第一篇:建筑垃圾采购合同书
中多铝业二期围墙基础回填工程
建筑垃圾采购合同书
甲方: 驻马店市中多铝业有限公司 乙方:
甲、乙双方为了友好合作,明确其权利、义务,根据《中华人民 共和国合同法》,遵循平等、自愿、公平和诚信的原则,经双方协商 一致签订本合同。
一、工程项目
1、工程名称:中多铝业二期围墙基础回填工程
2、工程地点: 东新庄
二、交货地、交货方式
交货地点:甲方指定的工程施工现场。交货方式:货物数量以甲方现场丈量的数据为准,乙方依此作为结算价款的依据。
三、合同价款
1、供货方式为单价合同,按实际供应量据实结算;
2、建筑垃圾含运费单价为 340 元/车(该单价为综合单价,包含材料费、装、运、卸及运输车俩的一切相关费用,每车供货方量不低于23立方)。
四、结算支付
从供应日起,到工程完工后甲方对乙方进行结算。
五、其它
1、供货初期甲方丈量车辆装载标准,每车不能低于23立方,之后按此标准计量;供货当中甲方有权实施抽检,若有每车低于23立方的车辆,甲方有权按照违约处理,扣除该车一切费用。
2、对于不合格材料,甲方有权拒绝接受;
2、乙方在生产和运输过程中发生的任何责任事故与甲方无关,甲方不承担任何责任和费用;
3、乙方应按照甲方的要求统一安排,调节供货量,供货数量在任何情况下都能满足甲方需求,不能以下雨、路政等为理由私自停止供料。
4、供货过程中乙方不得找任何借口要求提高供货单价
六、争议的解决
本合同履行过程中,如发生争议,双方应本着平等、互利原则协商解决;协商不成,任何一方可向人民法院起诉。在争议解决期间,乙方不能停止供货,除非甲方要求乙方停供。
七、免责条款:
由于国家法律、法规、政策的变化,或由于不可抗力原因,导致 违约的,违约方不承担违约责任。主张免责一方应负举证责任。
八、附则
1、本合同一式叁份,甲方执两份,乙方执一份。付完毕后失效。
3、合同未尽事宜,由双方另行签订补充合同。补充合同与本合同具有相等的法律效力。
甲方(盖章): 乙方(盖章): 负责人: 负责人: 地址:
电话:
开户行:
帐号:
日期: 年 月 日 日期: 年 月 日
2、本合同经双方代表签字并加盖公章后生效,至工程完工结算支
第二篇:建筑垃圾
建筑垃圾循环利用 前言
1.1 定义
建筑垃圾是指建设、施工单位或个人对各类建筑物、构筑物等进行建设、拆迁、修缮或装饰房屋过程中所产生的余泥、余渣、泥浆及其他废弃物。
1.2 来源
建筑垃圾来源广泛,主要产生于工程建设的新建施工阶段、装饰装修阶段、改造阶段、拆除阶段。其中,新建工程施工产生的垃圾量约占15%,工程拆除阶段的建筑垃圾量约占70%,装修阶段的建筑垃圾量约占10%。
1.3 构成
我国建筑垃圾构成中,主要是混凝土、砖石渣土、陶瓷、木材、玻璃等废弃混合物[1]见图 1。构成建筑垃圾最主要的组分是混凝土,占58.8%。这是由于现代建筑对结构稳定性要求非常高,致使大量钢筋混凝土结构替代了传统的砖混结构,混凝土的用量随之增加。此外,砖石、玻璃、金属、瓦片和沥青也是构成建筑垃圾的主要组分。
建筑垃圾的成分多、复杂,且随着我国建筑形式的多样化发展,建筑垃圾成分有进一步增加的趋势。同时,加之建筑垃圾理化特性的不确定性,使其处理和再生利用的难度加大,给建筑垃圾资源化利用开展增加了一定的困难。
1.4国内建筑垃圾排放情况
表1为2005年-2010年全图建筑垃圾产量统计情况。由表1可知,建筑垃圾产生量在我国逐年稳步增长,我国每年建筑垃圾产生量(含渣土)占垃圾总量的 30%-40%。图 2 为国内主要城市的年平均排放量,随着城市建设的不断扩大,城市建筑废弃物排放量呈现着迅猛增长趋势[1]。
随着城镇化建设和城市建设的快速发展,各类开发区的建设,数以万计的城郊村庄被夷为平地,宽敞整洁的道路纵横交错,清新亮丽的各类建筑拔地而起,于此产生了大量建筑垃圾。这些垃圾数量庞大,多数为简单填埋处理,有些干脆不进行任何处理,堆积如山。长期以来,我国在建筑垃圾的管理一直较为薄弱,建筑垃圾基本不经任何处理便被施工单位运往郊外或乡村,采用露天堆放的方式进行处置。成为城市环境新的杀手。
城镇化后拆除村庄的建筑垃圾得不到及时理,严重影响到土地的复垦,占用了宝贵的土地资源。居民装潢后的建筑垃圾因为没有合适的去处往往混迹于生活垃圾中,增加了生活垃圾处理的难度。违规倾倒、胡乱倾倒、部分路段建筑垃圾成灾,城乡接合部的道路两边、河边空地,常有夜间偷倒渣土、建筑垃圾的现象。
大量的建筑垃圾不仅占用大量土地,还会对环境造成很大的危害,表现在:(1)占用土地,破坏土壤;(2)污染水体;(3)污染空气;(4)影响市容,等等。
与此同时,经过这些年城市建设的高速发展,特别是房地产的大量开发,很多大宗建筑材料已经出现供不应求的状态,价格飞涨,有时出现排队等候供应的现象,有些因材料供应得不到保证而修改了设计或寻求替代品。建筑材料价格的大幅上升给建筑垃圾资源化利用带来了空间。
建筑垃圾的回收和循环再利用不仅能够保护环境,降低对环境的影响,采用科学管理和有效措施将其减量化和再利用,还可以节省大量的建设资金和资源。建筑垃圾中的许多废弃物经分拣、剔除或粉碎后,大多是可以作为再生资源重新利用的。如废钢筋、废铁丝、废电线和各种废钢配件等金属,经分拣、集中、重新回炉后,可以再加工制造成各种规格的钢材;砖、石、混凝土等废料经破碎后,可以替代砂,用于砌筑砂浆、抹灰砂浆、打混凝土垫层等,还可以用于制作砌块、铺道砖、花格砖等建材制品[2]。为了可持续发展的战略目标,迫切要求对建筑垃圾进行回收利用[3]。
国外在建筑垃圾的处理和利用方面早已成熟,美国、德国等国家凭借经济实力与科技优势,采用高新技术处理建筑垃圾,给我们提供了许多先进经验。
美国采用微波技术处理回收的沥青路面,利用率达100%,成本降低且质量相同,既节约了清运和处理费用,又大大地减轻了环境污染。美国政府制定的《超级基金法》规定:“任何生产有工业废弃物的企业,必须自行妥善处理,不得擅自随意倾卸”。在建筑垃圾形成之前,就通过科学管理和有效的控制措施将其减量化。美国住宅营造商协会正在推广一种“资源保护屋”,其墙壁是用回收的轮胎和铝合金废料建成的,屋架所用的大部分钢料是从建筑工地上回收来的,所用的板材是锯末和碎木料加上20%的聚乙烯制成,屋面的主要原料是旧的报纸和纸板箱。这种住宅不仅积极利用了废弃的金属、木料、纸板,而且比较好的解决了住房紧张和环境保护之间的矛盾。
在德国,塑料很容易回收以重新利用或者作为发电站发电的燃料。玻璃、钢材、砖和结构性木材也常常通过地方议会制定的回收计划被收集。德国的干馏燃烧垃圾处理工艺,可以使垃圾中各种再生材料干净地分离出来,再回收利用,有效地解决了垃圾占用土地的问题[4]。
日本从20 世纪60 年代末就注意到建筑垃圾资源再利用的重要性,并将建筑垃圾视为“建筑副产品”日本还制定了一系列与建筑副产品相关的完整而又全面的措施、政策和法律,并规定所有的建筑垃圾都必须利用“再生资源化设备”进行相关处理,可见日本对建筑垃圾处理的重视程度。目前日本的建筑垃圾再利用率已经达到了100%。
法国通过设立评估系统对施工的整个过程进行监控,首先是对新的建筑产品进行评估,从源头上评估建筑垃圾的产量;其次,在施工、改善及清拆工程中,对工地废物的生产及收集做出预测评估,以便及时确定出相关回收应用程序,为建筑垃圾的处理的可行性做出评定,并对产品的性能进行评估[5]。
建筑废弃物不是垃圾是有效资源。目前国内外对建筑废弃物的应用主要在以下几个方面: ①填埋对于产生的污泥大部分采取填埋的方式处理,也有一部分经过脱水处理后做回填或园艺用土等。②再生骨料一般用再生利用率较大的混凝土、砂浆、石、砖瓦等分级粉碎后加工而成。③再生混凝土一般的建筑垃圾就是指混凝土。④再生砌块用再生砌块制作再生路面砖。⑤再生路面旧混凝土的再生利用、沥青路面再生利用。水泥混合材
水泥工业是自然资源和能源的消耗大户, 也是多种固体废弃物的消纳大户。为了提高建筑垃圾再生利用效率,进行了利用建筑垃圾作为水泥混合材的试验研究, 以期为其全成分资源化利用寻求新的途径[6]。
2.1原材料
建筑垃圾: 烟台市某旧建筑物的拆除物, 主要是粘有胶砂的废砖块、废混凝土和其他渣土。其化学组成如表1 所示。
水泥与水泥熟料: 烟台东源水泥有限公司生产的42.5R普通硅酸盐水泥性能见表2。该厂的42.5硅酸盐水泥熟料, 经5kg 试验球磨机粉磨45min, 细度为0.08mm 方孔筛筛余7.7% , 加入5% 二水石膏后的性能见表2。石膏: 工业用二水石膏, SO3 含量42.3%。标准砂: 国产ISO水泥胶砂强度检验标准砂。
2.2 试验方法
试验按照水泥生产的方法进行, 将建筑垃圾作为水泥混合材与水泥熟料、二水石膏按照设计的配合比共同粉磨制成水泥, 然后测定该水泥的强度及其他性能指标。水泥细度、凝结时间、安定性等指标分别按相应的国家标准进行检测。考虑到废砖与废混凝土性质有差异, 所以试验将两者分开, 分别探讨对水泥性能的影响。细度控制在0.08mm 方孔筛筛余7.8%左右。
2.3 试验结果与分析
试样的设计配合比及强度试验结果见表3。
从表3的数据可见, 当建筑垃圾掺量在10%时, 试样强度与42.5R普通硅酸盐水泥强度基本相当, 掺量为15%时, 也能够达到42.5普通硅酸盐水泥的强度要求, 所以从胶砂强度指标来看, 建筑垃圾可以作为水泥混合材。但随着建筑垃圾掺量的增大, 试样强度下降较大, 特别是抗压强度下降更为明显, 表明在大掺量使用建筑垃圾时, 应采取一定的措施, 如提高水泥细度、加入激发剂等, 否则当掺量为25%时, 只能生产32.5水泥。另外, 还可以看出掺废混凝土的试样各龄期强度普遍高于掺废砖的试样, 特别是早期强度差距更明显, 当掺量为15%时, A-2试样仍能达到42.5R普通硅酸盐水泥的要求, 而B-2由于早强较低只能达到42.5普通硅酸盐水泥的要求。
利用建筑垃圾生产水泥, 除胶砂强度满足要求外, 还应进行凝结时间、安定性等性能检测, 结果见表5。
水泥凝结时间随着建筑垃圾掺量的增加而延长, 废砖试样凝结时间较废混凝土试样长, 加入激发剂后, 初凝时间明显缩短, 总之, 各试样的凝结时间、安定性均符合水泥的国家标准要求。
2.4 结论
建筑垃圾作为水泥混合材是可行的, 当掺量在15%以下时, 可生产42.5R或42.5普通硅酸盐水泥, 利用建筑垃圾生产水泥, 不改变水泥厂原来的生产工艺, 利用废物降低了生产成本, 技术上可行, 经济上合理, 在建设节约型社会、大力发展循环经济的今天有着广阔的应用前景。建筑垃圾再生混合骨料配制透水性混凝土
透水性混凝土是指空隙率为15%-25% 的混凝土,也称作无砂混凝土,其由特定级配的骨料、胶凝材料(水泥)、水(可含外加剂和掺和料)等按特定比例经特殊工艺制成的,内部含有大量贯通性孔隙的蜂窝状混凝土制品。透水性混凝土大致可看作由三部分组成: 粗骨料形成的骨架、胶凝材料形成的胶结层及它们之间的孔隙。为研究建筑垃圾再生混合骨料配制透水性混凝土的可行性,下面通过实验对不同配合比下配制的透水性混凝土的强度及透水性进行研究[7]。
3.1实验方案
基于对混凝土理论分析和大量实验数据处理的基础上,透水性混凝土配合比选定设计的主要参数及其范围分别为: 水灰比(0.40,0.35,0.30),骨灰比(4.5,4.0,3.5),砂率(20%,15%,10%),以此三个因素为基础进行正交试验,测定不同配比下透水性混凝土试件的抗压强度、劈裂抗拉强度及透水系数。实验所采用的再生混合骨料由山东某建材公司提供,由回收的各种建筑垃圾直接通过机械破碎而来,其所含的成分为: 细骨料0mm-5mm、粗骨料5mm-10mm;试验所用的水泥为42.5级普通硅酸盐水泥;所用的添加剂为高效减水剂;拌合水为普通自来水。
3.2 试验方法
试验所用的混凝土拌和物均通过人工搅拌的方式制备,且按照GB/T50080-2002 普通混凝土拌合物理性能试验方法标准操作。本试验所制备的试件均为100 mm 的立方体试件,成型方法采用“静压成型法”,制作完成24 h 后拆模,并在试件标准养护条件(温度20 ℃ ± 2 ℃、相对湿度在95%以上)下养护至28 d 期龄,然后再进行测试。抗压强度和劈裂抗拉强度测试按照GB/T50081-2002 普通混凝土力学性能试验方法标准操作,所用压力机型号为XL.04-NYL-2000C,其最大试验力为2 000 kN。透水系数测定方法借鉴日本混凝土工学协会推荐的大孔混凝土透水性试验方法,试验采用定水头的方法,并根据达西定律测量透水性混凝土的透水系。
3.3 结果分析
每组试验均采用5个试件进行测试,取其均值作为最终结果。测得不同水灰比、不同骨灰比及不同砂率条件下,再生混合骨料透水性混凝土的抗压强度、劈裂抗拉强度以及透水系数见表2。由表2 可知,由此再生混合骨料制成的透水性混凝土的抗压强度比较低,远小于普通C30 混凝土的抗压强度,其最小抗压强度为11.2MPa,最大抗压强度20.6MPa,主要集中在10MPa-20MPa,而普通C30混凝土的抗压强度为30MPa 左右;再生混合骨料制成的透水性混凝土的劈裂抗拉强度与普通C30混凝土的劈裂抗拉强度相差不大,均在2 MPa左右;透水系数在1.50 cm/s 左右。
当配合比为水灰比0.4、骨灰比3.5、砂率20% 的情况下,混凝土的抗压强度可达到20.6 MPa,基本可达到路面砖合格品对力学性能的要求,此时透水系数可达到1.45 cm/s,具有较好的透水性能,按此配合比制作的混凝土产品可取得较好的效益。水泥孰料
4.1 原料成分 石灰石、高硅砂岩、低硅砂岩、铁尾矿粉和煤粉取自某水泥厂。建筑垃圾取自南京市鼓楼区国家电网拆除工地,是典型的砖混结构的建筑,以砖瓦、渣土和混凝土为主。建筑垃圾和其他原料的化学成分见表1。
由表1可以看出,建筑垃圾的主要成分是SiO2、CaO,同时还含有少量的CaCO3和Ca(OH)2,这些成分除了是水泥引入外,还有就是混凝土的集料,其可以作为煅烧水泥的原料[8]。
建筑垃圾中还含有少量的Cl-、R2O、SO3,其中Cl-的含量只有0.035%,试验中建筑垃圾的最高掺量20%,掺入的碱含量在0.442%,对烧成熟料的化学分析表明,其碱含量满足相关标准。
4.2 生料的制备
先用颚式破碎机将建筑垃圾破碎成0-20mm 的颗粒,用2.36mm 方孔筛筛除0-2.36mm 的细小颗粒,因为这一部分主要是河砂,SiO2含量较高,活性差,影 响生料的易烧性和易磨性。再将2.36-20mm 的颗粒球磨至80μm 方孔筛筛余≤10%。
将建筑垃圾按不同比例替代部分砂岩与石灰石进行配料,并外掺3.95%的煤灰,控制率值为KH=0.89±0.02,SM=2.5±0.2,IM=1.5±0.2,见表2。
KH:表示水泥熟料中的总CaO含量扣除饱和碱性氧化物(如Al2O3、Fe2O3)所需要的氧化钙后,剩下的与二氧化硅化合的氧化钙的含量与理论上二氧化硅全部化合成硅酸三钙所需要的氧化钙含量的比值。简言之,石灰饱和系数表示熟料中二氧化硅被氧化钙饱和成硅酸三钙的程度。
SM:是指硅酸盐水泥熟料中SiO2含量与Al2O3加Fe2O3含量的比值[SiO2/(Al2O3+Fe2O3)]。SM值过高时,熟料较难烧成,煅烧时液相量较少,不易挂窑皮;随SM值的降低,液相量增加,对熟料的易烧性和操作有利,但SM值过低,熟料强度低,窑内易结圈,结大块,操作困难。
IM:硅酸盐水泥熟料中三氧化二铝含量与三氧化二铁含量的比值(Al2O3/Fe2O3)。它反映水泥熟料中铝酸三钙(3CaO·Al2O3)与铁铝酸四钙(4CaO·Al2O3·Fe2O3)的相对含量。铝氧率过高时,则铝酸三钙含量多,煅烧时液相黏度较大,不利于游离氧化钙的吸收。过低时,生料烧结范围变窄,看火操作比较困难,且对水泥凝结有不良影响。
将上述各生料混合均匀后与蒸馏水以100∶5 的比例混匀,在25MPa 的压力下制样,然后置于105℃的烘箱中烘1h。在高温炉中以10℃/min 的升温速率,在1 450℃的高温下保温30min,取出后置于空气中急冷。
4.3 熟料的性能分析
4.3.1熟料中fCaO 含量
熟料煅烧时分别在1 300℃、1 350℃、1 400℃和1 450℃下保温30min,取出急冷后磨细,并全部通过80μm 方孔筛,采用乙二醇-甘油法测定fCaO 含量,结果见图3。
fCaO是游离氧化钙(或称为活性的石灰质)在水泥水化、硬化的过程中,fCaO在水泥具有一定的强度后才开始水化,并伴随一定的体积膨胀,从而导致混凝土内部产生巨大的膨胀应力,致使混凝土的强度急剧下降。当膨胀应力超过混凝土的强度极限时,就会引起混凝土的开裂和损坏。
从图3 可以看出,随着煅烧温度升高和建筑垃圾掺加量的增多,fCaO 的含量逐渐减少,说明建筑垃圾对水泥熟料的烧成有促进作用,可以改善生料的易烧性。
4.3.2熟料的XRD 分析
熟料的XRD 图谱见图4。
图4 表明,在同样的率值和煅烧条件下,几种熟料的XRD 图谱基本一致,掺建筑垃圾烧制的熟料主要矿物仍是C3S、C2S、C3A 和C4AF,这几种矿物的特征峰清晰可见,与不掺建筑垃圾的熟料无明显差异。4.3.3水泥的强度试验
熟料粉磨后以95∶5 的比例和石膏混匀后制成水泥,将水泥、标准砂和水按1∶3.0∶0.5 的比例,制成4cm×4cm×16cm 的试块进行试验,在标准养护条件下分别养护3d 和28d,试验结果见图5。
由图5 可见,各试样的3d 抗压强度基本相当,而28d 抗压强度基本在50MPa 以上,所以用建筑垃圾替代部分生料可以制备出强度较高的熟料。
4.4 结论
建筑垃圾可以代替部分原料来煅烧熟料,熟料中fCaO 含量符合国家标准,矿物比例合理,水泥胶砂的3d 和28d 抗压强度较高,28d 抗压强度与不掺建筑垃圾的试样相差不大。路基回填
5.1 性能要求
5.1.1建筑垃圾回填路基级配要求
路基填筑主要要求保证填料密实,对级配的要求不大。建筑垃圾一般是由各种粒径的颗粒组成,且级配差、大颗粒所占比例较大,故不宜直接用作路基填料,必须经过破碎处理并改良后才能使用。经破碎的建筑垃圾,根据大于4.75mm和0.075mm的颗粒含量,分为Ⅰ类和Ⅱ类,并应用于路基的不同部位,分类情况见表1。
要严格控制路基压实度,因为路基整体的强度、刚度以及平整度等都依托于路基结构层的充分压实,只有保证合格的压实度才能使路基、路面的使用寿命得到保障甚至延长。为保证路基的压实度,填料有如下要求:路床填料中粗料的比例为75%-85%,最大粒径应小于60mm;路堤填料中粗料的比例为15%-75%,最大粒径应小于200mm。
5.1.2建筑垃圾回填路基力学指标
可采用压碎值、塑性指数、单轴抗压强度、承载比(CBR)作为建筑垃圾力学指标。依据路基规范中对填石路基压碎值的要求,建筑垃圾作路床填料时压碎值不大于40%,作路堤填料时压碎值不大于50%;建筑垃圾作上路床填料时CBR≥8%,作下路床填料时CBR≥5%;建筑垃圾的塑性指数需不大于26%;石料单轴抗压强度不应小于15Mpa。
CBR(California bearing ratio)是美国加利福尼亚州提出的一种评定基层材料承载能力的试验方法。承载能力以材料抵抗局部荷载压入变形的能力表征,并采用高质量标准碎石的承载能力为标准,以相对值的百分数表示CBR值。这种方法后来也用于评定土基的强度。
5.1.3建筑垃圾回填路基稳定性要求
为了保证路基填料的稳定性,参照《建筑垃圾填筑路基设计施工技术指南》中对于建筑垃圾填料的技术要求,采用建筑垃圾填料粒径小于4.75mm细料进行有机质含量和易溶盐含量试验。作为路基填料的建筑垃圾,腐殖质的含量应不大于5%,有机质含量不大于5%,易溶盐的含量不大于0.3%。建筑垃圾填料中除混凝土、砂浆、砖瓦、石和土之外的杂物含量不大于1%。
5.2建筑垃圾的处理
5.2.1建筑垃圾的预处理
(1)人工挑拣建筑垃圾里的有机垃圾。(2)利用破碎锤对超大块材料进行预先破碎,人工剪除钢筋以避免大量钢筋缠绕。
(3)洒水除尘,湿法施工,避免生产时扬尘过大。(4)预先通过筛孔为200mm的筛分设备,分离满足工程要求的建筑垃圾并单独存放。其余建筑垃圾需要进一步加工破碎。5.2.2建筑垃圾的破碎
较大粒径的建筑垃圾,需进行破碎处理,根据具体工程及施工路段确定破碎程度。宜选用生产能力满足要求,可靠性高、易于运输、操作和维修简单、符合环保标准的破碎设备。目前,较为先进的破碎设备每小时可加工建筑垃圾200-350t。其中有些设备配有磁性分离器,能有效分离建筑垃圾中的钢筋、铁屑;最后进行筛分,去处超大颗粒,或筛分成不同的粒径再按级配要求进行掺配,使材料的级配能够达到规范的要求。经破碎、筛分处理的建筑垃圾,可用于路基填筑。
5.3 回填
(1)基底处理。施工前,应按规定清除原地面表层植被,挖除树根及杂草,并将挖除的表层土集中堆放。原地面的低洼和坑洞,必须经仔细填补及压实,对于松散处应松土晾晒并重新碾压,达到平整密实。按照《公路路基施工技术规范》(JTG F10-2006)的规定,高速公路、一级公路和二级公路路基 基底压实度不应小于90%。两侧坡脚各超宽50cm,确保碾压质量。
(2)摊铺、整平。在摊铺前,首先根据试验数据确定建筑垃圾在路基填筑时的松铺系数,以确定松铺厚度。根据运输车车载体积、松铺厚度,在填筑段用石灰画好方格网。采用后退式摊铺法铺筑建筑垃圾。布料后用推土机进行初平,为避免离析,用铲车进行二次翻拌。初平后再撒布1层5cm 厚的建筑垃圾细料,并采用光轮压路机稳压1-2遍,最后采用平地机进行精平。沿路线纵向方向,利用平地机整平,保持中间高两边低,整平后无明显的高差台阶。
(3)碾压。采用洒水车洒水,确保铺层材料的最佳含水量。要均匀洒水,避免出现水分分布不均现象
碾压组合方案:先使18t自行式羊角碾与18t光轮压路机的组合对建筑垃圾填料进行碾压,然后采用20t拖式振动羊角碾与18t光轮压路机的组合对填料进行最后的压实。碾压速度宜控制在3km·h-1,遵循先慢后快、先两边后中间的碾压原则。建筑垃圾的压实度随碾压遍数的增加而增加,达到一定程度后,再增加压实功率。建筑垃圾路基的碾压遍数应结合具体的工程性质和试验段施工情况确定,以沉降差2mm为标准确定碾压遍数。
5.4 质量检测
对于已完成的施工路基,应进行压实效果检测,主要方法如下。
(1)沉降量观测。在预先设置的沉降观测点上进行沉降量观测。具体方法为:将水准仪架在路基外,测量碾压前后各测点的读数差,即为各测点的沉降量。为防止压路机的振动对仪器高度产生影响,在远离路基处选一稳定点作为参照点,以检验仪器高度是否变化。经过稳压、强振碾压和静压三个阶段的观测,得出沉降量的变化趋势,若波动范围由逐渐大变小,且在接近压实状态下,沉降量小于2mm,则说明压实过程中填料的刚度和整体密实性逐渐加大,稳定性好。该观测方法简便易行。
(2)弯沉法检测。利用贝克曼梁或落锤式弯沉仪(FWD)测定路基的回弹弯沉来评价建筑垃圾回填路基的整体承载能力。按照相关规范对选定路段进行弯沉测试,通过计算得出该路段的代表弯沉值,然后与规范要求值进行对比,如果小于规范要求值,说明该路段的路基整体承载能力达到要求,反之,则说明路基整体承载能力较差,或说明路基压实质量未达到相应的要求。
(3)密度检测法(灌砂法)。建筑垃圾填筑路基的碾压过程是颗粒级配重新排列的过程,每隔一定距离在不同截面位置对碾压层进行压实度检测。路 基压实度不应小于96%。
5.5 结论
(1)通过对建筑垃圾回填路基施工的总结与研究,针对建筑垃圾粗、细集料比例不稳定,级配差等特点,建议先对其中超大粒径的颗粒进行预破、预筛分,分离出满足工程要求的建筑垃圾,再对其余建筑垃圾进行破碎、筛分。同时需在满足相应技术要求的前提下,进行地基处理、摊铺及碾压等施工工艺。
(2)通过对建筑垃圾回填路基施工工艺的分析研究与总结,提出了建筑垃圾回填路基施工质量控制关键技术。施工过程中,应对建筑垃圾的质量及均匀性进行严格控制,以保证其满足工程要求。同时为减少雨水对建筑垃圾回填路基的冲刷,建议对路床采用黏土封顶,在路基两侧加做包坡护肩土,包边宽度不小于1.0m,一般在1.0m-2.0m之间。综合考虑建筑垃圾回填路基的特点,建议采用沉降量观测法对路基压实度进行检测。墙材
6.1 原材料
本次试验采用旧城改造砖混结构建筑垃圾。主要组成有85%左右的碎砖渣、10%左右的粉刷垃圾和5%左右的废土。建筑垃圾的掺用量为30%~50%;建筑垃圾的化学成分如表1[9]。
一般作为建筑垃圾烧结空心砖粘结剂的原材料比较多, 有黏土、页岩、膨润土、高塑性煤矸石等。从国家有关政策和经济性出发, 本试验采用山东临沂苍山页岩, 其化学成分和物理性能如表2。
页岩和建筑垃圾均采用试验厂的破碎工艺: 原料→铲车→胶带输送机→锤式破碎机→胶带输送机→滚筒筛。页岩和建筑垃圾分别破碎后, 按6∶4的比例混合, 由装载机送入下一道工序: 箱式给料机→胶带输送机→双轴搅拌机(加水)→高速细碎对辊机→胶带输送机→高效搅拌挤出机(补水)→双级真空挤出机。由于试验厂的条件限制, 混合料未进行陈化。原料处理后的混合料物理性能见表3。
6.2 成型干燥
混合料制备好后, 由胶带输送机直接输送到JZK50/45双级真空挤出机挤出成型, 通过自动切条机、自动切坯机后形成半成品砖坯。其成型参数为: 砖机最大成型挤出压力3.8MPa、真空度0.091%、成型水分16%、泥条速度9条/min。采用多孔砖(240mm×115mm×90mm)芯架, 成型过程顺利, 一次成型成功。砖坯质量表面光滑、外观整齐、尺寸准确。
干燥试验采用试验厂的逆流式隧道干燥室, 干燥热介质来自焙烧轮窑余热。由于本次试验生产的建筑垃圾烧结空心砖的批量不足以单独进行干燥, 所以将成型好的砖坯码在干燥车上, 每车码放6层, 共204块, 与试验厂的页岩烧结空心砖一同送入干燥室内进行干燥, 所以干燥制度和干燥过程与试验厂的页岩空心砖相同。由于建筑垃圾在砖坯中是很好的痩化剂, 具有抗收缩和抗开裂的作用, 干燥好的砖坯比较理想, 无干燥裂纹和缺陷。干燥过程的有关参数见表4。
6.3 焙烧
焙烧采用试验厂一座36门节能轮窑进行。轮窑断面3.8m, 半圆拱。考虑到节能轮窑工作断面温度的差异, 选择窑中部温差相对较小的断面进行建筑垃圾烧成,烧成温度约950℃~980℃范围内, 根据实验室的试验结果, 这个温度对建筑垃圾砖来说略显偏低。焙烧参数统计结果见表5。
6.4 性能测试
我们将中试产品按照《烧结多孔砖》(GB13544-2000)国家标准, 由国家建材墙体屋面材料质检中心进行全项检验, 其结果见表6。
6.5 结论
试验证明, 建筑垃圾掺量达到40%时, 可以生产出质量合格的产品。将来的产业化过程中, 建筑垃圾的掺量与生产工艺、粘结剂的种类和塑性、建筑垃圾的破碎细度等关系很大, 可以在30%~50%范围内。一般的粘结剂可以采用黏土、纸浆废渣、高塑性煤矸石、页岩、陶土、膨润土等。建筑垃圾烧结砖的生产工艺, 要特别注意破碎细度、成型性能和焙烧三个方面。
建筑垃圾的破碎应采取二级破碎。首先由细碎颚式破碎机进行一级破碎, 然后用锤式破碎机进行二级破碎。对于建筑垃圾实心砖, 最大颗粒直径应小于2.0 mm,粒径0.5mm以下的颗粒应占50%以上;烧结多孔砖, 最大颗粒直径小于1.5mm,粒径0.5mm以下的颗粒应占60%以上。
成型采用硬塑或半硬塑挤出成型。建筑垃圾和黏土原料成型水分控制在16%-18%之间, 建筑垃圾和页岩原料成型水分控制在15%~16%之间。挤出工作压力应按产品不同有所区别, 建筑垃圾实心砖挤出工作压力应在2.0MPa左右, 建筑垃圾多孔砖挤出工作压力应在2.5MPa~3.0MPa。成型挤出时的真空度, 可以在0.085%以上。
干燥对于建筑垃圾砖来说比较容易, 因此重点是在焙烧方面。由于建筑垃圾烧结砖的烧成温度比页岩砖和黏土砖高, 一般为1000℃~1050℃, 如果温度掌握不当,会出现强度降低、吸水率增大、耐久性不好等缺陷。
[1] 王 琼,於林锋.国内外建筑垃圾综合利用现状和国内发展建议[J].上海市建筑科学研究院,2014(04).[2] 季学宝.建筑垃圾问题和合理利用的思考[J].江西建材,2014(12).[3] 刘成林.建筑垃圾循环利用实践[J].再生资源与循环经济,2012(05).[4] 薛菊.建筑垃圾利用的现状研究[J].三峡大学土木水电学院,2010(05).[5] 李聪,张欣.浅谈施工企业在建筑垃圾回收利用中的重要性[J].施工技术,2014(05).[6] 赵鸣.不同建筑垃圾作水泥混合材的试验研究[J].烟台大学学报,2008(04).[7] 李鑫.徐学庆,谈建筑垃圾再生混合骨料配制透水性混凝土[J].山西建筑,2014(08).[8] 聂江婷.掺加拆除建筑垃圾水泥熟料的性能[J].水泥,2012(12).[9] 李寿德.建筑垃圾生产烧结空心砖工业性试验[J].新型墙材,2006(01).
第三篇:建筑垃圾
摘自于【我国建筑垃圾处理现状与分析】 王雷,许碧君,秦峰(上海环境翌生工程设计院,上海2∞232)
一、建筑垃圾的现状
随着我国社会经济的快速发展,建筑垃圾产 生量逐年增长。据估计[¨,2005年,全阑城市建 筑垃圾排放总量超过4亿t。2006年,仅上海市 建筑垃圾产生量就达2 500万t。飞速增长的建筑 |疲圾带来了诸多环境问题,也引起政府及民众的 关注纛重视。2005年6胃1霹,建设都颁布了 《娥市建筑垃圾管理规定》,标志着我国建筑垃圾 处理已步入规范管理的轨道。然而,建筑垃圾处 理涉及诸多环节,任褥环节静疏溱都会带来环境、社会和经济影响。笔者通过对圜内建筑垃圾处理 过程的调查研究,从系统学角度对建筑垃圾从产 生、收集、孛转、运输餮最终处置进行全过程分 析,提出建筑垃圾全过程管理的解决思路。
国内建筑垃圾处理现状: 建筑垃圾措建设、麓工单使或个人对各类建 筑物、构筑物等进行建设、拆迁、修缮及居民装 饰房屋过程中产生的余泥、余渣、泥浆及其他废 物。自20世纪90年代以来。随着大规模的城市 建设,城市建筑垃圾产生量猛增,建筑垃圾乱堆 蘸倒、污染道路等现象较力严重。2l世纪滏来,这种情况得以初步改善。部分大、中城市根据管 理的实际需要,相继颁布了建筑垃圾或工程渣土 管理规定;初步建立了建筑垃圾申报及审搬制度,收运车辆也得以初步规范化。少数城市还建设了 建筑垃圾资源化处理厂和建筑垃圾填埋场等消纳设涟。现对国内典型城市的建筑垃圾处理现状进 行介绍。我国各地对于建筑垃圾处理的现状 北京市建筑垃圾处理现状 :
北京市垃圾渣i管理处负责全市渣土舀常管 理工作,受理跨区、县工程以及国家和市级重点 工程渣±熊潢纳(露填)孛请等;蘧、县渣土管 理部门主要负责管辖区内渣土消纳申报管理、渣 土消纳场管理等。2006年12月起,北京市规定 渣土砂石运输车辆必须持有绿色强保标悫,并安 装符合《流散物体运输车辆全密闭装置通用技术 条鳓规定的机械式全密闭装置,施工单位要优 先选用有绿色环保标恚的车辆承担渣±砂石等的 运输工作。
北京市每年设置20—30个建筑垃圾消纳场。这些消续场大部分设在五环以外,主要是将现有 大坑、窑地等经过熬理,设置照明等设施,消纳 场由企业经营,并按照市场化的物价标准向运输 单位收取费用。上海市建筑垃圾处理现状 :
1992年。上海市人民政府第10号令发布了 《上海市建筑垃圾和工程渣主处置管理魏定》,并 于1997年以市人民政府第53号令进行了修正。2005年起,建筑垃圾的日常管理和监管由区(县)负责,市渣主管理部门主要负责全市建筑垃 圾的规划、协调、政策研究、检查考核等宏观管 理[2|。
上海市建筑垃圾运输潋车辆运输为燕、车辆 运输加船舶转运为辅,车、船均采用了GPS定位、IC智能卡监控技术,有效实施建筑垃圾运输 车船作业状态监控管理。建筑垃圾末端处理通常 采取回填标高、围海造田、堆山造景等方式。2003—2005年,以标高回填、工程回填、绿化用 土等方式处理的建筑垃圾约占年产生量的60%; 以围海造田方式处理的建筑垃圾占年产生量的 30%;其余10%以临时堆放、弃置等方式处理,还有1座利用废弃混凝土块制作砌块和骨料的资 源化处理厂.年处理能力20万t。
深圳市建筑垃圾处理现状 :
深圳市环境卫生管理部门主要负责制定建筑 垃圾管理的具体实施办法,并指导、协调、监督 检查各区建筑垃圾的管理等工作;区环境卫生管 理部门主要负责清理辖区内市政道路及小区范围 内的无主建筑垃圾。深圳市在强化渣土运输规范 管理方面,率先对近5 000辆泥头车实施了密闭 加盖;在防止道路污染方面,深圳对全市施工工 地实行地毯式、24 h监督管理,规定运输车辆运 行线路和运输时间,实行全过程管理。
深圳市建筑垃圾的处理方式大体分2类:一 是未经任何处理直接填埋,约占98%;二是轻度 分拣出废金属、废混凝土,约占2%。现有3个 建筑垃圾填埋场均即将填满封场[3],其余建筑垃 圾由各街道自行消纳。深圳市拟在塘朗山填埋场 内建设l座处理能力为1 600 t/d的建筑垃圾制砖 厂,预计每年可处理建筑垃圾40万t。邯郸市建筑垃圾处理现状:
近几年,邯郸市相继出台了一系列对建筑垃 圾的综合管理政策和措施,创出一套“五化”建 筑垃圾综合管理体制,包括管理源头化、措施制 度化、市场准人化、车辆密闭化和处置资源化。邯郸市政府一方面严把建筑垃圾管理源头,规范 运输市场,健全管理制度,构建长效综合管理机 制;另一方面利用市场化运作手段,扶持筹建了 全有建筑垃圾制砖有限公司,年处理建筑垃圾40 余万t。设计年产量1.5亿块标准砖,主要原料 为拆迁建筑物形成的废旧混凝土、砖瓦、灰渣、陶 瓷等,并配比一定数量的粉煤灰和水泥。该市在建 筑垃圾资源利用方面起到了很好的示范作用[4】。
二、存在问题
1、管理体制不健全
管理体制不健全主要体现在3方面:①建筑 垃圾管理的法律、法规、政策不完善。我国至今 尚无一部国家关于建筑垃圾管理的法律文件,本领域的法律空白正由部门或地方法规、规章填补,一定程度上削弱了法律的权威性。②行业技术规 范和标准较为缺乏。目前,还没有针对建筑垃圾 处理形成全面性和系统化的技术规范和标准,仅 有少量大中城市或企业根据实际情况自行编写了 少数零星的标准、规范,定量执法的依据尚不充 分。③管理及运作部门协调约束机制尚不健全。相当一部分城市仍沿袭原有模式,政企不分,导 致建筑垃圾处理的行业垄断或者直接采取行政指 令取代规范化处理,导致有法不依的局面。
2、源头控制不力,建筑垃圾受控处理量远小 于实际排放量 目前,国内大部分城市建筑垃圾受纳量远远 低于排放量。广州市中心城区1990。2004年建筑 垃圾的总受纳量只占总排放量的32.78%。还有 67.22%主要通过偷倒乱倒的途径进行处理,不仅 占用了大量土地资源,而且阻碍交通,危害人体 健康。此外,建筑垃圾收集点设置不合理或与生 活垃圾中转站合建也导致部分建筑垃圾没有进入 受纳程序。
3、中转、运输系统设置不规范,环境污染较严重
中转、运输系统主要问题在于:①城市区域内 建筑垃圾的回填、消纳点较远,导致运输成本急剧 上升;②建筑垃圾运输过程中渣土等的飞扬撒落,影响了市容与大气环境;③清运市场混乱。建筑 垃圾运输市场最低价中标的规则使价格恶性争夺 市场的现象相当严重,有的企业甚至以偷倒乱倒 建筑垃圾等违法行为弥补成本,赚取非法利润。
4、处理方式较为落后,“三化”处理率较低
目前,我国建筑垃圾最终处置以回填为主。绝大部分建筑垃圾未经任何处理,直接运往郊外 或乡村,采用露天堆放或填埋的方式进行处理。除少数几个城市外,大部分城市没有专门的建筑 垃圾填埋场。这种简易堆填耗用大量的土地征用 等费用。此外,堆放过程中产生的粉尘、污水污 染等问题又造成了较严重的环境污染。
综上所述,国内建筑垃圾无害化、减量化和 资源化处理水平远低于发达国家。
三、解决方法
应加强源头控制,逐步实现分流与分类,力 争实现源头减量,节约建筑垃圾收运和处理费用,降低后续处理难度。源头控制模式设置应遵循如 下原则:①从设计和施工开始,抓源头减量。一 方面提高设计和施工质量,保证建筑物耐久性,延长拆除年限;另一方面改进和采用先进施工工 艺,减少建筑垃圾产生量;此外,注意建筑渣土 的就地利用。②按产生源不同,建筑垃圾应采取 大分流的收集措施。建筑渣土、装修垃圾、拆违 垃圾和泥浆应分流收运。③根据末端处理方式不 同,应逐步实现建筑垃圾的分类收集。卫生填埋 收集区域可分为有害垃圾、其它垃圾2类;回填 收集区域可分为渣土垃圾、有害垃圾和其它垃圾 3类;资源化处理收集区域可分为可回填垃圾、有害垃圾、可回收垃圾、其它垃圾4类。
建筑垃圾资源化处理方式分为3类:
一是“低级利用”。如分选处理、一般性回填 等。建筑垃圾分选主要将砖瓦、混凝土、沥青混 凝土、渣土、金属、木材、塑料、生活垃圾、有 害垃圾分离。其中,砖瓦、混凝土、沥青混凝土 可进行中级和高级利用。而金属、木材、塑料也 可以回收利用。一般性回填主要利用砖瓦、混凝 土、沥青混凝土、渣土等惰性且土力学特性较好 的建筑垃圾。
二是“中级利用”。如加工成骨料生产新型墙 体材料等。新型墙体材料的生产工序主要包括粗 选、破碎、筛分、磁选、风选等。主要骨料产品¨] 包括O~15 111113砖再生集料,0~5 mill混凝土再生 砂,5~15、15~25、25枷mill的混凝土再生集 料。这些骨料具有空隙率高的特点,适合生产混 凝土砌块,建筑隔声、保温、防火、防水墙板及 建筑装饰砖等墙体材料。
三是“高级利用”。如日本等发达国家已将建 筑垃圾还原成水泥、沥青等再利用⋯6。由于成本 较高,技术成熟度一般,目前还不宜在国内推广 应用。
建筑垃圾最终处置主要指填埋。由于组分特 性不同,建筑垃圾填埋场与生活垃圾填埋场具有 一定的差异性。建筑垃圾填埋场设计要点如下: ①工程泥浆、有害垃圾不宜进入建筑垃圾填埋场 填埋。②建筑垃圾填埋场宜针对可直接利用物质 较多,含水率较低的装修、拆违垃圾设置分选预 处理设施。③建筑垃圾填埋场宜根据组分不同设 置填埋分区。填埋区可分为建筑渣土填埋区和其 它垃圾填埋区。建筑渣土填埋区主要填埋砖瓦、混凝土、沥青混凝土、渣土等惰性物质。其它垃 圾填埋区主要填埋以装修、拆违垃圾为主的建筑 垃圾.这部分垃圾中掺混了较多生活垃圾。④建 筑渣土填埋区设计不需考虑人工防渗及雨污分流等措施,但应考虑雨水导排、易于开挖等方面内 容,开挖后还可作为建筑工地的回填料。⑤其它 垃圾填埋区中污承具有一定鹃污染性,填堙送设 计应参照生活垃圾卫生填埋场规范要求,设置人 工防渗、污水导排、雨水导排、雨污分流等措施。此外,还需设置污水处理系统。⑥建筑垃圾填壤 场(包括中转调配场)可以根据条件设置建筑垃 圾资源诧处理系统。
第四篇:采购合同书样本
采购合同书样本
1.合同介绍
1.1 甲方(采购方)甲方名称
通信地址
联系人 电话、传真 E-Mail
1.2 乙方(供应商)乙方名称 通信地址 联系人 电话、传真 E-Mail
1.3合同目的
提示:说明甲方向乙方采购何种物品,经双方协商后确定本采购合同。
2.术语、关键词解释 术语、关键词 解释 物品
系指供应商按合同要求,需向采购方提供的一切软件、硬件及相关的技术资料。服务
系指根据合同,供应商承担与供货有关的辅助服务,比如运输、保险以及其它的伴随服务,比如安装、调试、提供技术援助、培训等。
3.采购物品说明
3.1 采购物品及说明
3.2 技术指标和质量要求
4.合同价格和支付方式
4.1 本合同总价格为(人民币大写):
4.2 预付款。甲方于本合同签署之日起,在15 日内,将合同总成交价的 20%,即人民币(元),作为预付款支付给乙方。乙方在收到上述款项后,以传真向甲方确认。如甲方不按上述规定准时支付预付款,则交货期作相应的顺延.4.3 发货款。乙方按合同规定在发货时,将有关运输提单或自提单、商业发票、装箱单和质量证书,以可靠方式寄递给甲方。甲方收到以上单据的次日起 15 日内,将合同总成交价的 40%,即人民币(元),作为发货款支付给乙方。乙方在收到上述款项后,以传真向甲方确认。
4.4 验收款。在采购物品通过甲方的验收之后,甲方在 15 日内,将合同总成交价的 40%,即人民币(元),作为验收款支付给乙方。乙方在收到上述款项后,以传真向甲方确认。
4.5 甲方和乙方应以书面方式相互通知各方的开户银行、帐户名称、帐号。开户银行、帐户名称、帐号如有变更,变更一方应在合同规定的相关付款期限前二十天内以书面方式通知对方,如未按时通知或通知有误而影响结算者应负逾期付款的责任。
5.交货与交货方式
5.1 乙方于本合同签署之日起,在30 日内,将甲方采购的物品全部送达指定地点。交货地点:
5.2 乙方应在交货前 7 日内,以电话或传真向甲方提供交货计划(内容包括合同号、设备名称、型号规格、数量、重量和体积的约数、交货时间、地点、运输安排)。甲方应及时作好准备,办妥一切接货手续,在货物到达后四十八小时内提运完毕。
5.3 甲方对乙方交付的物品,均应妥善接收并按设备储存的环境条件规定保管。对于因乙方误发、多发或少发的物品,甲方应负责妥善保管,并及时通知乙方查处,由此发生的费用由乙方负担。
5.4 本合同所有物品运抵甲方现场后,双方代表共同参加开箱检验。如设备外包装完好无损,但箱内设备发现短缺或损伤,应由乙方负责补足或修理,其相关费用由乙方负担。
6.安装、调试与验收
6.1 乙方派遣技术人员按合同规定的日程完成“采购物品”的安装和调试工作,并对甲方人员进行技术指导,保证使“采购物品”达到预定的性能指标。
6.2 在安装调试过程中,甲方应提供各种配合条件和所需称职的技术人员和辅助人员,在乙方技术人员的指导下配合乙方进行安装、调试和其他辅助工作。
6.3 乙方安装调试完毕后,甲方组织人员对采购物品进行验收测试,将验收测试情况记录在《采购物品验收报告》中。如果甲方发现采购物品中存在缺陷,双方应当视问题的严重性给出合适的处理措施。(1)如果采购物品存在严重的缺陷,则退回给乙方。乙方应当给出纠正缺陷,双方协商第二次验收的时间。乙方应当赔偿给甲方造成的损失。(2)如果采购物品存在一些轻微的缺陷,则乙方应当给出纠正缺陷的措施,双方协商是否需要第二次验收。
6.3 当所有的采购物品都通过甲方的验收后,双方责任人签字认可,采购物品正式交付给甲方。之后,甲方将验收款(见合同条款4.3)支付给乙方。7.品质保证与维护
7.1 乙方保证提供给甲方的“采购物品”是全新的、技术是先进的、质量是良好的、性能是稳定可靠的、数量是完整无缺的。
7.2 乙方承诺质量保证期:采购物品通过验收之日起,系统软硬件保修六个月。本保证不包含由于甲方不当的操作或修理造成的后果。
7.3 在保修期内,乙方负责对其提供的硬件设备、软件和系统进行维护或维修,不收取任何费用。保修期结束后乙方依然负责对所售设备进行维护或维修,其间产生的材料费用由甲方承担。在设备保修期结束后一旦甲方要求进行升级和改造,乙方保证提供相应的服务,此项费用由甲方承担。
7.4 如果采购物品在保修期内出现质量问题,乙方收到甲方维护要求后,在24小时内作出响应;遇有严重技术问题,重大故障,需要现场维护,乙方应在24小时内到达甲方现场(在交通允许的情况下)。
8.违约与赔偿
8.1 甲方违约处理:
(1)如甲方不按照本合同第四条规定准时支付款项时,应从最迟付款日的次日起,每日向乙方偿付逾期付款部分总值的万分之三的违约金。此项违约金额以逾期付款部分总值的百分之五为限度。
(2)如因甲方原因致使设备安装顺延,乙方技术人员由此滞留在安装地点的一切费用,均由甲方负责。
8.2 乙方违约处理:
如乙方不按照本合同的规定准时交货,乙方应从最迟交货日的次日起,每日向甲方支付延迟交货部分货款的万分之三的违约金。此项违约金额以逾期移交设备部分货款的总值的百分之五为限度。
9.保密
9.1 乙方提供给甲方的技术资料、信息、计算机软件、专有技术、设计方案等知识产权及价格条款等商业秘密和技术秘密,甲方应采取保密措施,予以严密保守。
9.2 除为了维护操作相关设备而需接触乙方有关技术资料等商业秘密和技术秘密的甲方有关人员外,甲方同意不向其他人员泄露乙方的任何保密信息,也不向任何第三方转让、交换或泄漏乙方提供的上述商业秘密和技术秘密等,或擅自出版以上“技术资料”,如违反本条规定致使乙方遭受损失,甲方应负法律责任,并赔偿由此引起的直接和可能的经济损失。9.3 甲方的保密义务期限为自本合同生效之日起至本合同终止后 年(由双方商定)。
10.不可抗力
10.1 不可抗力是指本合同生效后,发生不能预见并且对其发生和后果不能防止或避免的事件,如地震、台风、水灾、火灾、战争等,致使直接影响本合同的履行或不能按约定的条件履行。
10.2发生不可抗力的一方应立即通知对方,并在十五天内提供不可抗力的详情及将有关证明文件送交对方。
10.3发生不可抗力事件时,甲乙双方应协商以寻找一个合理的解决方法,并尽一切努力减轻不可抗力产生的后果。
10.4如不可抗力事件持续三十天时,甲乙双方应友好协商解决本合同是否继续履行或终止的问题。
11.合同生效与终止
11.1本合同双方授权代表签字日期,即为本合同的生效日期。如双方签字日期不一致时,以最后签字方的签字日期为合同的生效日期。
11.2本合同的“采购物品”最终保证期限届满日期,即为本合同的终止日期。但保密条款、争议解决和双方未了的债权和债务不受合同期满的影响,并且守约方有权提出索赔。
12.争议解决
12.1 本合同及其修订本的有效性、履行和与本合同及其修订本效力有关的所有事宜,将受中华人民共和国法律管辖,任何争议仅适用中华人民共和国法律。
12.2 甲乙双方因合同的解释或履行发生争议时,首先应争取通过友好协商解决,该协商应在三十天内解决。
12.3 如协商不能解决时,合同的任何一方可将争议提交本地仲裁委员会,并按该委员会的仲裁规则进行仲裁。仲裁决定对双方都有约束力。
12.4 争议进行仲裁期间,除争议事项外,甲乙双方应继续履行各自本合同中规定的义务和行使权利。
13.合同确认
本合同一式__份,甲乙双方各持__份,自合同各方授权代表签字之日起生效。
甲方 乙方 签字 签字
日期 日期
第五篇:采购合同书(范本
采 购 合 同 书
合同号:
甲方(采购方):
地址:
法定代表人:职务:
授权代表:
电话:传真:
乙方(供应商):
地址:
法定代表人:
授权代表:
电话:传真:
甲方因生产经营需要,经甲乙双方友好协商,本着长期合作、互惠互利、诚实自愿、规范供货为原则,就甲方向乙方采购所需物品,双方一致同意达成如下合同内容:
第一条:合同标的乙方根据甲方需求提供下列货物:(详见甲方具体每次的货物采购定单)
第二条:合同价格
本合同为非固定总价合同,甲方采购价格是指乙方出售的现场交货价格,具体包括原材料费、加工费、包装费、运费、17%的国家税费和可能出现的保险费、知识产权费。
本合同价格还包含乙方应当提供的伴随服务/售后服务费用.本合同具体价格以甲乙双方每次交易确认的甲方物品采购定单为准.乙方提供的货物运输人员费用、邮资费用以及随货物品工具、配件材料费用包含在本合同甲乙双方商定的价格之内,甲方无须另行支付乙方费用.第三条:本合同的有效组成文件
下列有关本采购合同的附件为本合同不可分割的有效组成部分,与本合同具有同等法律效力,这些附件包括但不限于:
1、甲乙双方确认的甲方货物采购定单、乙方销售单(传真件有效);
2、必要时甲方提供给乙方保管的模具技术图纸资料;
3、乙方企业法人或企业营业执照副本复印件以及国家规定需要的乙方企业货物生产许可证复印件;
4、乙方必须提供的出售给甲方的货物合格证明、货物质量保证保修证明、货物使用说明书、货物自检报告书、符合税法要求的17%税率的货物增值税专用发票;
5、甲方确认的乙方货物合格验收报告或验收单.6、必要时甲乙双方签定的补充协议.第四条:权利瑕疵保证
乙方应保证甲方在使用乙方货物或其任何一部分时不受第三方提出侵犯其专利权、版权、商标权或其他所有权权利的起诉。一旦出现侵犯他人合法权益,乙方应承担全部责任,由此导致甲方产生经济损失的,乙方应赔偿甲方因此所产生的全部经济损失.第五条:质量保证
1、乙方承诺其出售给甲方的货物质量保证期为18个月,自甲方验收合格之日起计算;
2、乙方应保证所提供的货物的质量和技术规格应与甲方采购定单中所提出的质量要求和技术规格相一致;若甲方对货物质量技术性能无特殊说明的,则乙方货物质量应达到国家有关部门最新颁布的国家标准或行业标准规范。
3、乙方应保证所售货物是全新、未使用过的原装合格正品,并完全符合甲方要求或本合同约定的质量、规格和性能的要求。乙方应保证其提供的货物在正确安装、正常使用和保养条件下,在其使用寿命内具有良好的性能。货物验收后,在质量保证期内,乙方应对由于设计、工艺或材料的缺陷所发生的任何不足或故障负责维护和维修,所需费用由乙方全部承担。
第六条:包装要求、包装物的供应和回收
1、乙方提供的全部货物均应按国家规定标准或有利于保护货物的措施进行包装.该包装应适应于远距离运输、防潮、防震、防锈和防野蛮装卸,以确保货物安全无损运抵或邮寄到甲方公司所在地。由于乙方包装不善所引起的货物毁损均由乙方自行承担,甲方有权拒收毁损货物.2、每一包装单元内应附详细的装箱单和质量合格凭证。
3、乙方提供的货物包装物归甲方所有,乙方不得回收.第七条:交货方式和验收方法
1、乙方出售给甲方的货物由乙方负责送货运输或邮寄到甲方公司所在地,所产生的运输或邮寄费用由乙方自行承担.2、因货物在运输或邮寄途中发生毁损、灭失的,由乙方自行承担;在运输途中、交货前、卸货中如有乙方指派人员发生人身伤害或货物受损的,由乙方自行负责承担.3、乙方提供的货物不符合甲方采购定单要求的,或者少交、多交货物的,甲方有权拒收.乙方提前交货的,甲方仍有权按照本合同约定的货款结算期限与乙
方结算.4、每次货物的到货验收包括:型号、规格、数量、外观质量以及货物包装是否完好.5、乙方应将所提供货物的装箱清单、货物合格证明、货物质量保证保修证明、货物使用说明书(用户手册)、货物自检报告书随货技术资料及配件、随货工具等交付给甲方;乙方不能完整交付货物及本款规定的单证和工具的,视为未按合同约定交货,乙方负责补齐,因此导致逾期交货的,由乙方承担相关违约责任。
6、甲方在收到乙方货物后()日内对货物进行验收,验收标准按乙方货物现行的国家或部颁标准或行业标准或已经主管部门备案的企业标准验收;如甲方提供给乙方货物样品的,以甲方样品质量性能为验收标准.乙方每次交货质量合格和数量合格完成说明以甲方质保部门授权代表在出具的书面货物验收报告或验收单中签字并加盖该部门公章确认为准;甲方采取抽样验收的,不能视为乙方货物全部质量合格,以甲方在装配乙方货物在甲方产品上时为验收最后期限,如甲方发现乙方货物有不符合甲方采购定单要求的,甲方有权要求乙方免费更换不符合甲方要求的货物,甲方有权按本合同约定顺延因乙方耽误时间支付乙方货款,给甲方造成经济损失的,甲方有权要求乙方赔偿甲方因此所产生的实际损失,乙方赔偿甲方所产生的实际损失后,仍需继续履行本合同义务。
第八条:货款的结算与支付
1、甲乙双方确认的货款结算依据为:采购合同书复印件、甲方采购定单(传真件有效)、乙方开具的17%税率的增值税发票、甲方出具的货物验收报告或验收单原件,甲方按质量合格的货物数量支付乙方货款.如因乙方缺少结算依据的,导致甲方不能按本合同约定期限付款的,甲方不承担逾期付款的违约责任.2、支付方式:经甲方首次对乙方货物出具书面验收合格报告或验收单后,乙方留万元货款在甲方处作为质量保证金(质量保证金在甲乙双方履行完毕本合同后由甲方根据本合同相关约定处理),余款在甲方验收合格后,乙方凭货款结算依据经甲方财务部门负责人确认签字两个月内支付.从第二次开始,自甲方每次对乙方货物出具验收合格报告或验收单后 月内乙方凭货款结算依据经甲方财务部门负责人确认后甲方支付乙方货款.第九条:违约责任
1、乙方不能按期按约交货或部分交货的,甲方有权不予支付乙方货款和解除合同,乙方并应向甲方偿付相当于不能交货部分货款的 %的违约金;
2、乙方所交物品品种、数量、规格、质量不符合国家法律法规和本合同规定的,由乙方负责包修、包换或退货,并承担由此而支付的实际费用;
3、乙方违反本合同相关约定的,除应当承担违约责任外,因乙方违约导致甲方还产生其他相关损失的,乙方应当赔偿甲方因此产生的经济损失.4、乙方逾期交货的,按逾期交货部分货款计算,向甲方偿付每日千分之五的违约金,并承担甲方因此所受的损失费用;
5、在本合同乙方承诺约定的质量保证期18个月内,如经乙方两次维修或更换,货物仍不能达到合同约定的质量标准,甲方有权退货与乙方解除合同,乙方应退回全部货款,同时,乙方还须赔偿甲方因此遭受的其他相关的经济损失。
6、乙方不得擅自部分或全部转让其应履行的合同义务,经甲方发现并查实,甲方除有权立即解除与乙方的采购合同外,乙方须向甲方赔偿履行合同总价的20%的违约金.造成甲方其他相关损失的,乙方还须赔偿甲方因此遭受的其他相关的经济损失。
7、甲方未按本合同约定逾期付款的,应按照每日千分之五的比例向乙方偿付逾期付款的违约金;
8、甲方违反本合同规定拒绝接货的,应当承担由此对乙方造成的损失。
9、乙方不得擅自解除本合同,因乙方擅自解除合同或不履行合同义务致使甲方产生损失的,甲方有权要求乙方承担双方交易金额30%的违约责任,甲方因此还有其他损失的,乙方还应当赔偿甲方的其他相关经济损失。
第十条:保密与保管约定
如甲方有提供给乙方货物样品、模具以及相关技术图纸资料的:
1、甲方存放于乙方处的货物样品、模具以及相关技术图纸资料的所有权和知识产权归甲方所有;
2、乙方有义务对甲方存放于乙方处的货物样品、模具以及相关技术图纸资料妥善保管。
3、除接受甲方通知要求外,乙方不得利用甲方存放于乙方处的货物样品、模具以及相关技术图纸资料为自己或第三方加工相同或相似货物产品,乙方违反本条规定甲方查实发现市场上有经乙方私自流出的产品,乙方应承担支付甲方不低于20万元人民币的违约金,并赔偿甲方由此引起的直接和可能的其他相关经济损失。
4、乙方有义务对甲方存放于乙方处的货物样品、模具以及相关技术图纸资料中涉及的工艺设计方案、知识产权以及价格条款等商业秘密和技术秘密保密,未经甲方书面同意乙方不得向无关第三方泄露甲方的商业秘密和技术秘密信息,也不得擅自加工、使用或向无关第三方转让、交换、赠与、租赁甲方提供的上述物品以及上述物品的商业秘密和技术秘密,如乙方违反本条规定甲方查实发现市场上有经乙方私自流出的产品,乙方应承担不低于20万元人民币的违约金,并赔偿甲方由此引起的直接和可能的其他相关经济损失。
5、因乙方保管不善或无正当理由致使甲方存放于乙方处的货物样品、模具以及相关技术图纸资料毁损、灭失的,乙方应承担赔偿甲方由此引起的直接和可
能的其他相关经济损失,如乙方借口保管不善或其他理由致使甲方存放于乙方处的货物样品、模具以及相关技术图纸资料毁损、灭失而有本条3、4项情形的,甲方有权按本条3、4项情形向乙方提出违约和赔偿主张。
6、乙方保管甲方存放于乙方处的货物样品、模具以及相关技术图纸资料期限为甲方收回为止;乙方的保密义务期限为自本合同生效之日起至本合同终止后年(由双方商定)。
第十一条:不可抗力
1、不可抗力是指本合同生效后,发生不能预见并且对其发生和后果不能防止或避免的事件,如地震、台风、水灾、火灾、战争等,致使直接影响本合同的履行或不能按约定的条件履行。
2、发生不可抗力的一方应立即通知对方,并且在不可抗力发生之日起五天内提供不可抗力的详情及将有关证明文件送交对方。
3、发生不可抗力事件时,甲乙双方应协商以寻找一个合理的解决方法,并尽一切努力减轻不可抗力产生的后果。
4、如不可抗力事件持续三十天时,甲乙双方应友好协商解决本合同是否继续履行或终止的问题。
5、一方因不可抗力不能按本合同约定履行的,可以减轻或免除一方的违约责任,一方不能证明不能按本合同约定履行为不可抗力的,应当承担本合同约定的违约和赔偿责任。
第十二条:本合同的解除与终止
1、解除合同的条件形成:
(1)、甲、乙双方协商一致;
(2)、因不可抗力致使不能实现合同目的的;
(3)、在履行期限届满之前,乙方明确表示或以自己的行为表明不履行或延迟履行主要义务的;
(4)、乙方其他违约行为致使不能实现合同目的的;
(5)、乙方其他违法行为已影响合同履约的。
2、本合同双方经甲乙双方盖章和授权代表签字日期,即为本合同的生效日期。如双方盖章签字日期不一致时,以最后盖章签字方的盖章和签字日期为合同的生效日期。
3、本合同的“采购物品”最终质保期限届满日期,即为本合同的终止日期。但保密和保管条款、违约责任和赔偿责任的追究、双方履行合同的争议解决和双方未了的债权和债务不受合同期满的影响,并且守约方有权提出索赔。第十三条 解决争议的方式
因履行本合同发生纠纷的,由甲、乙双方协商解决,协商不了的,甲乙双方均有权向合同签约地有管辖权的人民法院提出诉讼。
第十四条 其它约定条款
1、本合同的未尽事项,必要时由甲、乙双方另订补充协议,经甲乙双方盖章和双方授权代表签字后与本合同具有同等法律效力。
2、第十五条: 本合同生效
1、本合同双方经甲乙双方盖章和代表签字日期,即为本合同的生效日期。如双方盖章签字日期不一致时,以最后盖章签字方的盖章和签字日期为合同的生效日期。
2、本合同自双方代表签字并加盖双方公章或合同专用章后生效。
甲方(采购方):(盖章)乙方(供应商):(盖章)
法定代表人:法定代表人:
授权代表:授权代表:
电话:电话:
开户银行:开户银行:
帐号:帐号:
签约地址:签约地址:
签署日期: 年 月 日签署日期: 年 月 日