第一篇:纳米材料的湿法合成(DOC)
论文中英文摘要
作者姓名:孙旭平
论文题目:纳米材料的湿化学合成及新颖结构的自组装构建
作者简介:孙旭平,男,1972年08月出生,2000年09月师从于中国科学院长春应用化学研究所汪尔康研究员,于2006年03月获博士学位。
中
文
摘要
围绕论文题目“纳米材料的湿化学合成及新颖结构的自组装构建”,我们开展了一系列研究工作。通过湿化学途径,在贵金属纳米粒子及其二维纳米结构和导电聚合物纳米带的合成方面进行了深入研究。同时,利用界面自组装及溶液自组装技术,构建了一些新颖结构。本论文研究工作的主要内容和创新点表现在以下几个方面:
(1)首次提出了一步加热法制备多胺化合物保护的贵金属纳米粒子。我们利用多胺化合物(包括聚电解质和树枝状化合物)作为还原剂和保护剂,直接加热贵金属盐和多胺化合物的混合水溶液,在不加入其它保护剂和还原剂的情况下,一步制备得到了稳定的贵金属金和银的纳米粒子。我们在实验中发现,树枝状化合物聚丙烯亚胺能对反应生成的金纳米粒子的大小及成核和生长动力学进行有效控制。我们还发现,室温下直接混合浓的阳离子聚电解质分支型聚乙烯亚胺和浓的HAuCl4水溶液可得到高浓度的、稳定的胶体金。这种一步合成法操作简单且方便易行,是一种制备多胺化合物保护的贵金属纳米粒子的通用方法;同时,本方法合成的纳米粒子表面带正电荷,可用作加工纳米粒子功能化薄膜的构建单元。(2)首次提出了一种无表面活性剂的、无模板的、大规模制备导电聚合物聚邻苯二胺纳米带的新方法。我们通过在室温下直接混合邻苯二胺和HAuCl4水溶液,在没有表面活性剂或“硬模板”存在的条件下,获得了长度为数百微米、宽度为数百纳米、厚度为数十纳米的聚邻苯二胺。纳米带的自发形成可归因于反应中生成的金纳米粒子催化的邻苯二胺的一维定向聚合。本方法方便快速,无需加入表面活性剂或使用“硬模板”,且可用于大规模制备。此外,我们通过在室温下直接混合AgNO3和邻苯二胺水溶液,也获得了大量的一维纳米结构,并发现其形貌可通过调节实验参数而改变。我们还发现,当溶液pH降低时,这些一维结构将分解成水溶性的低聚体,而如果再次升高pH,这些低聚体又将自组装形成一维纳米结构。各种数据表明,这种一维纳米结构是由邻苯二胺被AgNO3氧化后所生成的低聚体在溶液中自组装而形成的。
(3)发展了一系列可大量制备沿(111)晶面优先生长的单晶金二维结构(包括纳米片及微米盘)的湿化学合成方法。在室温下直接混合HAuCl4和邻苯二胺水溶液,我们得到了大量的、呈六角形的、纳米厚度的单晶金片,其尺寸达1.5μm,邻苯二胺和HAuCl4间的摩尔比是纳米片形成的关键,这种纳米片不仅能应用于光学领域,还可用于加工具有独特机械性能的新型结构材料。我们通过直接加热浓的HAuCl4和线型聚乙烯亚胺混合水溶液,也获得了大量的金纳米单晶片,其尺寸可达40μm,反应物浓度是获得纳米片的关键因素,这种具有大的(111)晶面的单晶金片有望用做扫描隧道显微镜(STM)的基底。此外,通过加热草酸-HAuCl4混合水溶液,我们还得到了大量的、尺寸达4μm的、呈六角形的金二维结构,但其厚度大于100 nm,为微米盘,其大小和厚度可通过草酸的用量得到控制。
(4)发展了一种基于溶液中的配位组装的、室温下方便合成有机-无机配位聚合物杂化材料的单分散亚微米胶体球的新方法。在室温下直接混合H2PtCl6和对苯二胺水溶液,通过对苯二胺和PtCl62-在溶液中的配位自组装,我们得到了亚微米尺寸的、单分散的、配位聚合物球形胶体球。实验表明,粒子大小和多分散度可由反应物间的摩尔比和浓度进行控制,获得单分散胶体球的最佳实验条件是1:1摩尔比和适中的浓度。本研究结果具有比较重要的意义:(1)它提供了一个温和的、室温条件下获得单分散胶体粒子的合成方法,从而避免了获得单分散的无机材料胶体粒子所必须的高温反应条件;(2)这种胶体粒子是一种新的杂化材料,它结合了两种组分的优点而具有多种属性,因而可用在许多领域;(3)这种胶体粒子在强还原剂如NaBH4 存在的情况下,由于其中的 Pt阳离子组分被还原而发生分解,因此可用做易分解的胶体粒子模板加工中空球。此外,我们通过室温下直接混合邻苯二胺的N-甲基吡咯烷酮溶液和AgNO3水溶液,得到了亚微米的球形银胶体粒子(平均粒径达850 nm)。实验结果还表明,升高温度有利于更大尺寸的银粒子的生成,溶剂对纯的银粒子沉淀物的获得起着比较关键的作用。这些亚微米粒子的形成经历了两个阶段:(1)超饱和溶液中纳米主粒子的成核;(2)形成的主粒子聚集成更大的均匀的粒子。
(5)我们发展了一种在表面巯基功能化的电极表面有效固定Ru(bpy)32+的新方法。本方法同时运用了溶液自组装和固体表面自组装两种技术,即:先将Ru(bpy)32+和柠檬酸根阴离子保护的金纳米粒子的水溶液按照一定比例混合,得到了Ru(bpy)32+-金纳米粒子聚集体,然后把少量聚集体的悬浮液直接滴在表面巯基功能化的电极表面,从而实现Ru(bpy)32+在电极表面的有效固定。该方法简单易行,制备的电极具有很好的稳定性和电化学发光性能,因而在固态电化学发光检测方面具有很好的应用前景;此外,该方法还可用于在固体表面构建Au纳米粒子多层膜。
(6)发展了一种通过加热3-噻吩丙二酸(3-thiophenemalonic acid, TA)和H2PtCl6混合水溶液直接制备小的Pt纳米粒子的新方法,并通过对该胶体溶液用Ru(bpy)32+处理,得到了Ru(bpy)32+-Pt纳米粒子聚集体。通过对在裸电极表面的聚集体进行循环电势扫描,使得聚集体中的TA分子发生电化学聚合而在电极表面形成了稳定的聚合物膜;由于该膜有效地避免了聚集体从电极表面脱落,从而我们得到了非常稳定的、具有极好电化学发光性能的膜。本工作不但提供一种方便制备Pt纳米粒子的新途径,而且还发展了一种在任何表面直接加工电化学发光检测器的新方法,在固态电化学发光检测方面具有重要应用价值。(7)通过在室温下直接混合H2PtCl6和Ru(bpy)3Cl2水溶液,我们获得了具有新颖形貌的、含有Ru(bpy)32+的微结构。实验结果表明,金属价态、金属种类及反应物摩尔比和浓度对微结构的形貌有重要影响,形成的微结构都具有很好的电化学发光性能。这些微结构给我们提供了一种新的功能材料,将在毛细管电泳或毛细管电泳微芯片的固态电化学发光检测方面有着很好的应用前景。
关键词: 纳米材料,湿化学,自组装,电化学发光
Wet-Chemical Routes to the Preparation of Namomaterials and Self-Assembly-Based Fabrication of Novel Structures
Sun Xuping ABSTRACT
Both the wet-chemical preparation of nanomaterials and self-assembly-based fabrication of novel structures have been paid considerable attention.We carried out several studies on the preparation of noble metal nanoparticles and its two-dimensional nanostructures and conducting polymers nanobelts via wet-chemical routes.On the other hand, we fabricated some novel structures through self-assembly on planar solid substrates or in solutions.Especially, the application of some structures in the field of solid-state electrochemiluminescence detection is also explored.We have developed a heat-treatment-based strategy for the one-step preparation of polyamine-protected noble
metal
nanoparticle.With
the
use
of
third-generation poly(propyleneimine)(PPI G3)dendrimer to simultaneously act both as the reducing agent and protective agent, stable noble metal gold nanoparticles have spontaneously formed by heating a solution containing HAuCl4 and PPI G3.As a result, an additional step of introducing a reducing agent as well as a protective agent is no longer needed.It is found that the size, the nucleation and growth kinetics of the gold nanoparticles thus formed can be tuned by changing the initial molar ratio of PPI G3 to gold.Similarly, highly stable Ag nanoclusters with narrow size distribution have been prepared by heating a AgNO3/PPI G3 aqueous solution without the additional step of introducing other reducing agents and protect agents.It is found that as-obtained particle is in coexistence of Ag and Ag2O and increasing temperature results in both the decrease in number of small particles and the increase in size of large particles.In addition, such thermal process has been successfully used to prepare amine-functionalized polyelectrolyte-protected gold nanoparticles by directly heating an aqueous solution containing HAuCl4 and polyelectrolytes.Four polyelectrolytes including N-[3-(trimethoxysilyl)propyl]polyethylenimine(Si-PEI), branched polyethylenmine(BPEI), linear polyethylenimine(LPEI)and poly(allylamine hydrochloride)(PAH)were used in our study and well-stabilized gold nanoparticles with relatively narrow size distribution were obtained.Because gold nanoparticles thus formed can be combined with the properties of the polyelectrolytes used, they hold promise for use in the biomedical and bioanalytical field and on the other hand, as building blocks for the creation of nanoparticles-containing thin films.This strategy will be general to other polyelectrolytes with the same chemical structure as these four polyelectrolytes used and to the preparation of other nanoparticles such as Ag nanoparticles.Furthermore, we have found that highly concentrated, well-stable gold colloids can be prepared by direct mix of concentrated HAuCl4 and BPEI aqueous solutions at room temperature.We have developed for the first time a novel but simple surfactantless, templateless method for preparing conducting polymer poly(o-phenylenediamine)nanobelts on a large scale.The mix of HAuCl4 and o-phenylenediamine aqueous solutions at room temperature results in the formation of a large quantity of precipitate.Lower magnification scanning electron microscopy(SEM)image indicates that the precipitate consists of a large quantity of uniform one-dimensional structures.Higher magnification SEM image further reveals these structures are transparent nanobelts with several hundred micrometers in length, several hundred nanometers in width, and several ten nanometers in height.Also observed in these SEM images are a number of nanoparticles.The X-ray diffraction(XRD)analysis of the resulting precipitate reveals the formation of amorphous poly(o-phenylenediamine)polymers with larger crystalline size as well as crystalline gold.Elemental analysis of the resulting precipitate using secondary electrons by SEM indicates the belts are poly(o-phenylenediamine)polymers but the particles are gold particles.The possible formation of the nanobelts can be explained as follows: The reduction of HAuCl4 by o-phenylenediamine leads to the formation of gold nanoparticles with the occurrence of o-phenylenediamine oligomers first, then gold nanoparticles produced serve as active catalysts to catalyze the oriented oxidative polymerization of other o-phenylenediamine monomers by HAuCl4 along the oligomers produced, resulting in the formation of poly(o-phenylenediamine)nanobelts.Furthermore, we have found that mixing of AgNO3 and o-phenylenediamine in aqueous medium results in the formation of uniform one-dimensional structures.However, the formation of such 1D structure involves the following two stages:(1)The oxidation of o-phenylenediamine by AgNO3 leads to the formation of individual o-phenylenediamine oligomers.(2)The resulting individual oligomers self-assembly to form uniform larger 1D structures.Interestingly, decreasing medium pH can break these 1D structures apart to form individual oligomers, or vice versa.It is also found that both the concentration and molar ratio of reactants have considerable influences on the morphologies of the structures thus formed.We have developed several wet-chemical approaches for the large-scale preparation of two-dimensional, single-crystalline gold structures including nanoplates and microdisks.The mix of an appropriate volume of an aqueous solution of freshly prepared o-phenylenediamine and HAuCl4 at room temperature with 1:1 molar ratio of o-phenylenediamine to gold gradually leads to a large quantity of precipitate, which is collected by centrifugation, washed several times with THF and water, and then suspended in water.The lower magnification SEM image indicates that the precipitate consists of a large amount of particles, while the higher magnification SEM image clearly reveals that the particles are micrometer-scale plates(about 1.5 µm in size), mainly hexagonal in shape.The distance between two planes of one plate standing against the glass substrate indicates that these plates are nanoplates.The corresponding energy-dispersive X-ray spectrum(EDS)shows these nanoplates are pure metallic gold.Two surface plasmon absorption bands at about 680 and 925 nm which arise from the longitudinal plasmon resonance of gold particles are observed for these gold nanoplates, providing another piece of evidence for the formation of anisotropic gold particles.It suggests that the quantity of o-phenylenediamine in the solution is crucial to yielding gold nanoplates and we may suggest that o-phenylenediamine molecules serve as a soft template and kinetically control the growth rates of various faces of gold particles by selectively adsorbing on to the crystallographic planes, thus resulting in the formation of large single-crystalline gold nanoplates.The importance of the platelet-like gold particles is not restricted to optics;exceptionally interesting materials with unique mechanical properties can be obtained with such colloids.A polyamine process has also been successfully used for the high-yield preparation of single-crystalline gold nanoplates with several 10µm in size, mainly hexagonal in shape, carried out by heating a concentrated aqueous solution of LPEI and HAuCl4 at 100℃.The following experimental facts(1)there are no gold byproducts with other shapes except the nanoplates existing in the resulting products and(2)adding NaBH4 to the colorless supernatant after the termination of reaction gives no gold particles due to the depletion of HAuCl4 in the mixture by LPEI indicate that this heat-treatment-based polyamine process is a high-yield approach for the preparation of large gold nanoplates.It is found that the concentration of reactants is crucial to the formation of nanoplates.As-prepared gold nanoplates with a large Au(111)face may hold promise for scanning tunneling microscopy(STM)substrates.Furthermore, heating an aqueous oxalic acid/HAuCl4 solution has been proven to be an effective and facile approach for the large-scale production of microsized, single-crystalline, hexagonal gold microplates with a thickness above 100 nm.Both the size and the thickness of these plates can be controlled by the molar ratio of oxalic acid to gold.It is also found that the concentration of reactants strongly influences the formation of the gold plates.We have demonstrated a novel coordination-based strategy to the fabrication of submicrometer-scale, monodisperse, spherical colloids of organic-inorganic hybrid materials.The mix of p-phenylenediamine and H2PtCl6 aqueous solutions at room temperature results in the formation of a large amount of precipitate.Low magnification SEM image of as-prepared precipitate indicates that the precipitate consists of a large quantity of monodisperse, submicrometer-scale particles about 420 nm in diameter.Higher magnification SEM image reveals that these particles are spherical in shape and well-separated from each other, and a local magnification of a single colloidal sphere by transmission electron microscopy(TEM)indicates that the resulting particles have electron-microscopically perfectly smooth surface.The chemical composition of the resulting colloids was determined by energy-dispersed spectrum(EDS)and the occurrence of the peaks of Pt, Cl, C, and N indicates that the colloids are products of p-phenylenediamine and H2PtCl6.A possible formation process is briefly presented as following: When p-phenylenediamine and PtCl62-are mixed together, the two nitrogen atoms on the para positions of one p-phenylenediamine aromatic ring can coordinate to two different Pt(IV)cations, resulting in p-phenylenediamine-bridged structure, and the Pt species contained in as-formed structure can further capture other p-phenylenediamine molecules by coordination interactions along different directions.This coordination-induced assembly process can proceed repeatedly until the depletion of reactants in the solution, resulting in the formation of large coordination polymers, finally.It is found that the particle size and polydispersity can be controlled by the molar ratio and concentration of reactants, however, the optimum experimental parameters for the production of monodisperse colloids are 1:1 molar ratio and moderate concentration of the two reactants.Our observations are significant for the following reasons.(1)It provides a mild, room temperature route to fine colloids, avoiding the use of high temperature, which is crucial to the formation of fine colloids of inorganic materials.(2)Such colloids are new hybrid materials with versatile properties provoked by combining the merits of two sources and may find applications in many fields.(3)Such colloids are easily broken up by a strong reducing reagent, such as NaBH4, because of the reduction of the Pt cations contained therein, and therefore, they hold promise as easily decomposable colloidal templates for the fabrication of hollow spheres for a variety of applications.We have also demonstrated the rapid preparation of uniform, large, spherical Ag spheres with relatively low polydispersity through a simple wet-chemical route.The formation of Ag particles with about 750 nm in diameter occurs in a single process, carried out by direct mix of AgNO3 aqueous solution and o-phenylenediamine N-methyl-2-pyrrolidone(NMPD)solution at room temperature.The formation of monodisperse Ag colloids in our previous study can be explained as follows: AgNO3 is reduced by o-phenylenediamine to form metallic Ag atoms.With elapsed time, new Ag atoms are generated in this system and nucleation occurs as the concentration of Ag atoms reaches critical supersaturation, resulting in the formation of nuclei.The nuclei grow to nanoscale primary particles by further addition of Ag atoms, and then the primary particles aggregate to form large Ag spheres with relatively narrow size distribution.It is found that that increasing temperature results in increasing particle size.We have found that the mix of AgNO3 and o-phenylenediamine aqueous solutions, under otherwise identical conditions, yields precipitate consisting of a large quantity of large spherical Ag particles and belt-shaped structures corresponding to the oxidative products of o-phenylenediamine by AgNO3.NMPD is a powerful solvent with low toxicity and broad solubility, completely soluble in water at all temperatures and soluble in most organic solvents.We therefore choose NMPD in our present study as an effective cosolvent to dissolve the oxidative products of o-phenylenediamine in a timely manner, preventing them from precipitating with Ag particles and leading to the formation of pure Ag spheres.We have developed a novel method based on both solution-and planar solid substrate-based assembly techniques for effective immobilization of Ru(bpy)32+ on sulfhydryl-derivated electrode surfaces for solid-state electrochemiluminescene detection application.The whole immobilization process involves the following two steps:(1)The addition of Ru(bpy)32+ cations into citrate-capped gold nanoparticles(AuNPs)solution results in the formation of a Ru-AuNPs precipitate due to electrostatic interactions-driven assembly of the positively charged Ru(bpy)32+ cations and the negatively charged citrate ions coating on the AuNPs;(2)The suspension of Ru-AuNPs was placed on the sulfhydryl-derivated ITO electrode surface.The energy-dispersed spectrum(EDS)of the resulting precipitate indicates the precipitate consists of Ru(bpy)32+ and AuNPs.The absence of the peak of S element in the EDS may be attributed to the following two reasons:(1)The content of S element itself is too low to be detected.(2)The sulfhydryl groups are located below the Ru-AuNPs film, and the substrate is nearly completely covered by the Ru-AuNPs film.It is found that the modification of substrate with sulfhydryl group and the resultant strong Au-S interactions between sulfhydryl group and AuNPs are crucial to the effective immobilization of such Ru-AuNPs on the surface and there is no stable film formed on bare ITO surface.The Ru-AuNPs-modified ITO electrode is quite stable, exhibits excellent electrochemiluminescene behavior, and hence holds great promise for solid-state electrochemiluminescene detection in capillary electrophoresis(CE)or a CE microchip.It provides a new methodology for fabrication of stable Ru(bpy)32+-containing structures on a solid electrode surface for solid-state electrochemiluminescene detection and, on the other hand, also provides an interesting method of immobilization of nanoparticles on the surfaces for applications.We have developed a simple thermal process for the preparation of small Pt nanoparticles, carried out by heating a H2PtCl6/3-thiophenemalonic acid(TA)aqueous solution without the addition of other reducing agents and protective agents.The formation of such Pt nanoparticles can be attributed to the direct redox between TA and PtCl62-.It is found that such Pt nanoparticles were quite stable for several months without any observable aggregation, indicating that TA serves as a very effective protective agent for the formation of Pt nanoparticles, which can be attributed to the fact that the sulfur atom in TA has a very strong nucleophilicity with lone-pair electrons and such a lone-pair electron can form a type of donor-acceptor complex with the Pt atom on the particle surface, yielding TA-protected Pt nanoparticles.The following treatment of such colloidal Pt solution with Ru(bpy)32+ causes the assembly of Pt nanoparticles into aggregates.Given the acidic reaction condition, the Pt particle surface is mainly covered by protonated carboxylic acid groups and thus the electrostatic interactions between positively charged Ru(bpy)32+ and Pt nanoparticles are only partially responsible for the formation of the aggregates.On the other hand, both TA and Ru(bpy)32+ are rich in π-type bonds and the strong intermolecular π-π interactions between them also contribute to the formation of the aggregates via self-assembly.The most attractive point is that directly placing such aggregates on any bare solid electrode surfaces can produce very stable films exhibiting excellent electrochemiluminescence behaviors.The formation of the stable film of the aggregates on a bare electrode surface can be attributed to the fact that the TA in the aggregates is electrochemically polymerized during the cycling scans to form stable polymer film on electrode surface and the polymer film can effectively protect the aggregates from falling from the electrode surface.Our finding is significant for the following two reasons:(1)It provides a general methodology for the preparation of noble metal nanoparticles for applications;(2)Such assemblies will provide us new kind of materials for solid-state electrochemiluminescence detection in capillary electrophoresis(CE)or a CE microchip.We have reported on the first preparation of novel, robust Ru(bpy)32+-containing supramolecular microstructures via a solution-based self-assembly strategy, carried out by directly mixing H2PtCl6 and Ru(bpy)3Cl2 aqueous solutions at room temperature.It is found that the microstructures thus formed are robust enough to stand a violent sonication process and their formation is very fast.Given the positive charge of Ru(bpy)32+ and the negative charge of PtCl62-, we may suggest that electrostatic attractions between these two complexes drive the formation of micrometer-scale supramolecular microstructures.The observation that the UV-vis absorption spectra of Ru(bpy)32+ aqueous solution is similar to that of the microstructures suspension in water further indicates that only pure electrostatic interactions are responsible for the formation of the microstructures.The electrochemical behavior of the Ru(bpy)32+ components contained in the solid film of the microstructures formed on the electrode surface is also studied and found to exhibit a diffusion-controlled voltammetric feature.We have found that both the molar ratio and concentration of reactants have a heavy influence on the morphologies of such microstructures.Most importantly, such microstructures exhibit excellent electrochemiluminescence behaviors and therefore hold great promise as new luminescent materials for solid-state electrochemiluminescence detection in capillary electrophoresis(CE)or CE microchip.Keywords: nanomaterials, wet-chemical, self-assembly, electrochemiluminescence
第二篇:材料合成与制备论文(纳米材料)
硕研10级20班
材料工程
2010012014
夏春亮
纳米材料的制备方法
纳米制备技术是80年代末刚刚诞生并正在崛起的新技术,其基本涵义是:纳米尺寸范围(10-9~10-7m)内认识和改造自然,通过直接操作和安排原子、分子创造新物质。由于纳米材料具有奇特的力学、电学、磁学、热学、化学性能等,目前正受到世界各国科学家的高度重视。
一、气相法制备纳米微粒
1.溅射法
此方法的原理为:用两块金属板分别作为阴极和阳极,阴极为蒸发用材料,在两电极间充入Ar(40~250Pa),两极间施加的电压范围为0.3~1.5kV。由于两极间的辉光放电使Ar粒子形成,在电场作用下Ar离子冲击阳极靶材表面,使靶材原子从其表面蒸发出来形成超微粒子,并在附着面上沉积下来。离子的大小及尺寸分布主要取决于两极间的电压、电流、气体压力。靶材的表面积愈大,原子的蒸发速度愈高,超微粒的获得量愈大。
溅射法制备纳米微粒材料的优点是:1)可以制备多种纳米金属,包括高熔点和低熔点金属。常规的热蒸发法只能适用于低熔点金属;2)能制备出多组元的化合物纳米微粒,如A lS2,Tl48,Cu91,Mn9,ZrO2等;通过加大被溅射阴极表面可加大纳米微粒的获得量。采用磁控溅射与液氮冷凝方法可在表面沉积有方案膜的电镜载网上支撑制备纳米铜颗粒。
2.混合等离子法 硕研10级20班
材料工程
2010012014
夏春亮
此方法是采用RF(射频)等离子与DC直流等离子组合的混合方式来获得超微粒子。该制备方法有以下几个特点:
1)产生RF等离子时没有采用电极,不会有电极物质(熔化或蒸发)混入等离子体而导致等离子体中含有杂质,故超微粒的纯度较高;
2)等离子体所处的空间大,气体流速比DC直流等离子体慢,致使反应物质在等离子空间停留时间长,物质可以充分加热和反应;
3)可使用非惰性气体制备化合物超微粒子,使产品多样化。混合等离子蒸发法制取超微粒子有3种方法: 1)等离子蒸发法
使大颗粒金属和气体流入等离子室,生成超微粒子; 2)反应性等离子气体蒸发法
使大颗粒金属和气体流入等离子室,同时通入反应气体,生成化合物超微粒子;
3)等离子VCD法
使化合物随载气流入等离子室,同时通入反应气体,生成化合物超微粒子。
例如,将原料Si3N4以4g/min的速度流入等离子室,通入H2进行热分解,再通入反应性气体NH3,经反应生成Si 3N4超微粒子。
3.激光诱导化学气相沉积法(LVCD)LVCD法具有清洁表面,离子大小可精确控制、无粘结、粒度分布均匀等优点,并容易制备出几纳米至几十纳米的非晶及晶态纳米微粒。硕研10级20班
材料工程
2010012014
夏春亮
目前LVCD法已制备出多种单质、化合物和复合材料超细粉末,并且已进入规模生产阶段,美国的MIT于1986年已建成年产几十吨的装置。激光制备超细微粒的工作原理是利用反应气体分子对特定波长激光束的吸收,引起反应气体分子激光光解、激光热解、激光光敏化和激光诱导化学合成反应,在一定工艺条件下,获得超细粒子空间成核和长大。例如,用连续输出CO2激光(10.6um)辐照硅烷气体分子(SiH4)时,硅烷分子很容易发生热解反应:SiH4→Si(g)+ 2H2↑,热解生成的气相Si(g)在一定工艺条件下开始成核长大,形成纳米微粒。
激光制备纳米粒子的装置一般有2种类型:正交装置和平行装置。其中正交装置使用方便,易于控制,工程实用价值大,激光束与反应气体流向正交。激光束照在反应气体上形成反应焰,经反应在火焰中形成微粒,由氩气携带进入上方微粒捕捉装置。
4.化学蒸发凝聚法(CVC)这种方法主要是利用高纯惰性气体作为载气,携带有机高分子原料,通过有机高分子热解获得纳米陶瓷粉体。例如,六甲基二硅烷进入钼丝炉(温度为1100~1400℃,压力为100~ 1000Pa)热解形成团簇,并进一步凝聚成纳米级微粒,最后附着在充满液氮的转动的衬底上,经刮刀下进行纳米粉收集。此法具有产量大、颗粒尺寸细小、分布窄等优点。
5.爆炸丝法
基本原理是:先将金属丝固定在一个充满惰性气体(5MPa)的反应室中,丝的两端卡头为2个电极,它们与一个大电容相联结形成回路,硕研10级20班
材料工程
2010012014
夏春亮
加15kV的高压,金属丝在500~800kA下进行加热,熔断后在电流停止的一瞬间,卡头上的高压在熔断处放电,使熔断的金属在放电的过程中进一步加热变成蒸气,在惰性气体碰撞下形成纳米粒子沉降在容器的底部,金属丝可以通过一个供丝系统自动进入两卡头之间,从而使上述过程重复进行。这种方法适用于制备纳米金属和合金粉体。
6.其他方法
近年来,由于纳米材料规模化生产以及防止纳米粉团聚的要求越来越迫切,相继出现了一些新的制备技术。例如,气相燃烧合成技术就是其中的一种,其基本原理是:将金属氯化物(MCl)盐溶液喷入Na蒸气室燃烧,在火焰中生成NaCl包敷的纳米金属微粒,由于NaCl的包敷使得金属纳离子不团聚。另一种技术是超声等离子体沉积法,其基本原理是:将气体反应剂喷入高温等离子体,该等离子体通过喷嘴后膨胀,生成纳米粒子,这种方法适合于大规模连续生产纳米粉。
二、液相法制备纳米微粒
1.沉淀法
包含一种或多种离子的可溶性盐溶液,当加入沉淀剂(如OH-,CrO2-,CO32-等)后,或于一定温度下使溶液发生水解,形成的不溶性氢氧化物和盐类从溶液中析出,将溶液中原有的阴离子洗去,经分解即得所需的氧化物粉料。
2.喷雾法
喷雾法是将溶液通过各种物理手段进行雾化获得超微粒子的化学和物理相结合的一种方法。其基本过程包括溶液的制备、喷雾、干硕研10级20班
材料工程
2010012014
夏春亮
燥、收集和热处理,其特点是颗粒分布比较均匀,但颗粒尺寸为亚微米级到微米级,尺寸范围取决于制备的工艺和喷雾方法。根据雾化和凝聚过程,喷雾法可分为3种:
1)喷雾干燥法 将金属盐溶液或氢氧化物溶胶送入雾化器,由喷嘴高速喷入干燥室获得金属盐或氧化物的微粒,收集,烧成所需成分的超微粒子;
2)雾化水解法 将一种盐的超微粒子,由惰性气体载入含有金属醇盐的蒸气室,金属醇盐的蒸气附着在超微粒的表面,与水蒸气反应分解后形成氢氧化物微粒,经焙烧可获得氧化物超细微粒。这种方法获得的微粒纯度高,分布窄,尺寸可控,具体尺寸大小主要取决于盐的微粒大小;
3)雾化焙烧法 将金属盐溶液由压缩空气经窄小的喷嘴喷出雾化成小液滴,雾化温度较高,使金属盐小液滴热解形成超微粒子。
3.凝胶-溶胶法
此法的基本原理是将金属醇盐或无机盐水解,溶质聚合凝胶后,再将凝胶干燥,煅烧,最后得到无机材料。本法包括以下几个过程:
1)溶胶的制备 有两种制备方法: 一是先将部分或全部组分用适当沉淀剂先沉淀出来,经凝聚,使原来团聚的沉淀颗粒分散成原始颗粒。这种原始颗粒的大小一般在溶胶体系中胶核的大小范围内,因而可值得溶胶;二是由同样的盐溶液,通过对沉淀过程的仔细控制,使首先形成的颗粒不致团聚为大颗粒沉淀,从而直接得到溶胶。
2)溶胶凝胶转化 溶胶中含有大量的水,凝胶过程中,使体系失硕研10级20班
材料工程
2010012014
夏春亮
去流动性,形成一种开放的骨架结构。实现凝胶作用的途径一是化学法,即通过控制溶胶中的电解质浓度来实现凝胶化;二是物理法,即迫使胶粒间相互靠近,克服斥力,实现凝胶化。
3)凝胶干燥 在一定条件下,使溶剂蒸发,得到粉料,干燥过程中凝胶结构变化很大。该方法化学均匀性好,纯度高,颗粒细,可容纳不溶性组分或不沉淀组分,烘干后容易形成硬团聚现象,在氧化物中多数是桥氧键的形成,球形凝胶颗粒自身的烧结温度低,但凝胶颗粒之间的烧结性差,块状材料烧结性能不好,干燥时收缩大。
4.湿化学法
湿化学法制备纳米粉末是目前公认的具有发展前途的制粉方法,也是实验室常用的手段。湿化学法的实验流程如下:
确定纳米粉材料→制成含该材料粒子的溶液→用该材料的E-pH图确定沉淀的pH范围→将分散剂NH4Cl溶入去离子水中,并用氨水、盐酸调节水溶液至沉淀的pH 值→含该材料离子的水溶液在具有恒定的pH 的沉淀液中雾化→凝胶→水洗,过滤,乙醇脱水→煅烧、研磨→纳米粉。
第三篇:纳米论文
聚合物基-纳米二氧化硅复合材料的应用研究进展
班级12材料2班学号1232230042姓名王晓婷
摘要本文介绍了近年来国内外纳米SiO2聚合物复合材料的制备方法,讨论了制备方法的特点,阐述了聚合物纳米SiO2复合材料的研究进展, 并展望了聚合物纳米SiO2 的应用前景。
关键词纳米SiO2复合材料;聚合物;制备;应用 前言
纳米SiO2是目前应用最广泛的纳米材料之一,它特有的表面效应、量子尺寸效应和体积效应等,使其与有机聚合物复合而成的纳米二氧化硅复合材料, 既能发挥纳米SiO2自身的小尺寸效应、表面效应以及粒子的协同效应, 又兼有有机材料本身的优点, 使复合材料具有良好的机械、光、电和磁等功能特性, 引起了国内外研究者的广泛关注[
1,2]
。本文就纳米Si02一聚合物复合材料的制备方法、制备方法的特点和应用进行一次全面的综述。
2聚合物/ 纳米Si O2 复合材料的制备
2.1 共混法
共混法是制备聚合物/无机纳米复合材料最直接的方法,适用于各种形态的纳米粒子,但是由于纳米粒子存在很大的界面自由能,粒子极易自发团聚。要将无机纳米粒子直接分散于有机基质中制备聚合物纳米复合材料,必须通过化学预分散和物理机械分散打开纳米粒子团聚体,消除界面能差,才能实现均匀分散并与基体保持良好的亲和性。具体途径如下。
2.1.1 高分子溶液(或乳液)共混
首先将聚合物基体溶解于适当的溶剂中制成溶液(或乳液),然后加入无机纳米粒子,利用超声波分散或其他方法将纳米粒子均匀分散在溶液(或乳液)中。
姜云鹏等利用PVA与纳米Si02表面的羟基形成的氢键实现了纳米si02对PVA的改性;张志华等用溶胶一凝胶反应制备纳米Si02颗粒,然后通过超声分散机将颗粒分散到聚氨酯树脂中制备出了聚氨酯/Si02纳米复合材料;以上各种方法都使不同材料的各方面性能得到了改善。
2.1.2熔融共混
将纳米无机粒子与聚合物基体在密炼机、双螺杆等混炼机上熔融共混。
郭卫红等[5]在密炼机上将PMMA和纳米Si02粒子熔融共混后,用双螺杆造粒制得纳米复[4][3]合材料。石璞[6]通过熔融共混法将纳米si02粒子均匀地分散于PP基体中制得复合材料,由于复合偶联剂的一端易与离子表面上大量的羟基发生化学反应形成稳定的氢键,另一端与聚丙烯相容性较好,使纳米粒子基本没有团聚,实现了增强、增韧的目的。张彦奇等[7]将纳米Si02经超声分散并经偶联剂处理后与LLDPE等组分预混、挤出、造粒,制备了线性低密度聚乙烯(LU)PE)/纳米Si02复合材料,所得薄膜雾度显著提高。
2.2在位分散聚合法
首先采用超声波分散、机械共混等方法在单体溶液中分散纳米粒子,或采用偶联剂对纳米粒子表面进行处理,然后单体在纳米粒子表面进行聚合,形成纳米粒子良好分散的纳米复合材料(in situ polymerization)。通过这种方法,无机粒子能够比较均一地分散于聚合物基体中。
欧玉春等[8]利用带有羟基的丙烯酸酯表面处理剂对Si02进行表面处理,应用本体法聚合制备si02/PMMA纳米复合材料,结果显示纳米Si02的加入可以提高聚甲基丙烯酸甲酯材料的机械性能、玻璃化温度及材料的耐水性。Jose-Luiz Luna—Xavier等[9]采用原位聚合法以阳离子偶氮化合物AIBA为引发剂,液相纳米Si02为核,聚甲基丙烯酸甲酯为壳合成了纳米Si02一聚甲基丙烯酸甲酯乳液聚合物。由于阳离子偶氮化合物AIBA为引发剂的使用增强了与纳米si02的相互作用,使效率大大提高。
2.3溶胶-凝胶法
溶胶一凝胶法(Sol-gel)是制备聚合物/无机纳米复合材料的一种重要方法。通过烷氧基金属有机化合物的水解、缩合,将细微的金属氧化物颗粒复合到有机聚合物中并得到良好分散,从而在温和条件下制备出具有特殊性能的聚合物/无机纳米复合材料。
2.4硅酸钠溶胶一凝胶法
溶胶一凝胶法在制备聚合物/纳米si02复合材料时显示出很多优势。但是,所用的无机组分的前驱物正硅酸烷基酯价格昂贵、有毒,因此为了降低制备成本,改善生产条件和减少环境污染,张启卫等[10]用硅酸钠为无机si02组分的前驱物,与PVAC或PMMA的THF溶胶混合,经溶胶一凝胶过程制备出聚合物/Si02杂化材料。结果表明,si02含量在一定范围时,由于发生了纳米级微区效应,有机一无机两相间相容性好,不产生相分离,材料透光率提高,热稳定性增强。
3聚合物/ 纳米Si O2 复合材料的研究进展
3.1 纳米SiO2/环氧树脂复合材料
Mascia等通过红外光谱和定性黏度分析得知,纳米SiO2 和环氧树脂随着环氧树脂的分子量增加、加入偶联剂、增加溶剂的极性以及提高反应温度都会使二者的相容性提高[11]。宁荣昌等用分散混合法研究了纳米SiO2有无表面处理及其含量对复合材料性能的影响, 采用透射电镜和正电子湮没技术(PALS)对纳米SiO2 的分布和自由体积的尺寸及浓度进行了表征[12]。结果表明, SiO2表面处理后, 复合材料性能得到提高, 使环氧树脂增强和增韧;且纳米SiO2含量为3 % 时,自由体积浓度最小, 纳米复合材料的性能最佳。刘竞超等通过原位分散聚合法制得了纳米SiO2/环氧树脂复合材料[13]。结果表明, 对复合材料力学性能的影响较大的是偶联剂, 在最优工艺条件下制得的复合材料冲击强度、拉伸强度比基体分别提高了124% 和30%;复合材料的Tg和耐热性也有所提高。
3.2 纳米SiO2/丙烯酸酯类复合材料
欧玉春等用原位聚合方法制备了分散相粒径介于130 nm 左右的PMMA/SiO2(聚甲基丙烯酸甲酯/二氧化硅)复合材料[14]。结果表明, 经表面处理的SiO2在复合材料基体中分散均匀, 界面粘结好;SiO2粒子的填充使基体的Tg和损耗峰上升, 随着SiO2含量的增加, 对应试样的Tg和损耗峰值增大;随着SiO2含量的增加, 基体的拉伸强度、弹性模量表现为先下降后升高, 而基体的断裂伸长率表现为先升高后下降。武利民等通过原位聚合、高速剪切法分散共混和球磨法分散共混等3 种方法制备丙烯酸酯/纳米SiO2复合乳液, 以相同的方法制备丙烯酸酯/微米SiO2复合乳液[15]。结果表明, 共混法制得的纳米复合物的拉伸强度、断裂伸长率和玻璃化转变温度随纳米SiO2含量的增加先上升然后逐渐下降。涂层对紫外光的吸收和透过随纳米SiO2 含量的增加分别呈上升和下降趋势, 而微米SiO2复合丙烯酸酯乳液, 其涂层对紫外光的吸收和透过基本不受微米SiO2 的影响。
3.3 纳米SiO2/硅橡胶复合材料
王世敏等对纳米SiO2/二甲基硅氧烷复合材料的光学、力学性能进行了研究[16]。结果表明, 复合材料对波长λ>390 nm 的可见光基本能透过, 透过率达80%, 硬度随纳米SiO2的增加呈上升趋势。Mackenzie 等制备的纳米SiO2/硅氧烷复合材料在非氧化气氛中加热到1 000 ℃以上, 分子发生重排, 形成块状微孔体;继续加热到1 400 ℃时,有机碳仍不分解, 且热膨胀系数很小[17]。由于聚硅氧烷的高柔顺性, 在溶胶-凝胶过程中不会因干燥而破裂, 该材料可以作为涂层改善基体(如聚合物、金属)表面的物理化学性质。潘伟等研究SiO2纳米粉对硅橡胶复合材料的导电机理、压阻及阻温效应的影响[18]。结果表明,随着SiO2纳米粉的增加, 压阻效应越来越显著,在一定压力范围内, 材料电阻随压力呈线性增加;同时, SiO2纳米粉的加入使复合材料的电阻随温度增加而增加。
3.4 纳米SiO2/聚碳酸酯材料
聚碳酸酯具有较好的透明性, 较高的硬度, 以及较强的蠕变性。为了进一步提高其应用价值, 王金平等以聚碳酸酯为基体, 采用溶胶-凝胶法技术在聚碳酸酯表面覆盖一层纳米SiO2无机涂层, 涂层与聚碳酸酯较好的结合, 使材料的耐磨性得到明显提高[19]。
3.5 纳米SiO2/聚酰亚胺复合材料 聚酰亚胺(PI)是一种广泛应用于航空、航天及微电子领域的功能材料, 它的优点是介电性良好,力学性能优良, 但其吸水性强和热膨胀性高的缺点限制了他的应用。而采用纳米SiO2改性后的PI 在这方面得到了很大改善。杨勇等的研究表明, 采用纳米SiO2改性后的PI 其热稳定性得到加强, 热膨胀系数得到降低[20]。曹峰等研究PI/SiO2复合材料的力学性能时发现, 随着SiO2含量的增加, 其杨氏模量、拉伸强度、断裂强度增加, 加入适量的插层剂, 有利于增加有机分子与无机物分子之间的相容性, 从而可制备强度和韧性更加优异的复合材料[21]。
3.6 纳米SiO2/聚烯烃类复合材料
张彦奇等采用熔融共混法制备了线性低密度聚乙烯(LLDPE)/纳米SiO2复合材料[22]。结果表明, 纳米SiO2使LLDPE 的拉伸弹性模量、冲击强度、拉伸强度提高, 且均在纳米SiO2用量为3 份左右时达到最大值;加入少量的纳米SiO2后, LLDPE 薄膜对长波红外线(7~11 μm)的吸收能力较纯LLDPE 膜有显著提高, 透光率略有下降, 但雾度提高。曲宁等利用纳米SiO2、马来酸酐接枝PE(PE-g-MAH)和PP 通过熔融共混制备了PP/纳米SiO2复合材料[23]。结果表明, 经表面处理、用量为4 %的纳米SiO2 与4 % 的PE-g-MAH 发生协同作用, 可以使PP/纳米SiO2复合材料的冲击强度提高40 %,拉伸强度提高10%, 耐热温度提高22℃。
3.7 纳米SiO2/尼龙复合材料
E.Reynaud 等研究了不同粒径和含量的纳米SiO2 与尼龙6 通过原位聚合得到的纳米复合材料的特性[24]。形貌分析出粒子的存在不影响复合材料的结晶相;粒子的加入明显增强了基体的弹性模量,且复合材料的性能受粒子尺寸和分散状况的影响。
3.8 纳米SiO2/聚醚酮类树脂复合材料
邵鑫等研究了纳米SiO2对聚醚砜酮(PPESUK)复合材料摩擦学性能的影响[25]。结果表明, 纳米SiO2不但可以提高PPESUK 的耐磨性, 而且还有较好的减摩作用, 其最佳用量为25%。靳奇峰等采用悬浮液共混法制备了纳米SiO2填充新型杂萘联苯聚醚酮(PPEK)复合材料[26]。当纳米SiO2用量为1 % 时, 复合材料的综合力学性能最佳。纳米SiO2的加入使得复合材料的摩擦性能比纯PPEK 有了明显提高, 当纳米SiO2用量为7 % 时,材料的摩擦磨损性能最好, 并且在大载荷下纳米SiO2 更能有效改善复合材料的摩擦磨损性能。
3.9纳米SiO2/聚苯硫醚(PPS)复合材料
张文栓等首先将纳米SiO2粒子与硅烷偶联剂KH-550 的乙醇溶液混合, 在40 ℃以下用超声波振荡60 min 后脱去溶剂, 烘干后与PPS 在高速搅拌机中混合均匀, 然后用双螺杆挤出机造粒制得PPS/纳米SiO2复合材料[27]。纳米SiO2粒子呈颗粒状均匀分布在PPS 基体中, 尺寸在10~40 nm 范围内。当纳米SiO2用量为3 % 时, PPS/纳米SiO2 复合材料的力学性能最佳, 拉伸强度、弯曲弹性模量和缺口冲击强度分别提高13.4%、7.4% 和27.3%。张而耕等用转化剂、分散剂和稳定剂制备了PPS/纳米SiO2水基涂料[28]。PPS/纳米SiO2复合涂层的耐冲蚀磨损性比普通涂层提高了约50 倍, 能够用于零部件的防冲蚀磨损。
3.10纳米SiO2/PMMA 复合材料
张启卫等利用溶胶-凝胶法制备了PMMA/纳米SiO2复合材料[29]。发现PMMA 与纳米SiO2两相间的相容性好, 材料透光率可达80 %, 并且热稳定性和Tg都比纯PMMA 有较大的提高。郭卫红等将经过表面处理的纳米SiO2分散于PMMA 单体中形成胶体, 原位聚合制备了PMMA/纳米SiO2复合材料[30]。结果表明, 复合材料的耐紫外线辐射能力提高1 倍以上, 冲击强度提高80 %。同时由于纳米粒子尺寸小于可见光波长, 复合材料具有高的光泽度和良好的透明度。
4总结与展望
聚合物/纳米SiO2复合材料具有优良的综合性能, 展现出诱人的应用前景。尽管近年来对其研究较多, 并取得了较大进展, 但是对它的研究还不够深入, 还有许多问题亟待研究和解决, 如纳米SiO2在聚合物基体中的均匀分散问题, 纳米复合材料的相界面结构, 纳米SiO2 对聚合物性能影响的机理等。相信随着制备技术的进一步完善及对材料的结构与性能关系的进一步了解, 人们将能按照需要来设计和生产高性能和多功能的聚合物/纳米SiO2复合材料。纳米Si02可以改性多种高分子材料,通常对聚合物的机械性能如拉伸强度、弹性模量、断裂伸长率,以及热稳定性、动态力学行为、光学行为等都有较大影响。因此人们都在力求解决很多问题,诸如纳米Si02在聚合物基体中的均匀分散;纳米Si02复合材料中有机相和无机相的相界面结构;Si02粒径大小、几何形状等形态参数及添加量对复合材料性能的影响;纳米Si02对聚合物基体材料性能影响的机理等。随着研究的不断深入,纳米Si02一聚合物体系将在越来越多的领域发挥出它的重要作用。
参考文献
[1]Gabrielson L, Edirisinghe M J.On the dispersion offine ceramic powders in polymers.Journal of MaterialsScience Letters, 1996, 15(13): 1 105~1 107 [2]徐国财, 张立德.纳米复合材料.北京: 化学工业出版社, 2002.32~43
[3]姜云鹏,SiO2 改性聚苯硫醚力学性能的研究.高分子材料科学与工程,2002,18(5):177 [4]张志华,吴广明,等.材料科学与工程学报,2003,21(4):498
[5]郭卫红,李盾,等.纳米SiO2 增强增韧聚氯乙烯复合材料的研究.塑料工业,1998,26(5):10 [6]石璞,晋刚,聚甲基丙烯酸甲酯/二氧化硅杂化材料制备与性能.国塑料,2002,16(1):3 [7]张彦奇,华幼卿.纳米SiO2 填充杂萘联苯聚醚酮复合材料的性能研究.应用化学,2003,20(2):638 [8] 欧玉春,杨锋,聚甲基丙烯酸甲酯/二氧化硅杂化材料制备与性能.分子学报,1997,2:199 [9]Jose-Luiz L X,Alain G,Elodie B L J Colloid and InterfacaSci,2002,250(1):82 [10] 张启卫,章永化,聚甲基丙烯酸甲酯/二氧化硅杂化材料制备与性能.料科学与工程,2002,20(3):381 [11]Mascia Leno, Tang Tao.Curing and morphology ofepoxy resin-silica hybrids.Journal of MaterialsChemistry, 1998, 8(11): 2 417~2 421 [12]郑亚萍, 宁荣昌.纳米SiO2 环氧树脂复合材料性能研究.玻璃钢/复合材料, 2001(2): 34~36
[13]郑亚萍, 宁荣昌.纳米SiO2/环氧树脂复合材料性能研究.高分子材料科学与工程, 2002, 18(5): 148~154 [14]欧玉春, 杨锋, 庄严, 等.原位分散聚合聚甲基丙烯酸甲酯/二氧化硅纳米复合材料研究.高分子学报, 1997(2): 199~205 [15]熊明娜, 武利民, 周树学, 等.丙烯酸酯/纳米SiO2 复合乳液的制备和表征.涂料工业, 2002(11): 1~3 [16]王世敏, 吴崇浩, 赵雷, 等.聚二甲基硅氧烷/SiO2杂化材料的制备与性能的研究.材料科学与工程学报,2003, 21(2): 205~207 [17]Mackenzie John D, Chung Y J, Hu Y.RubberyOrmosils and their Applications.Journal ofNon-Crystalline Solids, 1992, 147-148: 271~278 [18]潘伟, 翟普, 刘立志.SiO2 纳米粉对炭黑/硅橡胶复合材料的压阻、阻温特性的影响.材料研究学报,1997, 11(4): 397~401 [19]王金平, 俞志欣, 何捷, 等.用sol-gel 法在pc 上制备有机-无机复合耐磨涂层.功能材料, 1999, 30(3): 323~325 [20]杨勇, 朱子康, 漆宗能.溶胶-凝胶法制备可溶性聚酰亚胺/二氧化硅纳米复合材料的研究.功能材料,1999, 30(1): 78~81 [21]曹峰, 朱子康, 印杰, 等.新型光敏PI/SiO2 杂化材料的制备与性能研究.功能高分子学报, 2000, 13(3): 25~29 [22]张彦奇, 华幼卿.LLDPE/纳米SiO2 复合材料的力学性能和光学性能研究.高分子学报, 2003(5): 683~84 [23]Reynaud E, Jouen T, Gauthier C, et al.Nanofillersin polymeric matrix: a study on silica reinforcedPA6.Polymer, 2001, 42(21): 8 759~8 768 [24]邵鑫, 田军, 刘维民, 等.纳米SiO2 对聚醚砜酮复合材料摩擦学性能的影响.材料工程, 2002(2):38~39 [25]靳奇峰, 廖功雄, 蹇锡高, 等.纳米SiO2 填充杂萘联苯聚醚酮复合材料的性能研究.宇航材料工艺, 2005(2): 18~19 [26]张而耕, 王志文.PPS/SiO2 纳米复合涂层的制备和性能测试.机械工程材料, 2003, 27(5): 36~37 [27]张启卫, 章永化, 陈守明, 等.聚甲基丙烯酸甲酯/二氧化硅杂化材料制备与性能.应用化学, 2002, 19(9): 874~875 [28]郭卫红, 唐颂超, 周达飞, 等.纳米SiO2 在MMA 单体中在原位分散聚合的研究.材料导报, 2000(10):71~72 [29]张毅, 马秀清, 李永超, 等.纳米SiO2 增强增韧不饱和聚酯树脂的研究.中国塑料, 2004, 18(2): 35~36 [30]周文英, 李海东, 牛国良, 等.纳米SiO2 改性不饱和聚酯树脂.纤维复合材料, 2003(14): 14~15
第四篇:纳米论文
纳米技术在医学上的应用
[摘要]纳米医学是纳米技术与医药技术结合的产物,纳米医学研究在疾病诊断和治疗方面显示出了巨大的应用潜力。近几年,纳米技术突飞猛进,作为纳米技术的重要领域的纳米生物工程也取得了辉煌的成就。本文从纳米医学、纳米生物技术和纳米生物材料三个方面,讲述了纳米生物工程的重大进展。本文就纳米诊断技术、组织修复和再生医学中的纳米材料、纳米药物载体、纳米药物等方面的研究现状与进展进行综述,并探讨纳米医学的发展前景。
[引言] 纳米技术的基本概念是用单个原子、分子制造和操作物质的技术,是现代高科技前沿技术.纳米技术应用前景广阔,几乎涉及现有科学技术的所有领域,世界各国都把纳米技术列为重点发展项目,投入巨资抢占纳米技术战略高地.[关键词]纳米医学;纳米生物材料;诊断;治疗
1、跨世纪的新学科——纳米科技
所谓/纳米科技,就是在0.1~100纳米的尺度上,研究和利用原子和分子的结构、特征及相互作用的高新科学技术,它是现代科学和先进工程技术结合的产物。1990年7月,第一届国际纳米科技会议的召开,标志着纳米科技的正式诞生。时至今日,纳米科技涉及到几乎现有的所有科学技术领域。它的诞生,使人类改造自然的能力直接延伸到分子和原子。它的最终目标,是人类按照自己的意志操纵单个原子,在纳米尺度上制造具有特定功能的产品,实现生产方式的飞 跃。目前,纳米科技已经取得一系列成果,正处于重大突破的前夜。研究者认为,这一兴起于本世纪90年代的纳米科技,必将雄踞于21世纪,对人类社会产生重大而深远的影响。
2、纳米医学的提出
纳米医学的形成除了纳米技术之外,其医学本身也应具有可应用纳米技术的客观基础和必要条件。客观基础是指,像其他物质一样,医学研究的主体———人体本身是由分子和原子构成的。实现纳米医学的必要条件是,要在分子水平上对人体有更为全面而详尽的了解。随着现代生物学和现代医学的不断发展,人类在生物学和医学等领域的研究内容已开始从细胞、染色体等微米尺度的结构深入到更小的层次,进入到单个分子甚至分子内部的结构。这些极其微细的分子结构的特征:尺度空间在0.1-100 nm,属于纳米技术的尺度范围。研究这些纳米尺度的分子结构和生命现象的学科,就是纳米生物学和纳米医学。纳米医学是一门涉及物理学、化学、量子学、材料学、电子学、计算机学、生物学以及医学等众多领域的综合 性交叉学科。Freitas曾给纳米医学下过一个较详细的定义:他认为,纳米医学是利用人体分子工具和分子知识,预防、诊断、治疗疾病和创伤,劫除疼痛,保护和改善人体健康的科学和技术。目前的纳米医学研究水平还处于初级阶段,当然,由于各国科学工者的不懈努力,纳米医学研究领域已初露曙光,有部分研究成果已开始接近临床应用。
从定义来看,纳米医学可以分为两大类,一是在分子水平上的医学研究,基因药物和基因疗法等就是典型体现;二是把其他领域的纳米研究成果引入医学领域,如某种纳米装置在医疗和诊断上的应用。纳米医学的奥秘在于,可以从纳米量级的尺度来进行原来不可能达到的医疗操作和疾病防治。当生命物质的结构单元小到纳米量级的时候,其性质会有意想不到的变化。这种变化既包括物质的原有性能变得更好,还可能有我们所意想不到的性能和效益,从而用来治病防病。
3、纳米技术的医学应用 3.1 诊断疾病
在诊断方面,将应用纳米医学技术手段,在诊室内进行全面的基因检查和特殊细菌涂层标记物的实时全身扫描;检测肿瘤细胞抗原、矿质沉积物、可疑的毒素、源于遗传或生活方式的激素失衡,以及其它以亚毫米空间分辨率制成所定目标三维图谱的特定分子。在纳米医学时代,这些强有力的手段将使医务人员能够检查患者的任何部位,且可详尽到分子水平,并能以合理的费用,在数分钟或数秒钟内获得所需的结果。许多以往诊断比较困难或无法诊断的疾病,随着纳米技术的介入,将很容易被确诊。为判断胎儿是否具有遗传缺陷,以往常采用价格昂贵并对人体有损害的羊水诊断技术。如今应用纳米技术,可简便安全地达到目的。孕8周左右血液中开始出现非常少量的胎儿细胞,用纳米粒很容易将这些胎儿细胞分离出来进行诊断。目前美国已将此项技术应用于临床诊断。肝癌患者由于早期没有明显症状,一旦发现常已到晚期,难以治愈,因而早期诊断极为重要。中国医科大学第二临床学院把纳米粒应用于医学研究,经过4年的努力,完成了超顺磁性氧化铁超微颗粒脂质体的研究。动物实验证明,运用这项研究成果,可以发现直径3mm以下的肝肿瘤。这对肝癌的早期诊断、早期治疗有着十分重要的意义。3.2 纳米药物和纳米药物载体
这是纳米医学中的一个非常活跃的领域,适时准确地释放药物是它的基本功能之一。科学家正在为糖尿病人研制超小型的,模仿健康人体内的葡萄糖检测系统。它能够被植入皮下,监测血糖水平,在必要的时候释放出胰岛素,使病人体内的血糖和胰岛素含量总是处于正常状态。美国密西根大学的博士正在设计一种纳米/智能炸弹,它可以识别出癌细胞的化学特征。这种智能炸弹很小,仅有20nm左右,能够进入并摧毁单个的癌细胞。
德国医生尝试借助磁性纳米微粒治疗癌症,并在动物实验中取得了较好疗效。将一些极其细小的氧化铁纳米微粒注入患者的肿瘤里,然后将患者置于可变的磁场中,氧化铁纳米微粒升温到45~ 47度,这一温度可慢慢热死癌细胞。由于肿瘤附近的机体组织中不存在磁性微粒,因此这些健康组织的温度不会升高,也不会受到伤害。科学家指出,将磁性纳米颗粒与药物结合,注入到人体内,在外磁场作用下,药物向病变部位集中,从而达到定向治疗的目的,将大大提高肿瘤的药物治疗效果。
纳米药物与传统的分子药物的根本区别在于它是颗粒药物。广义的纳米药物可分为两类:一类是纳米药物载体,即指溶解或分散有分子药物的各种纳米颗粒,如纳米球、纳米囊、纳米脂质体等。二是纳米药物,即指直接将原料药物加工成的纳米颗粒,或利用崭新的纳米结构或纳米特性,发现基于新型纳米颗粒的高效低毒的治疗或诊断药物。前者是对传统药物的改良,而后者强调的是把纳米材料本身作为药物。
3.2.1 纳米药物
直接以纳米颗粒作为药物的应用之一是抗菌药物。纳米抗菌药物具有广谱、亲水、环保、遇水后杀菌力更强、不会诱导细菌耐药性等多种性能。以这种抗菌颗粒为原料,成功地开发出了创伤贴、溃疡贴等纳米医药类产品。例如,纳米二氧化钛树脂基托材料具有一定的抗变形链球菌和抗白色念珠菌的效果,当树脂基托中抗菌剂的浓度达到3%时,即可达到满意的抗菌效果。
无机纳米颗粒作为新型的抗癌药物为肿瘤治疗提供了新的思路。研究人员用Gd@C82(OH)22处理得肝癌的小鼠,在10.7mol/kg的注射剂量下能有效地抑制肿瘤生长,同时对机体不产生任何毒性。其抑瘤效应不是通过纳米颗粒对肿瘤的直接杀伤起作用,而是可能通过激活机体免疫来实现对肿瘤的抑制作用。纳米羟基磷灰石在体外对恶性肿瘤细胞产生明显的抑制作用,而对正常细胞作用甚微,可望通过进一步的研究获得一种区别于传统的化疗药物的纳米无机抗癌药物。此外,有的物质纳米化后出现新的治疗作用,如二氧化钛纳米粒子可抑制癌细胞增殖;二氧化铈纳米颗粒可以清除眼中的电抗性分子并防治一些由于视网膜老化而带来的疾病。
3.2.2 纳米药物载体
实现细胞和亚细胞层次上药物的靶向传递和智能控制释放,是降低药物毒副作用、提高治疗效果的共性问题。纳米粒子介导的药物输送是纳米医学领域的一个关键技术,在药物输送方面具有许多优越性。目前,用作药物载体的材料有金属纳米颗粒、生物降解性高分子纳米颗粒及生物活性纳米颗粒等。理想的纳米药物载体应具备以下性质:毒性较低或没有毒性;具有适宜的制备及提纯方法;具有合适的粒径与形状;具有较高的载药量;具有较高的包封率;对药物具有良好的释放特性;具有良好的生物相容性,可生物降解或可被机体排出;具有较长的体内循环时间,并能在疗效相 关部位持久存。3.3 纳米生物技术
纳米生物技术是纳米技术和生物技术相结合的产物,它即可以用于生物医学,也可以服务于其它社会需求。所包含的内容非常丰富,并以极快的速度增加和发展,难以概述。
3.3.1生物芯片技术
生物芯片是在很小几何尺度的表面积上,装配一种或集成多种生物活性,仅用微量生理或生物采样,即可以同时检测和研究不同的生物细胞、生物分子和DNA的特性,以及它们之间的相互作用,获得生命微观活动的规律。生物芯片可以粗略地分为细胞芯片、蛋白质芯片(生物分子芯片)和基因芯片(即DNA芯片)等几类,都有集成、并行和快速检测的优点,已成为21世纪生物医学工程的前沿科技。
近2年,已经通过微制作(MEMS)技术,制成了微米量级的机械手,能够在细胞溶液中捕捉到单个细胞,进行细胞结构、功能和通讯等特性研究。美国哈佛大学的教授领导的研究人员,发展了微电子工业普遍使用的光刻技术在生物学领域的应用,并研制出效果更好的软光刻方法。以此,制出了可以捕捉和固定单个细胞的生物芯片,通过调节细胞间距等,研究细胞分泌和胞间通讯。此类细胞芯片还可以作细胞分类和纯化等。它的功能原理非常简单,仅利用芯片表面微单元的几何尺寸和表面特性,即可达到选择和固定细胞及细胞面密度控制。
美国圣地亚国家实验室的发现实现了纳米爱好者的预言。正像所预想的那样,纳米技术可以在血流中进行巡航探测,即时发现诸如病毒和细菌类型的外来入侵者,并予以歼灭,从而消除传染性疾病。
研究人员做了一个雏形装置,发挥芯片实验室的功能,它可以沿血流流动并跟踪像镰状细胞血症和感染了爱滋病的细胞。血液细胞被导入一个发射激光的腔体表面,从而改变激光的形成。癌细胞会产生一种明亮的闪光;而健康细胞只发射一种标准波长的光,以此鉴别癌变。3.3.2纳米探针
一种探测单个活细胞的纳米传感器,探头尺寸仅为纳米量级,当它插入活细胞时,可探知会导致肿瘤的早期DNA损伤。
3.4组织修复和再生医学中的纳米材料
将纳米技术与组织工程技术相结合,构建具有纳米拓扑结构的细胞生长支架正在形成一个崭新的研究方向。相对于微米尺度,纳米尺度的拓扑结构与机体内细胞生长的自然环境更为相似。纳米拓扑结构的构建有可能从分子和细胞水平上控制生物材料与细胞间的相互作用,引发特异性细胞反应,对于组织再生与修复具有潜在的应用前景和重要意义。将纳米纤维水凝胶作为神经组织的支架,在其中生长的鼠神经前体细胞的生长速度明显快于对照材料。向高分子材料中加入碳纳米管可以显著改善原有聚合物的传导性、强度、弹性、韧性和耐久性,同时还可以改进基体材料的生物相容性。研究发现,随着复合物中碳纳米管含量的增加,神经元细胞和成骨细胞在复合材料上的黏附与生长也越来越活跃,而星形细胞和成纤维细胞的活性则呈现同等程度的下降。研究人员设计的人造红细胞输送氧的能力是同等体积天然红细胞的236倍,可应用于贫血症的局部治疗、人工呼吸、肺功能丧失和体育运动需要的额外耗氧等。研究人员成功合成了模拟骨骼亚结构的纳米物质,该物质可取代目前骨科常用的合金材料,其物理特性符合理想的骨骼替代物的模数匹配,不易骨折,且与正常骨组织连接紧密,显示出明显的正畸应用优势。
纳米自组装短肽材料RADA16-I与细胞外基质具有很高相似性,RADA16-I纳米支架可以作为一种临时性的细胞培养人工支架,它能很好地支持功能型细胞在受损位置附近生长、迁移和分化,因而有利于细胞抵达伤口缝隙,使组织得以再生。有研究人员利用RADA16-I纳米支架修复了仓鼠脑部的急性创伤,并且恢复了仓鼠的视觉功能。RADA16-I形成的水凝胶可用作新型的简易止血剂,用于多种组织和多种不同类型伤口的止血。
4、我国发展纳米生物学和纳米医学的现状和发展策略
目前,我国在纳米生物和医学领域内的研究基础还比较薄弱,通过采取各种激励措施和各种研究计划的实施,特别是国家自然科学基金委的纳米技术重大研究计划对纳米生物和纳米医学项目的支持,我国在纳米生物和纳米医学方面的研究状况有了很大的改善,生物、医学界的许多院、所相继建立了有关纳米技术的研究室,如中国医学科学院基础医学研究所、军事医学科学院毒物药物研究所和生物物理研究所等都设立了纳米研究室,初步形成了一只较强的研究队伍。近年来,来自化学、物理、信息、药物、生物和医学等领域的科学家通过几次研讨会进一步明确了纳米生物和纳米医学领域的研究方向和内容,并建立了较密切的合作。我国在纳米生物和纳米医学的研究领域也涌现了一批极具特色的研究成果,如在生物传感器、生物芯片、新型药物载体和靶向药物、新型纳米药物剂型、新造影剂、重大疾病的机制、纳米材料的应用和生物安全性及重大疾病预防和早期诊断与治疗技术等方面。但是,这些研究的水准与国际先进水平还有相当的差距,离国家、社会的需求也有相当远的距离。
纳米医学工程的建立不仅是因为有其迫切的需要,而且也因为有了实现的可能。如今,纳米科技在国际上已崭露头角,世界各发达国家纷纷开展纳米科技的研究。在我国,科技界对纳米科技的重要性有了共识,纳米科技研究已取得引人注目的成果。学科发展和社会需要是推动社会发展的巨大动力,学科发展可以创造新的需求,社会需求可以促进学科向深度和广度发展。纳米生物医学工程正在出现,我们无力将它阻挡。虽然它的广泛应用尚有待时日,并潜在危险,但若没有它,我们现在面临的许多生物医学工程问题就不可能得到满意的解决。
人类正在被历史及自身推向一个崭新的陌生世界,倘若人类能直接利用原子、分子进行生产活动,这将是一个质的飞跃,将改变人类的生产方式,并空前地提高生产能力,有可能从根本上解决人类面临的诸多困难和危机。我们有必要把纳米科技和生物医学工程概念进行拓展,把纳米科技的理论与方法引入生物医学工程的相关研究领域,创立新的边缘学科——纳米生物医学工程。可以相信,纳米医学工程将会成为纳米科技的重要分支,并开创生物医学工程新纪元。科学家认为,纳米科技在生物医学方面,甚至有可能超过信息技术和基因工程,成为决胜未来的关键性技术。[参 考 文 献] [1]刘吉平,郝向阳.纳米科学与技术[M].北京:科学出版社,2002:2,227-229,234-238,239-242,230-234.[2]李道萍.21世纪崭新的学科——纳米医学[J]1世界新医学信息文摘,2003,1(3):208-210.[3]李会东.纳米技术在生物学与医学领域中的应用[J].湘潭师范学院学报(自然科学版),2005,27(2):49-51.[4]皮洪琼,吴俊,袁直等.注射用生物可降解胰岛素纳米微球的制备[J]1应用化学,2001,18(5):365-369.[5]常津.阿毒素免疫磁性毫微粒的体内磁靶向定位研究[J].中国生物医学工程学报,1996,15(4):216-221.[6]张共清,梁屹.纳米技术在生物医学的应用[J]1中国医学科学院学报,2002,24(2):197-201.〔7〕中国社会科学院语言研究所词典编辑室编.现代汉语词典.北京:商务印书馆2002年版:1711〔8〕奇云.21世纪的纳米医学.健康报,2001(4):12〔9〕纪小龙.纳米医学怎样诊治疾病.健康报,2001,7,19[9]奇 云.纳米医学——21世纪的科技新领域[N].中国医药报,1995年6月8日~1995年7月18日,第1160期-1178期,第7版.[10]奇 云.纳米材料——21世纪的新材料[J].科技导报,1992(10):28-31.[11]奇 云.纳米电子学研究进展[J].现代物理知识,1994,6(5):24-25.[12]奇 云.纳米生物学的诱人前景[N].光明日报,1993年5月7日,第15864号第3版.[13]奇 云.纳米化学研究进展[J].自然杂志,1993,16(9、10):2-5.[14]奇 云.纳米化学研究进展[J].现代化工,1993,13(8):38-39.[15] 华中一.纳米科学与技术[J].科学,2000,52(5):6-10..
第五篇:纳米材料论文
纳米科技及纳米材料
【摘 要】纳米技术是当今世界最有前途的决定性技术。纳米材料在结构、光电和化学性质等方面的诱人特征,引起物理学家、材料学家和化学家的浓厚爱好。80年代初期纳米材料这一概念形成以后,世界各国对这种材料给予极大关注。它所具有的独特的物理和化学特性,使人们意识到它的发展可能给物理、化学、材料、生物、医药等学科的研究带来新的机遇。文章简要地概述了纳米技术,纳米材料的分类、特性以及纳米材料在催化、涂料、医药等领域的应用,并展望了纳米材料广阔的应用前景。
【关键词】纳米技术;纳米材料;分类;特性;应用;前景
一、纳米科技及纳米材料的涵义
纳米科技是20世纪80年代末诞生并正在崛起的新科技,是一门在0.1~ 100 nm尺度空间内,研究电子、原子和分子运动规律和特性的高技术学科。其涵义是人类在纳米尺寸(10-9--10-7m)范围内认识和改造自然,最终目标是通过直接操纵和安排原子、分子而创造特定功能的新物质。纳米科技是现代物理学与先进工程技术相结合的基础上诞生的,是一门基础研究与应用研究紧密联系的新兴科学技术。其中纳米材料是纳米科技的重要组成部分。
纳米(nm)是长度单位,1纳米是10-9米(十亿分之一米),对宏观物质来说,纳米是一个很小的单位,广义地说,纳米材料是指在三维空间中至少有一维处在纳米尺度范围(1-100nm)或由他们作为基本单元构成的材料。一般认为纳米材料应该包括两个基本条件:一是材料的特征尺寸在1-100nm之间,二是材料此时具有区别常规尺寸材料的一些特殊物理化学特性。
二、纳米材料的分类
按其颗粒组成的尺寸和排列状态,可分为纳米晶体和纳米非晶体。前者指所包含的纳米微粒为晶体,后者由具有短程序的非晶态纳米微粒组成,如纳米非晶态薄膜.
按其结构来分,纳米材料的基本单元可以分为四类:零维的原子团簇和纳米微粒;一维调制的纳米单层或多层薄膜;二维调制的纳米纤维结构;三维调制的纳米相材料。
三、纳米材料的特性
纳米材料的特性既不同于原子,又不同于结晶体,可以说它是一种不同于本体材料的新材料,其物理化学性质与本体材料有明显差异。主要表现在:纳米材料性能表现出强烈的尺寸依赖性。当粒子尺寸减小到纳米级的某一尺寸时,则材料的物性会发生突变,与同组分的常规材料的性能完全不同,且同类材料的不同性能有不同的临界尺寸,对同一性能,不同材料相应的临界尺寸也有差异,所以当物质的粒子尺寸达到纳米数量级时,将会表现出优于同组分的晶态或非晶态的性质。如熔点下降、强烈的化学活性和催化活性及特殊的光学、电学、磁学和力学及烧结性能。这主要是由纳米材料的下列效应引起:小尺寸效应(体积效应);表面与界面效应;量子尺寸效应(久保效应);宏观量子隧道效应。
1、小尺寸效应指当超微粒的尺寸与光波波长,传导电子的德布罗意波长及超导态的相干长度、透射深度等物理特征尺寸相当或更小时,它的周期性边界被破坏,从而使其声、光、电、磁,热力学等性能呈现新的尺寸效应。陶瓷材料在通常情况下呈现脆性,而由纳米超微粒制成的纳米陶瓷却具有良好的韧性和延展性。这是由于纳米超微粒制成的固体材料具有大的界面,界面原子排列相当混乱,原子在外力变形条件下容易迁移。因此使原先脆性的材料表现出良好的韧性和延展性,使陶瓷材料具有新奇的力学性能。
2、表面与界面效应指纳米晶体粒表面原子数与总原子数之比随粒径变小而急剧增大后所引起的性质上的变化。例如粒子直径为10纳米时,微粒包含4000个原子,表面原子占40%;粒子直径为1纳米时,微粒包含有30个原子,表面原子占99%。主要原因就在于直径减少,表面原子数量增多,因此纳米粉微粒通常具有相当高的表面能。
3、当粒子的尺寸降到一定值时,金属费米能级附近的电子能级出现由准连续变为离散的现象。当能级间距大于热能、磁能、静电能、静磁能、光子能或超导态的凝聚能时,纳米微粒会呈现一系列与宏观物体截然不同的特性,称之为量子尺寸效应。例如,有种金属纳米粒子吸收光线能力非常强,在1.1365千克水里只要放入千分之一这种粒子,水就会变得完全不透明。纳米材料的量子尺寸效应使纳米材料具有:高度光学非线性;特异性催化和光催化性;强氧化性与强还原性。用这一特性可制得光催化剂、强氧化剂与强还原剂。可使用于制备无机抗菌材料。
4、微观粒子具有贯穿势垒的能力称为隧道效应。纳米粒子的磁化强度等也有隧道效应,它们可以穿过宏观系统的势垒而产生变化,这种被称为纳米粒子的宏观量子隧道效应。
四、纳米材料的应用
1、在催化方面的应用
催化剂在许多化学化工领域中起着举足轻重的作用,它可以控制反应时间、提高反应效率和反应速度。大多数传统的催化剂不仅催化效率低,而且其制备是凭经验进行,不仅造成生产原料的巨大浪费,使经济效益难以提高,而且对环境也造成污染。纳米粒子表面活性中心多,为它作催化剂提供了必要条件。纳米粒于作催化剂,可大大提高反应效率,控制反应速度,甚至使原来不能进行的反应也能进行。纳米微粒作催化剂比一般催化剂的反应速度提高10~15倍。
纳米微粒作为催化剂应用较多的是半导体光催化剂,主要是在有机物制备方面。光催化反应涉及到许多反应类型,如醇与烃的氧化,无机离子氧化还原,有机物催化脱氢和加氢、氨基酸合成,固氮反应,水净化处理,水煤气变换等,其中有些是多相催化难以实现的。半导体多相光催化剂能有效地降解水中的有机污染物。例如纳米TiO2,既有较高的光催化活性,又能耐酸碱,对光稳定,无毒,便宜易得,是制备负载型光催化剂的最佳选择。Ni或Cu一Zn化合物的纳米颗粒,对某些有机化合物的氢化反应是极好的催化剂,可代替昂贵的铂或钮催化剂。纳米铂或钮催化剂可使乙烯的氧化反应温度从600℃降至室温。用纳米微粒作催化剂提高反应效率、优化反应路径、提高反应速度方面的研究,是未来催化科学不可忽视的重要研究课题,很可能给催化在工业上的应用带来革命性的变革。
2、在涂料方面的应用
纳米材料由于其表面和结构的非凡性,具有一般材料难以获得的优异性能,显示出强大的生命力。表面涂层技术也是当今世界关注的热点。纳米材料为表面涂层提供了良好的机遇,使得材料的功能化具有极大的可能。借助于传统的涂层技术,添加纳米材料,可获得纳米复合体系涂层,实现功能的飞跃,使得传统涂层功能改性。在涂料中加入纳米材料,可进一步提高其防护能力,实现防紫外线照射、耐大气侵害和抗降解、变色等,在卫生用品上应用可起到杀菌保洁作用。在标牌上使用纳米材料涂层,可利用其光学特性,达到储存太阳能、节约能源的目的。在建材产品如玻璃、涂料中加入适宜的纳米材料,可以达到减少光的透射和热传递效果,产生隔热、阻燃等效果。日本松下公司已研制出具有良好静电屏蔽的纳米涂料,所应用的纳米微粒有氧化铁、二氧化钛和氧化锌等。这些具有半导体特性的纳米氧化物粒子,在室温下具有比常规的氧化物高的导电特性,因而能起到静电屏蔽作用,而且氧化物纳米微粒的颜色不同,这样还可以通过复合控制静电屏蔽涂料的颜色,克服炭黑静电屏蔽涂料只有单一颜色的单调性。在涂料中加入纳米SiO2,可使涂料的抗老化性能、光洁度及强度成倍地增加。纳米涂层具有良好的应用前景,将为涂层技术带来一场新的技术革命,也将推动复合材料的研究开发与应用。
3、在医药方面的应用
21世纪控制药物释放、减少副作用、提高药效、发展药物定向治疗,已提到研究日程上来。纳米粒子将使药物在人体内的传输更为方便。用数层纳米粒子包裹的智能药物进入人体,可主动搜索并攻击癌细胞或修补损伤组织;使用纳米技术的新型诊断仪器,只需检测少量血液就能通过其中的蛋白质和DNA诊断出各种疾病,美国麻省理工学院已制备出以纳米磁性材料作为药物载体的靶定向药物,称之为“定向导弹”。
纳米生物学用来研究在纳米尺度上的生物过程,从而根据生物学原理发展分子应用工程。在金属铁的超细颗粒表面覆盖一层厚为5~20nm的聚合物后,可以固定大量蛋白质非凡是酶,从而控制生化反应。这在生化技术、酶工程中大有用处。使纳米技术和生物学相结合,研究分子生物器件,利用纳米传感器,可以获取细胞内的生物信息,从而了解机体状态,深化人们对生理及病理的解释。
五、纳米材料的前景
21世纪将是纳米技术的时代,纳米科学是一门将基础科学和应用科学集于一体的新兴科学,主要包括纳米电子学、纳米材料学和纳米生物学等。纳米材料的应用涉及到各个领域,在机械、电子、光学、磁学、化学和生物学领域有着广泛的应用前景。纳米科学技术的诞生,将对人类社会产生深远的影响,并有可能从根本上解决人类面临的许多问题,特别是能源、人类健康和环境保护等重大问题。
21世纪初的主要任务是依据纳米材料各种新颖的物理和化学特性,设计出各种新型的材料和器件。通过纳米材料科学技术对传统产品的改性,增加其高科技含量以及发展纳米结构的新型产品,目前已出现可喜的苗头,具备了形成21世纪经济新增长点的基础。纳米材料将成为材料科学领域一个大放异彩的明星展现在新材料、能源、信息等各个领域,发挥举足轻重的作用。随着其制备和改性技术的不断发展,纳米材料在精细化工和医药生产等诸多领域会得到日益广泛的应用。
参考文献: [1]殷景华,王雅珍等.功能材料概论.哈尔滨:哈尔滨工业大学出版社,2004.9 [2]林鸿溢.纳米材料与纳米技术.材料导报,1993 [3] 刘吉平,郝向东.纳米科学与技术[M] .北京:高等教育出版社,2002 [4 张立德,牟季美.纳米材料学[M].沈阳:辽宁科学技术出版社,1994