多功能函数信号发生器(精选五篇)

时间:2019-05-14 04:29:57下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《多功能函数信号发生器》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《多功能函数信号发生器》。

第一篇:多功能函数信号发生器

课程设计报告书

——多功能函数信号发生器

多 功 能 函 数 发 生 器

— — 设 计 报 告

一、设计任务

�1�设计一个能产生正弦波、矩形波、三角波、锯齿波的电路�要求波形的频率在一 定范围内可调�矩形波占空比在一定范围内可调�

�2�用数码管显示波形频率�

�3�用中、小规模集成电路�双列直插式�组件和阻容元件实现所选定的电路。�4�在计算机上用 Multisim 仿真优化。

�5�在模拟实验装置和逻辑实验箱上安装、调试。

1、题目�多功能函数发生器

2、设计要求

3、主要技术指标

�1�频率范围�150~300Hz�连续可调。

�2�矩形波占空比�30%~60%�连续可调。

�3�输出电压�矩形波U P-P≤ 12V�三角波U P-P≤12V�

正弦波U P-P ≥ 1V。

�4�由三个数码管实时显示输出频率。

�5�波形特性� �略�

�6�负载能力� 50 欧�5 伏

二、仪器与器件

1、仪器

1)2)3)4)5)

2、器件

1)2)3)4)四运放 LM324

2-5-10 进制计数器 74LS90 四位寄存器 74LS194 四 2 输入与非门 74LS00 直流稳压电源 示波器 万用表 模拟实验装置 数字实验箱 台 1 台 1 台 1 台 1 台

块 3 块 3 块 1 块

5)6)

7)555 定时器 二极管、稳压管 电位器、电阻器、电容器 块 若干 若干

三、设计思路

1、系统简要框图

计数器

函数发生器

寄存器

译码

锁存 显示

秒脉冲

发生

2、单元电路设计

�1�函数发生器 用模拟电路实现。多种方案�

在模拟电路或数字电路中�能产生方波信号的电路很多。如由运算放大器组成 的滞回比较器、门电路或 555 定时器组成的多谐振荡器。而方波信号经积分电路就 可以方便地形成三角波或锯齿波信号。典型的电路是由两个运算放大器构成的方波

-三角波发生器。而正弦波信号的产生可以采用波形转换的方式�利用低通滤波器或比例系数可

调的比例运算电路将三角波信号转换为正弦波信号�也可以应用在模拟电路中的正 弦波振荡器产生。

根据实验室条件和对基础知识的应用能力�函数发生器可以采用以下两种方法 实现。方案一�

方案二� RC桥式

滞回

积分

滞回

该设计采用第二种方案�

积分 滤波

图中最左边的运算放大器连接构成的是滞回比较器�功能是产生方波信号�中间部 分是积分电路�将前面产生的方波进行积分产生三角波�通过调节图中 R2 的阻值可以调 节波形的占空比�可以产生锯齿波�最右边的部分是一个低通滤波器�将三角波滤波产生

正弦波。

通过调节图中 R5 的阻值可以调节产生波形的周期�频率��要满足对频率和占空比 的范围要求计算出两个变阻器的阻值�从而实现频率范围�150~300Hz�连续可调�矩形 波占空比�30%~60%�连续可调。

�2�计数器及存储显示部分

用 74LS90 构成 3 位十进制计数器。计数器是数字电路中使用广泛的功能器件。无论是 TTL 还是 CMOS 集成电路�都是品

种齐全的 MSI 计数器。如使用 74LS90�74LS290�74LS163 等都可以方便得构成三位十进 制计数器�对函数发生器产生的方波信号进行计数。

此部分电路设计时应注意以下几点�

1�不同的计数器模块其清零方式可能不同�

2�不同的计数器模块触发方式可能不同�所以应特别注意进位线的连接方式�

3�寄存器锁存电路�

用三片寄存器芯片如 74LS194 组成的 BCD 码锁存电路�保证数码管能够稳定显示最终

的计数结果。4�数码管显示�

选用三个 BCD 码数码显示管。�3�秒脉冲产生

利用 555 定时器构成秒脉冲发生器产生正脉冲宽度为 1S。

根 据 脉 冲 宽 度 的 公 式

tH=0.7�R1+R2�C1�设置合适的 R1、R2 和 C1�使其能够产生一个能够 持续 1s 的高电平脉冲�通过它 来控制计数部分的清零、计数和 对寄存器的置数功能�从而使计 数显示电路部分能够准确的显

示输出波形的频率。该部分电路连接图如上图所示。根据计数部分对控制电平的要求�需

将 555 产生的秒脉冲信号进行反相后接到控制端。它在控制计数器 74LS90 清零的同时又控 制着移位寄存器的置数信号�其具体工作为先将计数器的数值置入寄存其中�然后再给计 数器清零。

�4�反相放大 为 了 提 高 函 数发生器

带负载的能力�在信号输出

之前首先经过放大�本设计 中采用的是反相放大电路

�如右所示�。通过调节图 中的电位器可以调节输出

信号的电压幅值�从而达到

提高带负载的能力。根据所需的负载能力来确定放大的倍数�从而确定电路中的各个参数

值。

3、整体电路 将设计好的部分电路按照其各自的功能连接出完整的电路�如下图�

完整原理图

四、Multisim 软件仿真

打开 Multisim 运行环境�按照上图连接好电路�首先分别测试每一部分的电路功能�

使每一部分都达到设计要求后�将它们连接成整体电路�用示波器分别观察每一个波形的 产生�通过调节电位器观察波形的频率或周期有无变化�是否满足设计要求及产生的误差。并观察数字部分的计数是否准确�该部分通过测量波形的周期理论计算该信号的频率�并

与显示的数值进行比较�分析产生误差的原因并对电路进行参数调整�将误差减小到最小。仿真波形如图�

方波与三角波 正弦波

五、系统安装调试

按照设计电路将测试好的参数器件连接实物电路�

1�在九孔板上搭接函数发生器电路� 按仿真调试后的原理图分别搭接矩形波发生器、三角波发生器、正弦波发生器等单元

电路。

2�在数字逻辑实验箱上搭接电路� 按仿真调试后的原理图分别搭接秒脉冲发生器、十进制计数器、寄存器锁存及置数控

制等单元电路。在功能测试时秒脉冲发生器用数字实验箱上的 1HZ 秒脉冲信号代替�这样 计数部分的示数应为实际信号频率的一半。

计数器 74LS90 和寄存器 74LS194 的功能引脚图�

3�调试过程�

�1�先按顺序调整好函数发生器�

�2�调整好计数器和锁存器电路�

�3�将秒脉冲引入计数器电路�在秒脉冲作用下�调整计数译码显示电路。�4�在模拟部分和数字部分均调试完毕�将两部分之间的连线接好�系统就可以按

照设计进行正常工作。

六、性能指标测试

用示波器分别观察方波、三角波、正弦波�观察波形的稳定性�并调节频率和占空比� 观察波形的变化是否符合设计要求�再观察示波器上显示的波形的频率和数字部分的计数 值呈现二倍的关系。

七、设计中出现的问题

1、在参数的确定方面需要合理的选择�因为它们都是彼此影响的�通过合理的设计 选参�最终得出符合设计要求的各个器件参数。

2、在功能测试中�如果直接将产生的方波送到计数器的计数输入端�则会出现计数 不准确的情况�为了解决这个问题需要将产生的方波在送人计数器之前先经过一个同相比 例运算电路�将它放大一倍�过一个二极管将波形的负值消去�然后再送入 74LS90 进行计 数�上述问题得以解决。

八、参考文献

“模拟电子技术基础”清华大学 1)

2)3)4)

童诗白 主编 阎石 主编 康华光 主编 孙肖子 主编 “数字电子技术基础”清华大学 “电子技术基础”

“现代电子线路和技术实验简明教程

第二篇:51单片机设计多功能低频函数信号发生器

【转】 51单片机设计多功能低频函数信号发生器 2010-06-05 17:37 转载自 yeyongan1987 最终编辑 yeyongan1987

51单片机设计多功能低频函数信号发生器

应用89S52单片机和DAC0832进行低频函数信号发生器的设计。本设计能产生正弦波、锯齿波、三角波和方波。这里着重介绍正弦波和锯齿波的生成原理。

ADC0832的介绍:DAC0832是8分辨率的D/A转换集成芯片。与微处理器完全兼容。这个DA芯片以其价格低廉、接口简单、转换控制容易等优点,在单片机应用系统中得到广泛的应用。D/A转换器由8位输入锁存器、8位DAC寄存器、8位D/A转换电路及转换控制电路构成。

D0~D7:八位数据输入端 ILE: 数据允许锁存信号 /CS: 输入寄存器选择信号 /WR1: 输入寄存器选择信号 /XFER:数据传送信号

/WR2: DAC寄存器的写通选择信号 Vref: 基准电源输入端 Rfb: 反馈信号输入端 Iout1: 电流输出1 Iout2: 电流输出2 Vcc: 电源输入端 AGND: 模拟地 DGND: 数字地 DAC0832结构:

D0~D7:8位数据输入线,TTL电平,有效时间应大于90ns(否则锁存器的数据会出错);

ILE:数据锁存允许控制信号输入线,高电平有效;

CS:片选信号输入线(选通数据锁存器),低电平有效;

WR1:数据锁存器写选通输入线,负脉冲(脉宽应大于500ns)有效。由ILE、CS、WR1的逻辑组合产生LE1,当LE1为高电平时,数据锁存器状态随输入数据线变换,LE1的负跳变时将输入数据锁存;

XFER:数据传输控制信号输入线,低电平有效,负脉冲(脉宽应大于500ns)有效;

WR2:DAC寄存器选通输入线,负脉冲(脉宽应大于500ns)有效。由WR1、XFER的逻辑组合产生LE2,当LE2为高电平时,DAC寄存器的输出随寄存器的输入而变化,LE2的负跳变时将数据锁存器的内容打入DAC寄存器并开始D/A转换。

IOUT1:电流输出端1,其值随DAC寄存器的内容线性变化;

IOUT2:电流输出端2,其值与IOUT1值之和为一常数;

Rfb:反馈信号输入线,改变Rfb端外接电阻值可调整转换满量程精度;

Vcc:电源输入端,Vcc的范围为+5V~+15V;

VREF:基准电压输入线,VREF的范围为-10V~+10V; AGND:模拟信号地 DGND:数字信号地 DAC0832的工作方式:

根据对DAC0832的数据锁存器和DAC寄存器的不同的控制方式,DAC0832有三种工作方式:直通方式、单缓冲方式和双缓冲方式。本设计选用直通方式。

DAC0832工作时序:

DAC0832内部结构图:

当ILE为1时,只有当/CS、/WR1都为0时输入寄存器才允许输入;当/WR2、/XFER也都为0时,输入寄存器里的信息才能写入DAC寄存器。根据实际电路图我们就可以得到DAC0832工作的时序的程序。如下:

P37=0;//P37=CS _nop_();//P36=WR P36=0;

P0=value;(数据端口信号数值0~255)P36=1;_nop_();P37=1;硬件电路:

P0口是数据端口,接上拉电阻(其他端口则不用)。电源质量要好,质量越好的电源,芯片工作就越稳定。

从LM358运放输出的电压最大峰峰值就是12V所以在二级运放的放大倍数要注意跟基准电压想匹配,否则输出信号会很容易失真。

正弦波的生成:

DAC0832产生信号的原理可以说是ADC0809AD转换的逆过程,但DAC0832生成的信号是离散的。假设要生成一个Y=Asin(2*pi*f*t)的正弦波。adc0832数据端口给的数据的范围是0~255一共256个。前0~127表示是X轴上方的电压值(也可能是下方)。那么128~255是X轴下方的电压值。那么我们可以得到数据端口的数值的具体量,即value=127sin(2*pi*f*t)+127;假设我在X轴上抽样100个点(0~99),那么value=127sin(pi/50*t)+127;t:0~99.(这个100位的数组可以用MATALB生成)。也可以抽样更多的点,抽样的点越多,得到的信号越保真,但信号的频率会有所下降。抽样的点越少,失真越大,但频率能成大幅度递增。怎么选择,具体情况具体分析。其他的波形也跟正弦波一样。

程序如下:

#include sbit dac_WR=P3^6;//dac0832的wr端 sbit dac_cs=P3^7;sbit KEY1=P2^0;sbit KEY2=P2^1;bit keyflag;unsigned char i;unsigned char code tab[100]={127,135,143,151,159,166,174,181,188,195,202, 208,214,220,225,230,234,238,242,245,248,250, 251,252,253,254,253,252,251,250,248,245,242, 238,234,230,225,220,214,208,202,195,188,181, 174,166,159,151,143,135,127,119,111,103,95, 88,80,73,66,59,52,46,40,34,29,24, 20,16,12,9,6,4,3,2,1,0,1, 2,3,4,6,9,12,16,20,24,29,34, 40,46,52,59,66,73,80,88,95,103,111,119};

void getkey(void){ if(KEY1==0){ //按键按下后为电电平 RCAP2L+=10;//调节频率 if(CY==1){ RCAP2H+=1;} } if(KEY2==0){ RCAP2L-=10;if(CY==1){ RCAP2H-=1;} } } void Timer2_Init(){ T2CON=0x00;TH2=(65536-300)/256;TL2=(65536-300)%256;RCAP2H=0XFE;RCAP2L=0XDA;//稳定在50Hz左右 EA=1;ET2=1;TR2=1;} void T0_service()interrupt 1 { TH0=0XEC;TL0=0X77;keyflag=1;}

void Timer2_service()interrupt 5 { TF2=0;//清除中断标志位 dac_cs=0;dac_WR=0;P1=tab[i];dac_WR=1;i++;dac_cs=1;if(i==100)i=0;} void main(){ Timer2_Init();TMOD=0x01;TH0=0XEC;TL0=0X77;EA=1;ET0=1;TR0=1;while(1){ if(keyflag){ keyflag=0;getkey();} } } 本程序需注意:按键是低电平有效。定时器2中断发送数据给DAC0832,0832在得到一个数据后生成相应的电压值。所以他的中断时间决定信号的频率,调节它的中断时间就能调节信号的频率。

其他波形的生成,其他的波形也跟正弦波一样,但锯齿波和三角波可以不用查表法,应用加减计算得到就可以得到。下面介绍的是锯齿波: #include #include sbit DACWR=P3^6;sbit DACCS=P3^7;unsigned int i;void DAC_0832(void){ DACCS=0;DACWR=0;P0=i;i+=1;//加以操作得到上升的锯齿波 DACWR=1;_nop_();DACCS=0;if(i==0xff)i=0x7f;//为什么初值是0x7f,其他的行不行。大家自己动手试试。} void main(void){ i=0x7f;

while(1){ DAC_0832();} } DAC0832有着致命的一个缺点就是输出的波形里的含有的频率比较杂乱,常常出现过激的现象。如果你需要精确的信号的话,那么你必须在信号输出端就如滤波器。得到干净的低频函数信号。如果要作为信号源的话最好是能就上一级攻放。效果会好很多。虽然DAC0832不是非常专业的函数信号发生芯片,但是它的输出波形的范围比较广,常常能输出一些,你意想不到得很有意思的信号曲线。

下面发几张示波器观察到得曲线:实验室里手机照的,不是太清晰但还能看。

第三篇:函数信号发生器设计

函数信号发生器设计设计任务与要求

⑴ 设计并制作能产生正弦波、矩形波(方波)和三角波(锯齿波)的函数发生器,本信号发生器可以考虑用专用集成芯片(如5G8038等)为核心实现。⑵ 信号频率范围: 1Hz∽100kHz;

⑶ 频率控制方式:

① 手控通过改变RC参数实现;

② 键控通过改变控制电压实现;

③ 为能方便地实现频率调节,建议将频率分档;

⑷ 输出波形要求

① 方波上升沿和下降沿时间不得超过200nS,占空比在48%∽50%之间;② 非线性误差≤2%;

③ 正弦波谐波失真度≤2%;

⑸ 输出信号幅度范围:0∽20V;

⑹ 信号源输出阻抗:≤1Ω;

⑺ 应具有输出过载保护功能;

⑻ 具有数字显示输出信号频率和电压幅值功能。

第四篇:函数信号发生器论文

函数信号发生器的设计与制作

系别:电子工程系 专业:应用电子技术 届:XX届 姓名:XXX 摘 要

本系统以ICL8038集成块为核心器件,制作一种函数信号发生器,制作成本较低。适合学生学习电子技术测量使用。ICL8038是一种具有多种波形输出的精密振荡集成电路,只需要个别的外部元件就能产生从0.001Hz~30KHz的低失真正弦波、三角波、矩形波等脉冲信号。输出波形的频率和占空比还可以由电流或电阻控制。另外由于该芯片具有调制信号输入端,所以可以用来对低频信号进行频率调制。

关键词 ICL8038,波形,原理图,常用接法

一、概述

在电子工程、通信工程、自动控制、遥测控制、测量仪器、仪表和计算机等技术领域,经常需要用到各种各样的信号波形发生器。随着集成电路的迅速发展,用集成电路可很方便地构成各种信号波形发生器。用集成电路实现的信号波形发生器与其它信号波形发生器相比,其波形质量、幅度和频率稳定性等性能指标,都有了很大的提高。

二、方案论证与比较

2.1·系统功能分析

本设计的核心问题是信号的控制问题,其中包括信号频率、信号种类以及信号强度的控制。在设计的过程中,我们综合考虑了以下三种实现方案:

2.2·方案论证

方案一∶采用传统的直接频率合成器。这种方法能实现快速频率变换,具有低相位噪声以及所有方法中最高的工作频率。但由于采用大量的倍频、分频、混频和滤波环节,导致直接频率合成器的结构复杂、体积庞大、成本高,而且容易产生过多的杂散分量,难以达到较高的频谱纯度。

方案二∶采用锁相环式频率合成器。利用锁相环,将压控振荡器(VCO)的输出频率锁定在所需要频率上。这种频率合成器具有很好的窄带跟踪特性,可以很好地选择所需要频率信号,抑制杂散分量,并且避免了量的滤波器,有利于集成化和小型化。但由于锁相环本身是一个惰性环节,锁定时间较长,故频率转换时间较长。而且,由模拟方法合成的正弦波的参数,如幅度、频率 相信都很难控制。

方案三:采用8038单片压控函数发生器,8038可同时产生正弦波、方波和三角波。改变8038的调制电压,可以实现数控调节,其振荡范围为0.001Hz~300KHz。

三、系统工作原理与分析

3.1、ICL8038的应用

ICL8038是精密波形产生与压控振荡器,其基本特性为:可同时产生和输出正弦波、三角波、锯齿波、方波与脉冲波等波形;改变外接电阻、电容值可改变,输出信号的频率范围可为0.001Hz~300KHz;正弦信号输出失真度为1%;三角波输出的线性度小于0.1%;占空比变化范围为2%~98%;外接电压可以调制或控制输出信号的频率和占空比(不对称度);频率的温度稳定度(典型值)为120*10-6(ICL8038ACJD)~250*10-6(ICL8038CCPD);对于电源,单电源(V+):+10~+30V,双电源(+V)(V-):±5V~±15V。图1-2是管脚排列图,图1-2是功能框图。8038采用DIP-14PIN封装,管脚功能如表1-1所示。

3.2、ICL8038内部框图介绍

函数发生器ICL8038的电路结构如图虚线框内所示(图1-1),共有五个组成部分。两个电流源的电流分别为IS1和IS2,且IS1=I,IS2=2I;两个电压比较器Ⅰ和Ⅱ的阈值电压分别为 和,它们的输入电压等于电容两端的电压uC,输出电压分别控制RS触发器的S端和 端;RS触发器的状态输出端Q和 用来控制开关S,实现对电容C的充、放电;充点电流Is1、Is2的大小由外接电阻决定。当Is1=Is2时,输出三角波,否则为矩尺波。两个缓冲放大器用于隔离波形发生电路和负载,使三角波和矩形波输出端的输出电阻足够低,以增强带负载能力;三角波变正弦波电路用于获得正弦波电压。

3.3、内部框图工作原理

★当给函数发生器ICL8038合闸通电时,电容C的电压为0V,根据电压比较器的电压传输特性,电压比较器Ⅰ和Ⅱ的输出电压均为低电平;因而RS触发器的,输出Q=0,;

★使开关S断开,电流源IS1对电容充电,充电电流为

IS1=I

因充电电流是恒流,所以,电容上电压uC随时间的增长而线性上升。

★当上升为VCC/3时,电压比较器Ⅱ输出为高电平,此时RS触发器的,S=0时,Q和 保持原状态不变。

★一直到上升到2VCC/3时,使电压比较器Ⅰ的输出电压跃变为高电平,此时RS触发器的 时,Q=1时,导致开关S闭合,电容C开始放电,放电电流为IS2-IS1=I因放电电流是恒流,所以,电容上电压uC随时间的增长而线性下降。

起初,uC的下降虽然使RS触发的S端从高电平跃变为低电平,但,其输出不变。

★一直到uC下降到VCC/3时,使电压比较器Ⅱ的输出电压跃变为低电平,此时,Q=0,使得开关S断开,电容C又开始充电,重复上述过程,周而复始,电路产生了自激振荡。

由于充电电流与放电电流数值相等,因而电容上电压为三角波,Q和 为方波,经缓冲放大器输出。三角波电压通过三角波变正弦波电路输出正弦波电压。

结论:改变电容充放电电流,可以输出占空比可调的矩形波和锯齿波。但是,当输出不是方波时,输出也得不到正弦波了。

3.4、方案电路工作原理(见图1-7)

当外接电容C可由两个恒流源充电和放电,电压比较器Ⅰ、Ⅱ的阀值分别为总电源电压(指+Vcc、-VEE)的2/3和1/3。恒流源I2和I1的大小可通过外接电阻调节,但必须I2>I1。当触发器的输出为低电平时,恒流源I2断开,恒流源I1给C充电,它的两端电压UC随时间线性上升,当达到电源电压的确2/3时,电压比较器I的输出电压发生跳变,使触发器输出由低电平变为高电平,恒流源I2接通,由于I2>I1(设 I2=2I1),I2将加到C上进行反充电,相当于C由一个净电流I放电,C两端的电压UC又转为直线下降。当它下降到电源电压的1/3时,电压比较器Ⅱ输出电压便发生跳变,使触发器输出为方波,经反相缓冲器由引脚9输出方波信号。C上的电压UC,上升与下降时间相等(呈三角形),经电压跟随器从引脚3输出三角波信号。将三角波变为正弦波是经过一个非线性网络(正弦波变换器)而得以实现,在这个非线性网络中,当三角波的两端变为平滑的正弦波,从2脚输出。

其中K1为输出频段选择波段开关,K2为输出信号选择开关,电位器W1为输出频率细调电位器,电位器W2调节方波占空比,电位器W3、W4调节正弦波的非线性失真。

图1-1

3.5、两个电压比较器的电压传输特性如图1-4所示。

图1-4

3.6、常用接法

如图(1-2)所示为ICL8038的引脚图,其中引脚8为频率调节(简称为调频)电压输入端,电路的振荡频率与调频电压成正比。引脚7输出调频偏置电压,数值是引脚7与电源+VCC之差,它可作为引脚8的输入电压。如图(1-5)所示为ICL8038最常见的两种基本接法,矩形波输出端为集电极开路形式,需外接电阻RL至+VCC。在图(a)所示电路中,RA和RB可分别独立调整。在图(b)所示电路中,通过改变电位器RW滑动的位置来调整RA和RB的数值。

图1-5

当RA=RB时,各输出端的波形如下图(a)所示,矩形波的占空比为50%,因而为方波。当RA≠RB时,矩形波不再是方波,引脚2输出也就不再是正弦波了,图(b)所示为矩形波占空比是15%时各输出端的波形图。根据ICL8038内部电路和外接电阻可以推导出占空比的表达式为

故RA<2RB。

为了进一步减小正弦波的失真度,可采用如图(1-6)所示电路,电阻20K与电位器RW2用来确定8脚的直流电压V8,通常取V8≥2/3Vcc。V8越高,Ia、Ib越小,输出频率越低,反之亦然。RW2可调节的频率范围为20HZ20~KHZ。V8还可以由7脚提供固定电位,此时输出频率f0仅有Ra、Rb及10脚电容决定,Vcc采用双对电源供电时,输出波形的直流电平为零,采用单对电源供电时,输出波形的直流电平为Vcc/2。两个100kΩ的电位器和两个10kΩ电阻所组成的电路,调整它们可使正弦波失真度减小到0.5%。在RA和RB不变的情况下,调整RW2可使电路振荡频率最大值与最小值之比达到100:1。在引脚8与引脚6之间直接加输入电压调节振荡频率,最高频率与最低频率之差可达1000:1。

3.7、实际线路分析

可在输出增加一块LF35双运放,作为波形放大与阻抗变换,根据所选择的电路元器件值,本电路的输出频率范围约10HZ~20KHZ;幅度调节范围:正弦波为0~12V,三角波为0~20V,方波为0~24V。若要得到更高的频率,还可改变三档电容的值。

图1-6

表 1-1 ISL8038管脚功能

管 脚 符 号 功 能

1,12 SINADJ1,SINADJ2 正弦波波形调整端。通常SINADJ1开路或接直流电压,SINADJ2接电阻REXT到V-,用以改善正弦波波形和减小失真。SINOUT 正弦波输出TRIOUT 三角波输出

4,5 DFADJ1,DFADJ2 输出信号重复频率和占空比(或波形不对称度)调节端。通常DFADJ1端接电阻RA到V+,DFADJ2端接RB到V+,改变阻值可调节频率和占空比。V+ 正电源 FMBIAS 调频工作的直流偏置电压FMIN 调频电压输入端SQOUT 方波输出 C 外接电容到V-端,用以调节输出信号的频率与占空比V-负电源端或地

13,14 NC 空脚

四、制作印刷电路板

首先,按图制作印刷电路板,注意不能有断线和短接,然后,对照原理图和印刷电路板的元件而进行元件的焊接。可根据自己的习惯并遵循合理的原则,将面板上的元器件安排好,尽量使连接线长度减少,变压器远离输出端。再通电源进行调试,调整分立元件振荡电路放大元件的工作点,使之处于放大状态,并满足振幅起振条件。仔细检查反馈条件,使之满足正反馈条件,从而满足相位起振条件。

制作完成后,应对整机进行调试。先测量电源支流电压,确保无误后,插上集成快,装好连接线。可以用示波器观察波形发出的相应变化,幅度的大小和频率可以通过示波器读出。

五、系统测试及误差分析

5.1、测试仪器

双踪示波器 YB4325(20MHz)、万用表。

5.2、测试数据

基本波形的频率测量结果

频率/KHz

正弦波 预置 0.01 0.02 2 20 50 100

实测 0.0095 0.0196 2.0003 20.0038 50.00096 100.193 方波 预置 0.01 0.02 2 20 50

实测 0.095 0.0197 1.0002 2.0004 20.0038 三角波 预置 0.01 0.02 1 2 20 100

实测 0.0095 0.0196 1.0002 2.0004 20.0038 100.0191 5.3、误差分析及改善措施

正弦波失真。调节R100K电位器RW4,可以将正弦波的失真减小到1%,若要求获得接近0.5%失真度的正弦波时,在6脚和11脚之间接两个100K电位器就可以了。

输出方波不对称,改变RW3阻值来调节频率与占空比,可获得占空比为50%的方波,电位器RW3与外接电容C一起决定了输出波形的频率,调节RW3可使波形对称。

没有振荡。是10脚与11脚短接了,断开就可以了

产生波形失真,有可能是电容管脚太长引起信号干扰,把管脚剪短就可以解决此问题。也有可能是因为2030功率太大发热导致波形失真,加装上散热片就可以了。

5.4、调试结果分析

输出正弦波不失真频率。由于后级运放上升速率的限制,高频正弦波(f>70KHz)产生失真。输出可实现0.2V步进,峰-峰值扩展至0~26V。

图1-2

图 1−7

六、结论

通过本篇论文的设计,使我们对ICL8038的工作原理有了本质的理解,掌握了ICL8038的引脚功能、工作波形等内部构造及其工作原理。利用ICL8038制作出来的函数发生器具有线路简单,调试方便,功能完备。可输出正弦波、方波、三角波,输出波形稳定清晰,信号质量好,精度高。系统输出频率范围较宽且经济实用。

七、参考文献

【1】谢自美《电子线路设计.实验.测试(第三版)》武汉:华中科技大学出版社。2000年7月

【2】杨帮文《新型集成器件家用电路》北京:电子工业出版社,2002.8

【3】第二届全国大学生电子设计竞赛组委会。全国大学生电子设计竞赛获奖作品选编。北京:北京理工大学出版社,1997.【4】李炎清《毕业论文写作与范例》厦门:厦门大学出版社。2006.10

【5】潭博学、苗江静《集成电路原理及应用》北京:电子工业出版社。2003.9 【6】陈梓城《家用电子电路设计与调试》北京:中国电力出版社。2006

第五篇:函数信号发生器设计任务书

目录

一、设计的任务和要求............................................................................二、已知条件...................................................................三、函数发生器的具体方案...................................................................1 总的原理框图及总方案..............................................................2 各组成部分工作原理..................................................................3总电路图........................................................................................四、电路的参数选择与仿真.................................................................五、实验结果分析..............................................................附录:电

列表..........................................................................................一. 设计的任务和要求

1.设计任务

设计方波—三角波—正弦波函数信号发生器 2.设计目的

(1)巩固和加深对电子电路基本知识的理解,提高综合运用本课程所学知识的能力。

(2)培养根据课题需要选学参考书籍,查阅手册、图表和文献资料的自学能力。通过独立思考,深入钻研有关问题,学会自己分析并解决问题的方法。

(3)通过电路方案的分析、论证和比较,设计计算和选取元器件;初步掌握简单实用电路的分析方法和工程设计方法。

(4)了解与课题有关的电子电路以及元器件的工程技术规范,能按设计任务书的要求,完成设计任务,编写设计说明书,正确地反映设计与实验的成果,正确地绘制电路图等。

(5)培养严肃、认真的工作作风和科学态度。

3.性能指标要求

(1)输出波形:正弦波、方波、三角波等;(2)频率范围:10Hz~500Hz;

(3)输出电压:方波Up-p<=24V,三角波Up-p>10V,正弦波U>1.5V; 波形特征:方波tr<100μS,三角波失真系数THD<2%,正弦波失真系数THD<5%。

二、已知条件:

双运放358一只、三极管3DG6四只(β约为60)

三、函数发生器的具体方案

1.总的原理框图及总方案

图1 函数信号发生器原理图

多波形信号发生器方框图如图1所示。

本课题采用由集成运算放大器与晶体管差分放大器共同组成的方波—三角波—正弦波函数发生器的设计方法。并采用先产生方波—三角波,再将三角波变换成正弦波的电路设计方法:

由比较器和积分器组成方波—三角波产生电路,比较器输出的方波经积分器得到三角波,三角波到正弦波的变换电路主要由差分放大器来完成。设计差分放大器时,传输特性曲线要对称、线性区要窄,输入的三角波的的幅度Um应正好使晶体管接近饱和区或截止区。波形变换的原理是利用差分放大器传输特性曲线的非线性。

2.各组成部分的工作原理

2.1 方波---三角波转换电路的工作原理

图2 方波-三角波转换电路

图2为方波-三角波转换电路,其中运算放大器用双运放uA741。

工作原理如下:

若a点断开,运算发大器A1(左)与R1、R2及R3、RP1组成电压比较器,C1为加速电容,可加速比较器的翻转。运放A2(右)与R4、RP2、C2及R5组成反相积分器,其输入信号为方波Uo1,则积分器的输出电压Uo2为

UO21UO1dt

(R4RP2)C2(VCC)VCCtt

(R4RP2)C2(R4RP2)C2VCC(VEE)tt

(R4RP2)C2(R4RP2)C

2当UO1VCC时,UO2 当UO1VEE时,UO2由此可见积分器在输入为方波时,输出是一个上升速度与下降速度相等的三角波,其波形关系如下图3所示

图3 方波--三角波波形关系

若a点闭合,即比较器与积分器首尾相连,形成闭环电路,则自动产生方波-三角波。

三角波的幅度为:UO2mR2VCC

R3RP1R3RP1

4R2(R4RP2)C2方波-三角波的频率f为: f

由以上两式可以得到以下结论:

1.电位器RP2在调整方波-三角波的输出频率时,不会影响输出波形的幅度。若要求输出频率的范围较宽,可用C2改变频率的范围,PR2实现频率微调。

2.方波的输出幅度应等于电源电压+Vcc。三角波的输出幅度应不超过电源电压+Vcc。电位器RP1可实现幅度微调,但会影响方波-三角波的频率。

2.2 三角波—正弦波转换电路工作原理

图4 三角波—正弦波转换电路

图(4)为实现三角波—正弦波变换的电路。其中Rp3调节三角波的幅度,Rp4调整电路的对称性,其并联电阻RE2用来减小差分放大器的线性区。电容C3,C4,C5为隔直电容,C6为滤波电容,以滤除谐波分量,改善输出波形。三角波-正弦波的变换电路主要由差分放大电路来完成。差分放大器采用单入单出方式。三角波-正弦波波形变换的原理是利用差分放大器传输特性曲线的非线性。

差分放大器传输特性曲线的非线性及三角波-正弦波变换原理如下图:

图5 三角波-正弦波变换原理

分析表明,传输特性曲线的表达式为:

IC2aIE2aI0aI0IaI

C1E11eUid/UT1eUid/UT上式中:aIC/IE1;I0—差分放大器的恒定电流;

UT—温度的电压当量,当室温为25℃时,UT≈26mV。

如果Uid为三角波,设表达式为

UidT4UmT0ttT42

4Umt3TTtT4T2式中:Um—三角波的幅度;T—三角波的周期。

为使输出波形更接近正弦波,由图5可知:(1)传输特性曲线越对称,线性区越窄越好;

(2)三角波的幅度Um应正好使晶体管接近饱和区或截止区。

3.总电路图

整个设计电路如图6所示:

图6 方波—三角波—正弦波函数信号发生器

四、电路的参数选择与电路仿真

本课题采用Multisim 7作为仿真软件。

Multisim是Interactive Image Technologies(Electronics Workbench)公司推出的以Windows为基础的仿真工具,适用于板级的模拟/数字电路板的设计工作。它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。NI Multisim软件结合了直观的捕捉和功能强大的仿真,能够快速、轻松、高效地对电路进行设计和验证。

Multisim 7通过直观的电路图捕捉环境, 轻松设计电路;通过交互式SPICE仿真, 迅速了解电路行为;借助高级电路分析, 理解基本设计特征;本课题使用Multisim交互式地搭建电路原理图,并对电路行为进行仿真。

1.方波--三角波部分

参数选择:取才C2=0.47μ

F,C2的取值很重要,按照你电阻的值,要取相应的值,取值不对,会直接影响到你波形输出与否。

调节RP1和RP2,微调Rp1,使三角波的输出幅度满足设计要求,调节Rp2,则输出频率在对应波段内连续可变。

方波-三角波电路的仿真:

在Multisim 7中按方波-三角波转换电路图(图2)接线。调节Rp1和Rp2到设定值,检查无误后,在正确位置接上示波器观察输出波形。

仿真电路图如下:

图7 方波—三角波仿真电路图 2.三角波--正弦波部分

参数选择:C4=470Μf,C5=C6=0.1μF;R6= 5.1KΩ(R6阻值只要大于5)

三角波--正弦波电路的仿真:

在Multisim 10.1中按方波-三角波转换电路图(图4)接线。保证参数正确,检查无误后,在正确位置接上示波器观察输出波形。

仿真电路图如下:

图8 三角波—正弦波仿真电路图

方波—三角波—正弦波函数发生器仿真电路图如下:

图9 方波—三角波—正弦波函数发生器仿真电路图

五、实验结果分析

方波—三角波—正弦波函数发生器电路是分成两个部分来做的,先做方波—三角波产生电路,再做三角波—正弦波变换电路,然后把两张图用线连接成一张完整的大图。

方波—三角波产生电路中的C1其实可以去掉不要的,如果要用的话,取值要比较小,这样才不会影响电路。我的RP2的阻值是200Ω,开始设置的C2是0.1μF,但是总是出不来波形,后来老师说,C2的值太小了。经过我多次的试验,发现0.47μF是最为合适的。最后还要调节RP1和RP2,确保频率范围为10Hz~500Hz。

三角波—正弦波变换电路中C1=470μF,C5=C6=0.1μF,R6=5.1KΩ。R6开始设的值是3.3KΩ,然后仿真就是没有波形出来,问了同学,研究了一会儿,也才知道,R6的阻值必须要大于5KΩ,这样之后才有波形出来了。最后还是一样的,调节Rb1,,测试频率范围。

最后当两张图连在一起之后,不仅要看波形,还要测试输出电压:方波Up-p<=24V,三角波Up-p>10V,正弦波U>1.5V。当一切要求都满足之后,所有的函数发生器设计就完成了。

像做这种实验,要的必须是耐心,还有朋友的帮助,老师的指导,必须做到齐心协力,否则成功的几率是非常小的。

附录1:电路原理图

附录二:元器件清单

直流稳压电源:一台 低频信号发生器:一台 低频毫伏表:一台 双踪示波器:一台 万用表:一块 晶体管图示仪:一台 失真度测试仪:一台 电阻:100Ω:1个

1KΩ:2个

2KΩ:2个

3.3KΩ:1个

5.1KΩ:3个

10KΩ:3个

KΩ:2个 滑动变阻器:47KΩ:2个

200KΩ:一个

1KΩ:一个 电容:0.1μF:两个

0.47μF:一个

10μF:一个

470μF:一个

三极管3DG6:四个 双运放358:一只

下载多功能函数信号发生器(精选五篇)word格式文档
下载多功能函数信号发生器(精选五篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    函数信号发生器课程设计

    一 绪论 1.1 函数信号发生器的应用意义 函数发生器一般是指能自动产生正弦波、三角波、方波及锯齿波、阶梯波等电压波形的电路或仪器。根据用途不同,有产生三种或多种波形的......

    8255LCD函数信号发生器解析

    课 程 设 计 报 告 课程名称51单片机课程题目基于8255的LCD显示函数信号发生器的设计专业通信工程班级学号姓名同组人指导单位 南京邮电大学通达学院指导教师 林建中第一部......

    函数信号发生器课程设计报告.

    漳州师范学院 《模拟电子技术》课程设计 函数信号发生器 姓 名: 学 号: 系 别: 专 业: 年 级: 指导教师: 2012年4月3日 函数信号发生器 摘要 利用集成电路LM324设计并实现所需技术......

    函数信号发生器设计论文.

    四川师范大学成都学院通信原理课程设计 目 录 前言 ..................................................................... 1 1 函数信号发生器设计任务 .....................

    函数信号发生器-课程设计2.

    长 安 大 学 电子技术课程设计 课题名称 函数信号发生器 班 级 __******____ 姓 名 指导教师 *** 日 期 本次电子技术课程设计是指通过所学知识并扩展相关知识面,设计出任务......

    低频函数信号发生器设计

    实验报告 课程名称:电子系统综合设计 指导老师:周箭 成绩:实验名称:低频函数信号发生器(预习报告)实验类型: 同组学生姓名:一、 课题名称 低频函数信号发生器设计 二、 性能指标 (1......

    函数信号发生器设计实验报告

    函数信号发生器的设计 实验报告 院 系:电子工程学院 班 级:2012211209 姓 名:陈炳文 班内序号:学 号: 0 实验目的: 设计一个设计制作一个可输出方波、三角波、正弦波信号的函数......

    简易函数信号发生器[5篇范例]

    波形发生器是一种常用的信号源,广泛地应用于电子电路、自动控制系统和教学实验等领域。本次课程设计使用的AT89S51 单片机构成的发生器可产生锯齿波、三角波、正弦波等多种波......