利用赫夫曼算法的编码和译码系统,重复地显示并处理以下项目,直到选择退出为止。要求: 1)将权值数据存放在数据文件(文件名为data.txt,位于执行程序的当前目录中) 2)初始化:键盘输入字符集大小26、26个字符和26个权值(统计一篇英文文章中26个字母),建立哈夫曼树; 3)编码:利用建好的哈夫曼树生成哈夫曼编码; 4)输出编码(首先实现屏幕输出,然后实现文件输出); 5)界面优化设计。 代码如下: #include typedef struct HTNode //结构体 { int Weight; char ch;int Parent,Lchild,Rchild;}HTNode;typedef char * * HCode; void Save(int n,HTNode *HT) //把权值保存到文件 { FILE * fp; int i; if((fp=fopen(“data.txt”,“wb”))==NULL) { printf(“cannot open filen”); return; } for(i=0;i if(fwrite(&HT[i].Weight,sizeof(struct HTNode),1,fp)!=1) printf(“file write errorn”); fclose(fp); system(“cls”); printf(“保存成功!”); } void Create_H(int n,int m,HTNode *HT) //建立赫夫曼树,进行编码 { int w,k,j;char c;for(k=1;k<=m;k++){ if(k<=n) { printf(“n请输入权值和字符(用空格隔开): ”); scanf(“%d”,&w); scanf(“ %c”,&c);HT[k].ch=c; HT[k].Weight=w; } else HT[k].Weight=0; HT[k].Parent=HT[k].Lchild=HT[k].Rchild=0;} int p1,p2,w1,w2; for(k=n+1;k<=m;k++){ p1=0;p2=0; w1=32767;w2=32767; for(j=1;j<=k-1;j++) { if(HT[j].Parent==0) { if(HT[j].Weight { w2=w1;p2=p1; w1=HT[j].Weight; p1=j; } else if(HT[j].Weight { w2=HT[j].Weight; p2=j; } } } HT[k].Lchild=p1;HT[k].Rchild=p2;HT[k].Weight=HT[p1].Weight+HT[p2].Weight; HT[p1].Parent=k;HT[p2].Parent=k; } printf(“输入成功!”);} void Coding_H(int n,HTNode *HT) //对结点进行译码 { int k,sp,fp,p;char *cd;HCode HC; HC=(HCode)malloc((n+1)*sizeof(char *)); cd=(char *)malloc(n*sizeof(char));cd[n-1]=' '; printf(“************************n”);printf(“Char Codingn”); for(k=1;k<=n;k++) { sp=n-1;p=k;fp=HT[k].Parent; for(;fp!=0;p=fp,fp=HT[fp].Parent) if(HT[fp].Lchild==p) cd[--sp]='0'; else cd[--sp]='1'; HC[k]=(char *)malloc((n-sp)*sizeof(char)); strcpy(HC[k],&cd[sp]); printf(“%c %sn”,HT[k].ch,HC[k]); } printf(“************************n”);free(cd);} void Read(int n,HTNode *HT) //从文件中读出数据 { int i;FILE * fp;if((fp=fopen(“data.txt”,“rb”))==NULL){ printf(“cannot open filen”); exit(0);} for(i=0;i fread(&HT[i].Weight,sizeof(struct HTNode),1,fp);// printf(“%d n”,HT[i].Weight); } Coding_H(n,HT); fclose(fp);} void Print_H(int m,HTNode *HT) //输出赫夫曼造树过程 { int k;printf(“************************n”);printf(“Num Weight Par LCh RCh n”);for(k=1;k<=m;k++){ printf(“%d ”,k); printf(“ %d”,HT[k].Weight); printf(“ %d”,HT[k].Parent); printf(“ %d”,HT[k].Lchild); printf(“ %dn”,HT[k].Rchild); } printf(“************************n”);} void Decode(int m,HTNode *HT) //对输入的电文进行译码 { int i,j=0;char a[10];char endflag='2';i=m;printf(“输入发送的编码,以‘2’结束:”);scanf(“%s”,&a);printf(“译码后的字符:”);while(a[j]!='2'){ if(a[j]=='0') i=HT[i].Lchild; else i=HT[i].Rchild; if(HT[i].Lchild==0) //HT[i]是叶结点 { printf(“%c”,HT[i].ch); i=m; //回到根结点 } j++;} printf(“n”);if(HT[i].Lchild!=0&&a[j]!='2') printf(“ERROR”);} int main() //主函数 { int n,m,c;HTNode HT[N];do { system(“color 2f”); //运行环境背景颜色.printf(“nntt*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=ntt”); printf(“nttt 赫夫曼编译码系统 ttt”); printf(“nntt*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=ntt”); printf(“nttt1.输入权值、字母nttt2.把数据写入文件nttt3.输出赫夫曼编码表nttt”); printf(“4.输出赫夫曼译码表nttt5.输入编码并译码.nttt6.从文件中读出数据nttt7.退出”); printf(“nnttt请选择:”); scanf(“%d”,&c); switch(c) { case 1:system(“cls”);printf(“输入多少结点:”); scanf(“%d”,&n);m=2*n-1;Create_H(n,m,HT);break; case 2:system(“cls”);Save(n,HT);break; case 3:system(“cls”);Print_H(m,HT);break; case 4:system(“cls”);Coding_H(n,HT);break; case 5:system(“cls”);Decode(m,HT);break; case 6:system(“cls”);Read(n,HT);break; case 7:system(“cls”);exit(0); } }while(1);return 0;} 运行界面如下: 2.学生成绩管理(链表实现)要求: 实现如下功能:增加、查找、删除、输出、退出。 代码如下: #include //定义成绩信息结构体 { char Number[20];char Name[20];char Chinese[20];char English[20];char Math[20];}score;typedef struct node_score //定义成绩信息链表结点,包括数据域和指针域 { score data;struct node_score *next;}node_score,*p_node_score;p_node_score headScore;//定义链表的头指针为全局变量 void PrintScore(score s)//输出信息函数 { printf(“ %10s”,s.Number);printf(“ | %-6s”,s.Name);printf(“ | %-3s”,s.Chinese);printf(“ | %-3s”,s.English); printf(“ | %-3sn”,s.Math);} void View()//输出函数 { p_node_score pNodeScore; pNodeScore=headScore;printf(“ 学号 | 姓名 | 语文成绩 | 英语成绩| 高数成绩n”);while(pNodeScore!= NULL){ PrintScore(pNodeScore->data);//输出学生信息和成绩信息 pNodeScore=pNodeScore->next;} } void Add(){ p_node_score pNodeScore;// 定义一个节点 pNodeScore=(p_node_score)malloc(sizeof(node_score));//为节点分配存储空间 printf(“请输入学号:”);scanf(“%s”,pNodeScore->data.Number);printf(“请输入姓名:”);scanf(“%s”,pNodeScore->data.Name);printf(“请输入语文成绩:”);scanf(“%s”,pNodeScore->data.Chinese);printf(“请输入英语成绩:”);scanf(“%s”,pNodeScore->data.English);printf(“请输入高数成绩:”);scanf(“%s”,pNodeScore->data.Math);if(headScore==NULL){ //如果头结点为空 headScore=pNodeScore; pNodeScore->next=NULL;} else { //如果头结点不为空 pNodeScore->next=headScore; headScore=pNodeScore;//将头结点新结点 } } void Input(){ int n,i;printf(“输入几个学生的数据:”);scanf(“%d”,&n);for(i=0;i Add();printf(“输入成功!”);} int Delete(){ p_node_score pNodeScore,p1;//p1为pNodeScore的前驱 p1=headScore;if(p1==NULL){ printf(“成绩表中没有数据!请先添加数据!n”); return 0;} char DeleteNumber[20]; printf(“请数入要删除的学生学号:”);scanf(“%s”,DeleteNumber);if(strcmp(p1->data.Number,DeleteNumber)==0) { //如果要删除的结点在第一个 headScore=p1->next; pNodeScore=p1; printf(“学号为%s的学生信息已经删除!n”,DeleteNumber); return 0;} else { pNodeScore=p1->next; while(pNodeScore!=NULL) { if(strcmp(pNodeScore->data.Number,DeleteNumber)==0) { p1->next=pNodeScore->next; printf(“学号为%s的学生信息已经删除!n”,DeleteNumber); return 0; } else { //否则,结点向下一个,p1仍为pNodeScore的前驱 p1=pNodeScore; pNodeScore=pNodeScore->next; } } } printf(“没有此学号的学生!”);} int Change(){ p_node_score pNodeScore; pNodeScore=headScore;if(pNodeScore==NULL){ printf(“成绩表中没有数据!请先添加数据!n”); return 0;} char EditNumber[20];printf(“请输入你要修改的学生学号:”);scanf(“%s”,EditNumber);while(pNodeScore!=NULL){ if(strcmp(pNodeScore->data.Number,EditNumber)==0) { //用strcmp比较两字符串是否相等,相等则返回0 printf(“原来的学生成绩信息如下:n”);//输出原来的成绩信息 printf(“ 学号 | 姓名 | 语文成绩 | 英语成绩| 高数成绩n”); PrintScore(pNodeScore->data); printf(“语文新成绩:”); scanf(“%s”,pNodeScore->data.Chinese); printf(“英语新成绩:”); scanf(“%s”,pNodeScore->data.English); printf(“高数新成绩:”); scanf(“%s”,pNodeScore->data.Math); printf(“成绩已经修改!”); return 0; } pNodeScore=pNodeScore->next;//如果不相等,pNodeScore则指向下一个结点 } printf(“没有此学号的学生!n”);//如果找到最后都没有,则输出没有此学号的学生 } int Find(){ p_node_score pNodeScore; pNodeScore=headScore;if(pNodeScore==NULL){ printf(“成绩表中没有数据!请先添加数据!n”); return 0;} char FindNumber[20];printf(“请输入你要查找的学生学号:”);scanf(“%s”,FindNumber);while(pNodeScore!=NULL){ if(strcmp(pNodeScore->data.Number,FindNumber)==0) { printf(“你要查找的学生成绩信息如下:n”); printf(“ 学号 | 姓名 | 语文成绩 | 英语成绩| 高数成绩n”); PrintScore(pNodeScore->data); return 0; } pNodeScore=pNodeScore->next;} printf(“没有此学号的学生!n”);} int main() //主函数 { int choice=0;headScore=NULL;int c;do { system(“color 2f”); //运行环境背景颜色.printf(“nntt*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=ntt”); printf(“nttt 学生成绩管理系统 ttt”); printf(“nntt*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=ntt”); printf(“nttt1.输入成绩信息nttt2.输出成绩信息nttt3.添加成绩信息nttt”); printf(“4.修改成绩信息nttt5.删除成绩信息nttt6.查询成绩信息nttt7.退出”); printf(“nnttt请选择:”); scanf(“%d”,&c); switch(c) { case 1:system(“cls”);Input();break; case 2:system(“cls”);View();break; case 3:system(“cls”);Add();break; case 4:system(“cls”);Change();break; case 5:system(“cls”);Delete();break; case 6:system(“cls”);Find();break; case 7:system(“cls”);exit(0); } }while(1);return 0;} 运行界面如下:第二篇:数据结构课程设计报告n维矩阵乘法
第三篇:数据结构稀疏矩阵应用
第四篇:2012数据结构课程设计
第五篇:数据结构课程设计