第一篇:微波(雷达)感应模块原理以及应用调试
雷达感应开关原理调试
一、原理简介:
1.主要功能与原理:如上图所示,上图是雷达感应开关模块的感应板的电路原理图,由集电极外PCB两层铜箔间的电容、三极管内阻、寄生电容等构成RC震荡电路,该震荡电路震荡产生高频信号,经过三极管放大,再经过围绕PCB三边的天线发射出去。发射的2.4-3.2GHz的微波信号如果遇到移动物体,则反射波相对发射波就会有相位变化,回型天线接收到反射信号,反射波与发射信号的相位移频就会以3-20MHz左右的低频输出(P4),该信号再由后级运放放大,驱动继电器,从而由继电器控制灯光。另外,中间也可以加上光敏二极管检测昼夜光线,作为夜间条件下控制输出的前提条件。
2.发射频率:RC振荡电路的频率f=1/2πRC,公式中的R是原理图中三极管的输入阻抗,C是PCB上三极管集电极基极引线正反面铜箔之间的电容以及三极管寄生电容组成的总电容。该电容量公式为C=εS/d,式中ε为介质(在这里就是指的PCB板材的介电常数),S为PCB极板面积,d为极板间距也就是PCB厚度。
3.接收:通过回型天线接收反射回来的雷达波,如果发射与接收波之间有相位移频,则输出低频信号P4。
4.发射避开公共频段又不能过高:因为3G和4G手机信号和WIFI信号的频率范围在1.8-2.4GHz,模块的工作频率尽可能避开这个频段,避免相互干扰。一般的发射频率2.5GHz左右最佳,频率过高,则高频三极管增益降低,感应距离近。发射频率同天线部分PCB线路板尺寸大小、厚度、布线、三极管输入阻抗与电容等有关。
5.发射频率与发射信号强度:如果有频谱仪测试发射天线端的发射信号,可以测试到发射频点及其发射信号幅度。发射信号强度越大,感应距离越远。但是,高频三极管来说,随着频率的增加,其增益逐渐降低,发射的信号强度也就降低。另外,同一个频率,三极管的特征频率fT越大,其高频增益就越高,感应距离也就越远,所以,最好设计调整PCB,将频点做到2.4GHz。6.接收灵敏度:同样频率,高频三极管对高频信号的fT越大,高频增益越高,接收的移频信号输出幅度越大,感应灵敏度就越高,感应距离就越远。适当调整后级运放的放大倍数也可以调整感应距离,但是,如果单纯的提高后级运放的倍数,虽然感应较远距离,但会将小幅度的其它干扰信号也放大输出,造成误报。
影响感应距离的几个因素:A.发射天线板的尺寸,该尺寸越大,天线越长,则感应距离越远。B.高频三极管的特征频率越高,其高频增益越大,感应距离也就越远。C.后级运放的放大倍数适当的高,其对输出的移频信号放大的幅度大。D.发射频率最好在标准规范的2.4GHz。高频三极管的增益会随着频率的增大而降低降低,频点太高,发射信号功率降低、接收灵敏度也降低。
如果调试得当,使用9GHz的高频三极管的,天线板尺寸在20*30mm左右时,感应距离会在3-5米。天线尺寸在30*40mm左右,感应距离会到8-10米。天线尺寸到40*50mm最远感应距离会达到20米左右。如果你想在此基础上降低感应距离,可以调整降低后面放大板上的运算放大器的增益,或者改变输入的驱动电平,来满足不同感应距离的要求。
7.发射天线:围绕天线板3边,用于将本振频率信号发射出去,天线板尺寸越大,该天线越长,则发射信号越强,发射距离越远,感应距离也就越远,但是,这个发射天线又不能形成四边闭环。天线对电源之间的4个电容主要是对与发射频率相同、从电源串扰进来的其它模块的信号与WIFI信号屏蔽滤波,如果出现串扰,请调整电容容量或者数量,使得滤波频点同本板发射频率相同。8.感应信号放大灯光控制:原理图中,通过P4输出感应信号SING OUT到后面的放大电路,将该信号通过运放放大,再去控制光源。为了避免被干扰误报,建议在后级放大电路中采用带有运放功能的CPU,植入信号判断程序,从而将其它非感应信号滤除并加入不同状态的灯光控制,提高抗干扰能力。
9.回型天线:发射极外的回型天线接收反射信号,为了使反射信号有效穿过回型天线,回型天线后面不敷设覆铜板。另外,回型天线只需要一个正弦波形就可以。还可以通过适当加宽回型天线线宽、加大波形幅度,并且在线上密布过孔来提高感应信号强度和灵敏度(注意:PCB三边和回型天线上的过孔一定要满镀锡或者镀化学金,以加强发射接收信号的强度)。
10.基极外去耦合铜箔天线:基极B外那个长方形天线(基极与R3之间的矩形铜箔天线)用作与其背面的PCB覆铜板形成的电容退耦合。该去耦尺寸太小,则退耦没做好,感应距离很差并不稳定,如果尺寸过大,又会持续输出感应信号,一般24*33mm的天线板的去耦合天线尺寸在3*8mm,如果天线尺寸大于或者小于24*33mm,则该去耦天线同比例增加或者缩小面积。这个去耦天线的形状还与感应方向性(水平还是垂直)有关系,设计成长条形状,则是垂直于PCB板的感应距离近,水平于PCB方向的感应距离远。如果想水平与垂直的感应距离相等,则可以设计成方形的,但是面积不要变。
11.发射极引出的线条要适当宽长一些,这个线条以及基极外去耦合铜箔与背面铜箔之间的电容,是发射振荡电路的电容,电容大小调整,也会调整发射频点。
12.高频三极管:最好采用特征频率f T为9GHz以上的高频三极管,f T越高,其在高频微波频段的高频增益就越高,具体到使用中,f T越高,其发射信号幅度就越强、接收感应微弱微波信号越灵敏,感应的距离就越远BFS520-SOT323-N2t与PRF947-SOT323-7N是9GHz的高频三极管,BFR370F、BFR360F、BFG340F是f T为12GHz的高频三极管。另外,尽可能的采用SOT323封装的芯片。因为SOT323同SOT23相比较,SOT323封装的芯片固定在引线框架的背面(见右图),可以屏蔽正面过来的干扰波。并且,在PCB布线时,在高频三极管的背面要敷设覆铜板,挡住背面进来的反射波,提高三极管的抗干扰能力。
13.下雨受潮报警:该产品发射的是厘米波,波长较短,任何微波雷达在下雨时都容易被雨折射反射,所以,下雨时,检测信号有可能有输出。另外,PCB受潮也会造成板材的介电常数变化,板间电容变化,发射频点变化,因而PCB正反面要涂油防潮。
14.PCB板材:最好采用高频板材的介电常数适当稳定的普通板材(高频板材成本价格太高),开始做实验投板时,最好多选用厚度1.2mm、1.0mm的板材,从而可能得到不同分布电容的PCB,也会得到不同的发射频率和感应距离,最终从中选用最佳的。另外,PCB板材要用品质因数高,并且一定要稳定(否则频率漂移并逐渐感应距离近)。
二、调试建议: 1.发射频率过低(低于2.4GHz以下的话,抗干扰能力就差,反射能力差,感应距离会时远时近,产生误报。请调节发射信号震荡电路集电极与基极外铜箔面积和接收信号电路或者PCB的板材厚度,改变发射频率。(用3GHz以上的频谱仪可以直观的测试发射接收信号的频谱与幅度)。2.感应距离近:发射天线太短、线宽太窄、过孔没有金属化,接收天线尺寸小,其相应的发射信号强度和接收灵敏度就低,感应距离就近。
3.振荡电路中的阻容器件的均匀性、一致性、温度稳定性要好一些,建议使用优质温飘小的精密电阻、电容。
4.一点也不感应:A.可能是你的振荡电路没有起振,调整发射频率震荡电路,满足起振条件。B.可能是高频三极管的f T太低,对高频信号的放大增益太小,至少要使用f T大于9GHz的高频三极管。C.天线板尺寸太小,天线太短,发射信号太弱。D.三极管的偏置电路有问题,进入截止区或者饱和区。
5.相互串扰:直流的电源对微波波段的滤波不好,造成其它信号源以及间隔近的模块之间的微波信号通过电源串进来,产生周围杂波的干扰,会误感应而持续亮灯、感应距离近。不要用整流二极管简单整流供电,而要采用电源稳压器芯片稳压后供电,并且要调整四个滤波电容对外来同本板发射频点相同的高频信号滤波。
6.后级运放放大:大家大多使用的之前红外声光控开关上的运放BISS0001。最好使用带有运放的单片机,并在单片机里面植入对感应信号判断的程序,这样,就会判断去除串扰杂波信号和非感应信号,还能通过感应信号幅度变化来判断人体与汽车是由远及近再由近到远,还是由远及近到灯下不走,这样可以更人性化的延时控制灯光。7.3.3V供电:使用3.3V供电,就要将高频三极管的偏置做调整,提高基极与集电极的偏置压降,以尽可能提高高频三极管的工作点,避免因为电压降低而造成的发射功率降低。
大家使用的原理图都一样,做出来的产品的感应距离却不同,原因就是:PCB的布线产生的分布参数、元器件板材的采用、电源滤波、PCB尺寸、厚度等因素对产品的影响非常大。
五、设计经验总结
1、天线长度
理论和实践证明,当天线的长度为无线电波长的1/4时,无线的发射和接收转换效率最高。因此,天线的长度将根据所发射和接收的频率即波长来决定。只要知道对应发射和接收的中心频率就可以用下面的公式算出对应的无线电信号的波长,再将算出的波长除以4就是对应的最佳天线长度。
频率余波长的换算公式为:波长=300000000/频率
2、PCB注意事项 天线版背面不能铺铜 天线中增加过孔增加阻抗
注意器件布局,应当原理高频三极管和天线。
3、距离调节电阻选择
距离调节电阻即为放大倍数的调节,该电阻的大小应该根据你天线实际输出信号大小而定,需要经过大量测试来判定你天线板信号的大小好坏,一般正常的信号在0.5v左右(天线长短粗细决定其质量)。
第二篇:微波雷达系统介绍
微波雷达系统介绍
摘要:首先介绍了雷达的基本工作原理,对雷达的基本参数进行了简单的说明,而后对雷达中用到的微波器件做了说明,主要介绍了两种雷达结构,最后对雷达系统进行了简单总结。
关键词:雷达;微波 0前言
20世纪40年代,电磁波被用于发现目标和测量目标的距离,称之为“无线电探测和测距”(radio detecting and ranging),取这几个英文字母便构成radar(雷达)一词。按照IEEE的标准定义[1],雷达是通过发射电磁波信号,接收来自其威力覆盖范围内目标的回波,并从回波信号中提取位置和其他信息,以用于探测、定位,以及有时进行目标识别的电磁波系统。由于微波具有频带宽、穿透电离层能较强、似光性等优点,雷达就是利用了微波这些特性的典型代表。
1雷达的基本工作原理[2][4]
雷达的基本工作原理是,发射机通过天线向空间定向发送探测信号,信号被远距离的目标部分反射后,由天线接收并传送到接收机接收检测和信号处理,观测人员可以在接收机输出端显示屏上观测有无目标以及目标的性质和距离。如果发射和接收共用一副天线,叫做单站雷达;如果收、发系统各有自己的天线,则叫做双站雷达,分别如图1和图2所示。
GRPt双工器目标
图1单站雷达图
GtPt接收机/处理机GrR目标
图2双站雷达图
以单站雷达为例。发射功率Pt,发射天线增益G,传输距离R,则目标处的功率密度为
S1PGt(W/m2)24R目标将在各个方向散射入射功率,在某个给定方向上的散射功率与入射功率密度之比定义为目标的雷达截面,表征目标的电磁散射特性,即
Ps(m2)S1因此雷达截面具有面积的量纲,是目标本身的特性,它还依赖于入射角、反射角和入射波的偏振态。若把散射场看作二次源,二次辐射的功率密度为
S2PG2t(W/m)22(4R)PRM2Gt由天线的有效面积定义式Aeff,PRM最大接收功率。可得,接收功率为 Si422PGttPr(4)3R4
这就是雷达方程,接收功率单位W。接收功率按1/R减小,这意味着为了检测远距离目标,需要高功率发射机和高灵敏度接收机。
由于天线接收噪声和接收机噪声,存在接收机能够识别的最小监测功率。若这一功率是Pmin,则得到最大可探测距离为
Rmax22PGtt(m)3(4)Pmin1/44信号处理技术能够有效降低最小可检测信号,从而增加了可测量距离。
2雷达的基本参数[3]
2.1分辨率
分辨率可严格定义为分辨具有不同对比度的相隔一定距离的相邻目标的能力。一般习惯使用一个不太精确的定义,既对微波系统来说,分辨率通常是指测量系统响应的半功率宽度。2.2角度分辨
毫米波雷达及辐射计通常都采用窄波束天线来提高角度分辨率。角度分辨一般采用半功率点的波束宽度来表示。其半功率点的波束宽度可表示为
hKh
DKh—取决于天线类型和加权函数的系数;—波长;D—天线口径。
2.3距离分辨
大多数雷达都采用距离分辨概念。距离的分辨率由测量信号从雷达发至目标,并返回雷达所需的这一有限时间间隔决定。
当忽略大气对微波传播速度的影响(一般只有十万分之几的数量级),电波从雷达传播到目标往返引起的时间延迟,就是电波传播从雷达到目标的两倍距离的时间,可由下
第三篇:雷达原理与应用
雷达与声纳的共性及差别是什么?
雷达是利用无线电技术进行侦察和测距的设备。它可以发现目标,并可决定其存在的距离及方向。雷达将无线电波送出,然后经远距离目标物的反射,而将此能量送回雷达的记发机。记发机与目标物间的距离,可由无线电波传雷达的目标物,再由目标物回到雷达所需的时间计算出。雷达的基本原理与无线电通讯系统的原理同时被人所发现。赫兹与马可尼两人都曾用超短波试验其反射情形,这也就是所谓雷达回波。赫兹用金属平面及曲面证明,电波的反射完全合乎光的反射定律。同时赫兹度量脉冲的波长及频率,并且计算其速度也发现与光相同,这也就是所谓的电磁辐射。雷达送出短暂的电波讯号的程序,称为脉冲程序。雷达的基本作用原理有些相似于声波的回声。唯一与声波测量距离的不同点,在于雷达系统具有一指示器,指示器中包含有一个与电视收像管相同的观察管。此管可将雷达所发出的脉冲及回波,同时显示于其标有距离的基线上。还有其他指示器,使雷达借天线所搜索的资料,制成一个图,从图上立即可以定出目标物的区域距离及方向。因为雷达的作用完全是借电波的反射原理而成,所以必须用频率在1000兆赫到10 000兆赫的类光微波方行。雷达所发射的电波可借抛物面形的反射器,使其成为极度聚焦的波束,这就像探照灯所射出的光束一样。此波束借旋转天线及抛物体形反射器的精密控制,有系统地对空间进行搜索。当波束从目标物反回来时,天线所指的方向,就表示目标物对天线的水平方位角。以角度为单位所表示的水平方位角,通常都显示于指示器上。为了决定目标物与雷达间的距离,雷达的发射脉冲距接收到回波的时间,必须精确测定。因为雷达电波在空中以每秒约30万公里的光速进行,因此在每微秒的时间内,电波行进约为300米。由于雷达脉冲必须从雷达行至目标物,再由目标物回到雷达,但目标物距雷达的距离,为雷达脉冲总行程的一半。约为每微秒l50米。此时间可利用电子束在阴极射线管的屏幕上,以直线扫描指示出。借电子束,以已知变动率(如以每微秒0.01米)作水平偏向,因此电子束打在萤光屏上所留的痕迹,就形成一个时间标度,或直接用尺,来表示。如雷达天线送出一个1微秒长的脉冲,同时指示器的阴极射线管电子束在屏幕上,以每100微秒0.0254米的变动率开始扫描。再假设雷达脉冲在30000米的距离从一飞机反射回天线。当1微秒长的脉冲离开天线的同时,在雷达指示器的左侧也显示出一个0.025厘米长的主脉冲(发射脉冲)。由天线发射的脉冲,到飞机进行了30000米的距离,需时100微秒,然后反回天线也需100微秒。结果微弱的脉冲回波也显示于指示器上,其与主脉冲之间有5厘米的距离,或指示为200微秒。由于脉冲本身有1微秒的长度,所以量度距离时,必须量度两脉冲的前缘间距离。由于回波信号太弱,所以一个单一回波信号显示于指示器,很难被发现。因此回波信号,必须于每秒内,在指示器上重复显示数次,显示的方法是借电子束随天线扫描的速率(通常天线以每分钟15到20转转动)在指示器上扫描而得。雷达无论在平时及战时,都已被广泛的应用。在二次世界大战时使用雷达的目的,只是为了预知敌机的接近。用于预警网的预警雷达,预警雷达天线都是极大的转动抛物面形反射天线,或静止双极矩阵天线。战时雷达的应用很快就被扩展到地面拦截控制,以及高射炮和探照灯的方向控制等。这些所谓的射击控制雷达不仅能察知敌机的所在,并能自动决定高射炮的发射方向及使其发射。由于雷达可度量其与目标物间的距离,当然也可以从飞机上测量距地面的垂直高度。常用的各种脉冲式雷达就可度量一架飞机的高度,供飞行员飞行的参考。然而对很低的高度(低于1000米),因距离太近,脉冲式雷达的回波有与其发射出的主脉冲合并的趋势。因此大多数雷达测高仪都不用脉冲输出,而用等幅调频电波。雷达测高仪的发射天线,送出一垂直无线电波束,此电波的频率连续不断的变化。当信号离开发射天线的瞬间,其信号的频率为某一频率。然后当信号由地反射回到测高仪的接收天线后,因接收机内有一相位鉴别器(或简称为鉴相器),鉴相器可将接收到的回波,与正在发射出的 1 信号频率(或相角)作一比较。因为当回波回到接收天线,已经过了一段时间,当然此时发射天线所发信号的频率,也已改变。利用已知每秒周数的频率偏差,就可决定出电波由发射天线到地,在回到接收天线的时间,因此可计算出飞机距地的高度。关于电波往来所需的时间与相应的高度,事先已经算出,并直接标示在指示器上,所以可以直接从指示器上读出飞机的高度数值。除此之外,雷达还可以用在飞机和船舶的导航,作为某一城市、机场,高山或某一特定点的辨别符号用的雷达指标,都已事先标示于航行图上。
声纳的组成和工作原理
声纳是利用水声传播特性对水中目标进行传感探测的技术设备,用于搜索、测定、识别和跟踪潜艇和其他水中目标,进行水声对抗,水下战术通信、导航和武器制导、保障舰艇、反潜飞机的战术机动和水中武器的使用等。声纳的工作原理是回声探测法。这个方法是在第一次世界大战期间研究出来的。用送入水中的声脉冲探测目标,声脉冲碰到目标就反射回来,返回声源(有所减弱)后被记录下来。如果知道脉冲的往返时间,并且知道超声在水中的传播的速度,就可以很精确地测定出目标的距离。这当然是很有价值的,尤其是在军事上。根据海洋声学的历史记载,意大利物理学家达〃芬奇曾于1490 年写过这样一段话:“如果使船停航,把一根长管的一端插入水中,而另一端贴紧耳朵,则能听到远处的航船。”这实际上是水下被动式声纳设备的雏形。
声纳按其工作方式可分为被动式声纳和主动式声纳,现在的综合声纳兼有以上两种形式。被动式声纳又称为噪声声纳,主要由换能器基阵(由若干个换能器按照一定规律排列组织组合而成)、接火机、显示控制台和电源等组成。当水中、水面目标(潜艇、鱼雷、水面舰艇等)在航行中,其推进器和其他机械运转产生的噪声,通过海水介质传播到声纳换能器基阵时,基阵将声波转换成电信号传送给接收机,经放大处理传送到显示控制台进行显示和提供听测定向。被动式声纳主要搜索来自目标的声波,其特点是隐蔽性、保密性好,识别目标能力强,侦察距离远,但不能侦察静止无声的目标,也不能测出目标距离。
主动式声纳又称回声声纳,主要由换能器基阵、发射机、接收机、收发转换装臵、终端显示设备、系统控制设备和电源组成。在系统控制设备的控制下,发射机产生以某种形式调制的电信号,经过发射换能器变成声信号发送出去当声波信号在传播途中遇到目标时,一部分声能被反射回接收换能器再转换成电信号,送入接收机进行放大处理,根据声信号反射回来的时间和频率的高低来判断目标的方位、距离和速度,在终端显示设备上显示出来。主动声纳可以探测静止无声的目标,并能测出其方位和距离。但主动发射声信号容易被敌方侦听而暴露自己,且探测距离短。
声纳由发射机、换能器、接收机、显示器、定时器、控制器等主要部件构成。发射机制造电信号,经过换能器(一般用压电晶体),把电信号变成声音信号向水中发射。声信号在水中传递时,如果遇到潜艇、水雷、鱼群等目标,就会被反射回来,反射回的声波被换能器接收,又变成电信号,经放大处理,在荧光屏上显示或在耳机中变成声音。根据信号往返时间可以确定目标的距离,根据声调的高低等情况可以判断目标的性质。例如,目标是潜艇,潜艇是钢质外壳,回声不仅清晰,而且还有拖长的回鸣;鱼群的回声则低沉而混乱。目标如果是运动的,那么由于“多普勒效应”,回声的音调应有所变化:音调不断变高,说明目标正向他们靠拢;音调不断变低,说明目标离我们远去了……
声纳可分为两大类:主动声纳和被动声纳。前者像雷达一样,不停地向外发射声信号,根据回波判断目标性质。后者不主动发射信号,只接收目标自己辐射的声音信号。被动声纳因为不发射信号,所以不易被敌人发现,主要用于隐蔽侦察。现代的综合声纳兼有以上两种 2 工作方式。
早期潜艇依靠潜望镜进行观察。但潜望镜只能观察水面上的目标,对水下目标则无能为力,所以,早期潜艇的事故率很高,经常在水下撞上暗礁、水雷和别的潜艇。在第二次大战期间,沉没的德国潜艇有100多艘。
现代潜艇装有多种声纳。例如美国的一种潜艇,装备不同用途的声纳有15种之多。艇上的声纳侦察仪可截获和偷听敌人的声纳信号;敌我识别声纳,专门用对口令的办法判断敌我;通信声纳则用来和自己的舰艇通信;有的声纳负责导航、测距、警戒、探雷、测地貌等等。
有趣的是,潜艇的克星也是声纳。在海中,只有靠声纳才能发现潜艇,因而存在着潜艇声纳与反潜声纳的对抗。
许多国家在军港附近的海区、重要的海峡、主要的航道等处都安装了庞大的声纳换能器基阵,靠岸上的电子计算机控制海底的数以千计的换能器。一旦潜艇来犯,便可及时发现。这种防潜预警系统早在1952年就已建成,现已发展到第五代。其警戒范围可达几百公里。
在大西洋的亚速尔群岛以北,有一个叫“阿发”的水下监视系统。它的换能器安装在几个水下塔台上,排布成三角形,每边长约35公里。这种系统能监听进出直布罗陀海峡的所有潜艇,并能用三角定位法确定潜艇位臵。
除了这种固定的警戒声纳外,探测潜艇还可以用机载声纳进行。一架直升机垂下一根100多米长的电缆,电缆下吊着一部声纳。通过机身的下降或上升,声纳在海水中的深度也随之变化。飞机在海面上飞行时,便可拖着声纳进行大面积探测。据国外报道,这种声纳每小时可以搜索海面1000平方公里。
新型航空声纳是“无线”式的,不需要用电缆和飞机连接。它只有10公斤,反潜飞机将它们投到预定海域内,它们便可漂浮于海上。反潜飞机可以同时投放许多这种漂浮声纳。声纳着水后,其天线伸出水面,水听器沉入水中。水听器把在海底收到的声信号变成电信号,通过天线发射出去。反潜飞机根据收到的信号可以判断潜艇的位臵。
现代水雷也多采用声纳作引信。有一种先进的自动水雷,依靠声纳作自导装臵。当潜艇从附近经过时可以“自动起飞”,搜索并最后击中目标。
雷达 radar
利用微波波段电磁波探测目标的电子设备。雷达是英文radar的音译,意为无线电检测和测距。雷达概念形成于20世纪初,在第二次世界大战前后获得飞速发展。雷达的工作原理,是设备的发射机通过天线把电磁波能量射向空间某一方向,处在此方向上的物体反射碰到的电磁波;雷达天线接收此反射波,送至接收设备进行处理,提取有关该物体的某些信息(目标物体至雷达的距离,距离变化率或径向速度、方位、高度等)。雷达分为连续波雷达 3 和脉冲雷达两大类。脉冲雷达因容易实现精确测距,且接收回波是在发射脉冲休止期内,所以接收天线和发射天线可用同一副天线,因而在雷达发展中居主要地位。测量距离实际是测量发射脉冲与回波脉冲之间的时间差,因电磁波以光速传播,据此就能换算成目标的精确距离。目标方位是利用天线的尖锐方位波束测量。仰角靠窄的仰角波束测量。根据仰角和距离就能计算出目标高度。当雷达和目标之间有相对运动时,雷达接收到的目标回波频率与雷达发射频率不同,两者的差值称为多普勒频率。从多普勒频率中可提取的主要信息之一是雷达与目标之间的距离变化率。当目标与干扰杂波同时存在于雷达的同一空间分辨单元内时,雷达利用它们之间多普勒频率的不同能从干扰杂波中检测和跟踪目标。雷达的优点是白天黑夜均能探测远距离的目标,且不受雾、云和雨的阻挡,具有全天候、全天时的特点,并有一定的穿透能力。因此,它不仅成为军事上必不可少的电子装备,而且广泛应用于社会经济发展(如气象预报、资源探测、环境监测等)和科学研究(天体研究、大气物理、电离层结构研究等)。星载和机载合成孔径雷达已经成为当今遥感中十分重要的传感器。其空间分辨力可达几米到几十米,且与距离无关。雷达在洪水监测、海冰监测、土壤湿度调查、森林资源清查、地质调查等方面显示了很好的应用潜力。
雷达和声纳有什么区别?
雷达所起的作用和眼睛相似,当然,它不再是大自然的杰作,同时,它的信息载体是无线电波。事实上,不论是可见光或是无线电波,在本质上是同一种东西,都是电磁波,传播的速度都是光速C,差别在于它们各自占据的波段不同。其原理是雷达设备的发射机通过天线把电磁波能量射向空间某一方向,处在此方向上的物体反射碰到的电磁波;雷达天线接收此反射波,送至接收设备进行处理,提取有关该物体的某些信息(目标物体至雷达的距离,距离变化率或径向速度、方位、高度等)。
测量距离实际是测量发射脉冲与回波脉冲之间的时间差,因电磁波以光速传播,据此就能换算成目标的精确距离。
测量目标方位是利用天线的尖锐方位波束测量。测量仰角靠窄的仰角波束测量。根据仰角和距离就能计算出目标高度。
测量速度是雷达根据自身和目标之间有相对运动产生的频率多普勒效应原理。雷达接收到的目标回波频率与雷达发射频率不同,两者的差值称为多普勒频率。从多普勒频率中可提取的主要信息之一是雷达与目标之间的距离变化率。当目标与干扰杂波同时存在于雷达的同一空间分辨单元内时,雷达利用它们之间多普勒频率的不同能从干扰杂波中检测和跟踪目标。
声波是观察和测量的重要手段。有趣的是,英文“sound”一词作为名词是“声”的意思,作为动词就有“探测”的意思,可见声与探测关系之紧密。
在水中进行观察和测量,具有得天独厚条件的只有声波。这是由于其他探测手段的作用距离都很短,光在水中的穿透能力很有限,即使在最清澈的海水中,人们也只能看到十几米到几十米内的物体;电磁波在水中也衰减太快,而且波长越短,损失越大,即使用大功率的低频电磁波,也只能传播几十米。然而,声波在水中传播的衰减就小得多,在深海声道中爆炸一个几公斤的炸弹,在两万公里外还可以收到信号,低频的声波还可以穿透海底几千米的地层,并且得到地层中的信息。在水中进行测量和观察,至今还没有发现比声波更有效的手段。
声纳与雷达如何进行敌我识别? 声纳的最基本原理 水声设备
水声设备是根据声波可以在水中以一定的速度(海水1500米/秒;淡水1400米/秒)传播较远距离,而且传播时遇到目标后会反射回来的原理进行工作的。最常见的水声导航、通讯设备有:回声侧深仪、各种类型的声纳等。
声纳是现代大型水面舰艇及潜艇上不可缺少的电子设备之一。声纳的主要功能是:搜索和跟踪水下目标(潜艇、水雷),对目标进行敌我识别,测定水下目标的运动要素,以供反潜武器射击指挥用。其次是水下通讯,探测水雷,探测水下情况保障本舰安全航行。
潜艇最大的特点是它的隐蔽性,作战时需要长时间在水下潜航,这就决定它不能浮出水面使用雷达观察,而只能依靠声纳进行探测,所以声纳在潜艇上的重要性更为突出,被称为潜艇的“耳目”。
声纳的工作原理与雷达相同,可以说是工作在音频或超音频频率上的雷达。声纳站的各个组成部分与雷达站的组成极其相似。
由于声纳工作在超音频频率范围内,它辐射信号的方法与雷达不同,雷达采用金属制成的抛物面天线,而声纳采用水声换能器。
水生换能器是利用晶体(石英或酒石酸钾钠)压电陶瓷(钛酸钡和锆钛酸铅等)的压电效应或铁镍合金的磁致伸缩效应来进行工作的。所谓压电效应,就是把晶体按一定方向切成薄片,并在晶体薄片上施加压力,在它的两端面上会分别产生正电荷和负电荷。反之在晶体博片上施加拉伸力时,它的两个端面上就会产生与加压力时相反的电荷。与压电效应相反时电致伸缩效应,即在晶体的两个端面上施加交变电压,晶体就会产生相应的机械变形。我们利用电致伸缩效应和压电效应来产生和接收超声波。
声纳发射超声波时就把超声波振荡电压加在晶体薄片的两个端面上。于是晶体的厚度就会随着超声波振荡电压而变化,产生超声波震动。晶体震动推动周围的水就产生的超声波的辐射。
超声波传播时遇到目标便产生反射。回波作用在水声换能器的晶体上,由于压电效应水声换能器的两个端面上便可能得到电信号。与雷达天线一样,水声换能器不但要发射和接收超声波信号,而且要有尖锐的方向性,只有这样才能测定目标的方位。声纳设备是利用很多压电晶体组成换能器阵来获得尖锐的方向性的。因此声呐的水声换能器体积较大,一般都安装在舰船艏部的水下部分。
声纳的工作过程可叙述入下:
在发射控制器的控制下,发射机产生大功率超声波脉冲振荡,经收发转换装臵由水声换能器向某一个方向发射超声波。在这个方向上,超声波遇到目标便反射回来,由水声换能器接收,变成电信号。再经收发转换装臵送到接收机放大,最后送到显示器显示目标的方向和距离。
从工作过程看,发射超声波时发射机工作,接收器不必工作;发射结束后,接收机应立即工作,以便接收由最近目标和最远目标反射回来的超声波。显然发射机和接收机时交替工作的。因此利用收发转换装臵可以使接收机和发射机合用一个造价昂贵的水声换能器。
以上述方式,即声呐发射信号,然后接收由目标反射回来的信号工作的称为主动式声呐。另外,还有一种被动工作方式,即只接收目标本身发出的噪声(如螺旋桨所发出的声音等)来判别目标的方向,又称为噪音侧向声纳。这种声纳不因发射声波而被地方捕获,所以被动工作方式对提高潜艇的隐蔽性有着特殊的意义。
声纳的最基本原理
水声设备
水声设备是根据声波可以在水中以一定的速度(海水1500米/秒;淡水1400米/秒)传播较远距离,而且传播时遇到目标后会反射回来的原理进行工作的。最常见的水声导航、通讯设备有:回声侧深仪、各种类型的声纳等。
声纳是现代大型水面舰艇及潜艇上不可缺少的电子设备之一。声纳的主要功能是:搜索和跟踪水下目标(潜艇、水雷),对目标进行敌我识别,测定水下目标的运动要素,以供反潜武器射击指挥用。其次是水下通讯,探测水雷,探测水下情况保障本舰安全航行。
潜艇最大的特点是它的隐蔽性,作战时需要长时间在水下潜航,这就决定它不能浮出水面使用雷达观察,而只能依靠声纳进行探测,所以声纳在潜艇上的重要性更为突出,被称为潜艇的“耳目”。
声纳的工作原理与雷达相同,可以说是工作在音频或超音频频率上的雷达。声纳站的各个组成部分与雷达站的组成极其相似。
由于声纳工作在超音频频率范围内,它辐射信号的方法与雷达不同,雷达采用金属制成的抛物面天线,而声纳采用水声换能器。
水生换能器是利用晶体(石英或酒石酸钾钠)压电陶瓷(钛酸钡和锆钛酸铅等)的压电效应或铁镍合金的磁致伸缩效应来进行工作的。所谓压电效应,就是把晶体按一定方向切成薄片,并在晶体薄片上施加压力,在它的两端面上会分别产生正电荷和负电荷。反之在晶体博片上施加拉伸力时,它的两个端面上就会产生与加压力时相反的电荷。与压电效应相反时电致伸缩效应,即在晶体的两个端面上施加交变电压,晶体就会产生相应的机械变形。我们利用电致伸缩效应和压电效应来产生和接收超声波。
声纳发射超声波时就把超声波振荡电压加在晶体薄片的两个端面上。于是晶体的厚度就会随着超声波振荡电压而变化,产生超声波震动。晶体震动推动周围的水就产生的超声波的辐射。
超声波传播时遇到目标便产生反射。回波作用在水声换能器的晶体上,由于压电效应水声换能器的两个端面上便可能得到电信号。与雷达天线一样,水声换能器不但要发射和接收超声波信号,而且要有尖锐的方向性,只有这样才能测定目标的方位。声纳设备是利用很多压电晶体组成换能器阵来获得尖锐的方向性的。因此声呐的水声换能器体积较大,一般都安装在舰船艏部的水下部分。
声纳的工作过程可叙述如下:
在发射控制器的控制下,发射机产生大功率超声波脉冲振荡,经收发转换装臵由水声换能器向某一个方向发射超声波。在这个方向上,超声波遇到目标便反射回来,由水声换能器接收,变成电信号。再经收发转换装臵送到接收机放大,最后送到显示器显示目标的方向和距离。
从工作过程看,发射超声波时发射机工作,接收器不必工作;发射结束后,接收机应立即工作,以便接收由最近目标和最远目标反射回来的超声波。显然发射机和接收机时交替工作的。因此利用收发转换装臵可以使接收机和发射机合用一个造价昂贵的水声换能器。
以上述方式,即声呐发射信号,然后接收由目标反射回来的信号工作的称为主动式声呐。另外,还有一种被动工作方式,即只接收目标本身发出的噪声(如螺旋桨所发出的声音等)来判别目标的方向,又称为噪音侧向声纳。这种声纳不因发射声波而被地方捕获,所以被动工作方式对提高潜艇的隐蔽性有着特殊的意义。
什么叫声纳?它有什作用和危害?
水下探测使用“声纳”,这是一种利用声音进行侦察的工具。
声纳由发射机、换能器、接收机、显示器、定时器、控制器等主要部件构成。发射机制造电信号,经过换能器(一般用压电晶体),把电信号变成声音信号向水中发射。声信号在水中传递时,如果遇到潜艇、水雷、鱼群等目标,就会被反射回来,反射回的声波被换能器接收,又变成电信号,经放大处理,在荧光屏上显示或在耳机中变成声音。根据信号往返时间可以确定目标的距离,根据声调的高低等情况可以判断目标的性质。例如,目标是潜艇,潜艇是钢质外壳,回声不仅清晰,而且还有拖长的回鸣;鱼群的回声则低沉而混乱。目标如果是运动的,那么由于“多普勒效应”,回声的音调应有所变化:音调不断变高,说明目标正向他们靠拢;音调不断变低,说明目标离我们远去了……
声纳可分为两大类:主动声纳和被动声纳。前者像雷达一样,不停地向外发射声信号,根据回波判断目标性质。后者不主动发射信号,只接收目标自己辐射的声音信号。被动声纳因为不发射信号,所以不易被敌人发现,主要用于隐蔽侦察。现代的综合声纳兼有以上两种工作方式。
早期潜艇依靠潜望镜进行观察。但潜望镜只能观察水面上的目标,对水下目标则无能为力,所以,早期潜艇的事故率很高,经常在水下撞上暗礁、水雷和别的潜艇。在第二次大战期间,沉没的德国潜艇有100多艘。
现代潜艇装有多种声纳。例如美国的一种潜艇,装备不同用途的声纳有15种之多。艇上的 7 声纳侦察仪可截获和偷听敌人的声纳信号;敌我识别声纳,专门用对口令的办法判断敌我;通信声纳则用来和自己的舰艇通信;有的声纳负责导航、测距、警戒、探雷、测地貌等等。
有趣的是,潜艇的克星也是声纳。在海中,只有靠声纳才能发现潜艇,因而存在着潜艇声纳与反潜声纳的对抗。
许多国家在军港附近的海区、重要的海峡、主要的航道等处都安装了庞大的声纳换能器基阵,靠岸上的电子计算机控制海底的数以千计的换能器。一旦潜艇来犯,便可及时发现。这种防潜预警系统早在1952年就已建成,现已发展到第五代。其警戒范围可达几百公里。
在大西洋的亚速尔群岛以北,有一个叫“阿发”的水下监视系统。它的换能器安装在几个水下塔台上,排布成三角形,每边长约35公里。这种系统能监听进出直布罗陀海峡的所有潜艇,并能用三角定位法确定潜艇位臵。
除了这种固定的警戒声纳外,探测潜艇还可以用机载声纳进行。一架直升机垂下一根100多米长的电缆,电缆下吊着一部声纳。通过机身的下降或上升,声纳在海水中的深度也随之变化。飞机在海面上飞行时,便可拖着声纳进行大面积探测。据国外报道,这种声纳每小时可以搜索海面1000平方公里。
新型航空声纳是“无线”式的,不需要用电缆和飞机连接。它只有10公斤,反潜飞机将它们投到预定海域内,它们便可漂浮于海上。反潜飞机可以同时投放许多这种漂浮声纳。声纳着水后,其天线伸出水面,水听器沉入水中。水听器把在海底收到的声信号变成电信号,通过天线发射出去。反潜飞机根据收到的信号可以判断潜艇的位臵。
现代水雷也多采用声纳作引信。有一种先进的自动水雷,依靠声纳作自导装臵。当潜艇从附近经过时可以“自动起飞”,搜索并最后击中目标。
倒车雷达的工作原理:
倒车雷达的主要作用是在倒车时,利用超声波原理,由装臵于车尾保险杠上的探头发送超声波撞击障碍物后反射此声波探头,从而计算出车体与障碍物之间的实际距离,再提示给驾驶者,使停车和倒车更容易、更安全。
倒车雷达系统的组成:1.主机2.显示器3.探头2~8个
倒车雷达产品使用发射和接收一体化超声波探头,采用单片机控制超声波发射,发射的超声波遇到障碍物反射,探头接收反射的超声波送入放大电路进行放大,由单片机进行数据处理,然后送显示器显示障碍物距离和方位。
超声波探头利用压电陶瓷作为换能器件实现超声波的发射和接收。给探头压电陶瓷片施加一定的超音频电信号,压电陶瓷片将电能转换成声能发送超声波。超声波作用于探头压电陶瓷片,压电陶瓷片将声能转换成电信号,微弱的电信号经放大后送电路处理。
PDC(Parking Distance Control)系统的工作原理就是通常是在车的后保险杠或前后保险杠设臵雷达侦测器,用以侦测前后方的障碍物,帮助驾驶员“看到”前后方的障碍物,或停车时与它车的距离,此装臵除了方便停车外更可以保护车身不受刮蹭。PDC是以超音波感应器来侦测出离车最近的障碍物距离,并发出警笛声来警告驾驶者。而警笛声音的控制 8 通常分为两个阶段,当车辆的距离达到某一开始侦测的距离时,警笛声音开始以某一高频的警笛声鸣叫,而当车行至更近的某一距离时,则警笛声改以连续的警笛声,来告知驾驶者。PDC的优点在于驾驶员可以用听觉获得有关障碍物的信息,或它车的距璃。PDC系统主要是协助停车的,所以当达到或超过某一车速时系统功能将会关闭。
三菱电机开发成功车载毫米波雷达MMIC芯片
〖 http://www.xiexiebang.com 2003/06/06 11:17 来源:日经BP社 作者:田野仓保雄 〗
日本三菱电机日前宣布,成功开发出用于车间距离控制系统等的车载毫米波雷达MMIC(单片微波集成电路)芯片组。目前,该芯片组已开始使用于高级车辆,采用电动控制扫描臂取代了此前通过机械性方法左右摆动扫描臂来进行扫描的方式。使用的频带为76GHz。“支持电动臂扫描方式、基于MMIC的76GHz频带芯片组的成功开发,在业界尚属首次”(该公司)。三菱电机在此次开发中,运用了此前在90GHz频带的地球观测卫星毫米波传感器等卫星防卫领域中所形成的MMIC技术。
与机械式相比,电动臂扫描方式可进行高速扫描,并且可确保较高的可信度。例如,扫描速度达到扫描1次仅需1/100万秒。“比如,即使与前行车的相对速度达到150km/小时,进行1次扫描时前行车的移动距离也不会超过1mm”(三菱电机)。
此次开发成功的芯片组共由8枚芯片组成。具体来说,包括用于信息收发天线切换开关的MMIC、5枚用于发送信息的MMIC芯片(76GHz频带放大器、38/76GHz倍频器、38GHz频带放大器、19/38GHz倍频器及19GHz频带放大器)以及2枚接收信息的MMIC芯片(76GHz频带低噪音放大器及用于接收信息的音量调节装臵)。通过组装上述芯片,可构成FMCW(频率调制连续波)及脉冲多普勒等各种方式的毫米波雷达的回路部分。
三菱电机计划在2006年投产该芯片组。该公司表示:“除向其他公司销售外,目前也正在考虑在自己公司投产嵌入有该芯片组的雷达模块”。该芯片组的目标价格为2万日元(约合人民币1250元)以下。
第四篇:微波治疗仪的原理、应用及维修
微波治疗学作为一门新兴的学科,在医学上的应用为九十年代方引入我国,并很快得到广泛的推广应用。我院在九十年代中后期开始应用于男科和眼科的治疗,至末期大量引进,用于耳鼻喉,妇科,肿瘤科的手术治疗,并广泛应用于各科室的理疗应用,机型主要有南京生产的HBS-A多功能微波治疗仪,珠海生产的EBH-IV耳鼻喉综合治疗仪,广州生产的YWY-2B型微波治疗仪等,其中以广州生产的YWY-2B型微波治疗仪为主。在长期的使用和维护中总结了一些经验,认为有必要把相关的原理、使用及维修系统地阐述一下以资参考,希望能给使用和维修人员提供一些帮助。
下面从微波的临床应用原理及设备的结构原理两部分进行论述其应用、维护和维修。
一、微波应用的原理。
1、微波的产生
电磁场(交变电场和磁场)在空间的传播过程就形成电磁波。而微波正是一种频率介于300~300000MHZ之间的一种电磁波。它是利用电子在相互垂直的电场和磁场中的状态不断改变而激励出来的高频振荡。
磁控管外接电路示意图
微波发生器常用的有电真空速调管,磁控管,返波管,变容和雪崩管等。在微波治疗仪中采用的是磁控管。它实质是一个加有恒定磁场的真空二极管,其阴极发射电子,阳极作为电磁振荡的“电路”称为谐振腔,施以高压直流,使电子在相互垂直的电场和磁场中激励出高频振荡产生微波。
2、微波治疗的理论基础
微波治疗的理论基础是微波的生物效应。人体是一个生物电场,是最精妙最复杂的电磁兼容系统,这就是电磁波与人体能够互相作为的基础。生物体内的带电粒子,极性分子等在微波的作用下,高速旋转和摩擦和碰撞,从而产生热能。
微波与生物相互作用后产生各种生理,病理反应,叫做微波的生物效应,又称为微波生物医学效应。分为内生热效应和非至热效应:
1)内生热效应:在微波作用下,组织温度升高从而引起的一系列生理反应。
组织温度升高会引起许多生理反应,包括加热对组织的直接作用和受热后导致血管扩张引起血管,毛细血管压力和细胞膜通透性的增加,使局部白细胞和抗体浓度提高,加快毒素细菌和代谢物排除体外,使局部肌肉痉挛缓解和痛疼消除。
2)非致热效应:在微波作用下,不引起生物体温度明显升高的情况下出现的生理反应,主要表现为:激活细胞再而三生:解痉,止痛和灭菌的特性。
微波这两大生物效应就是微波治疗的理论基础。这正是微波照射生物体组织后得以获得良好医疗效果的原因。
3、微波加热的特性
生物组织一定,其吸收微波能量的多少与微波的频率和功率的大小相关;微波一定,生物组织吸收微波能量多少与介电常数与电导率和组织的含水量密切相关;热的留驻又与组织环境及组织内血液循环有关如果组织环境温度高或血流量小带走的热量就少,温度就高,反之就低。
微波使生物组织作为热源体里面发热,是内发热,加热速度快而均匀,是整体性的。容易深入组织内部进行治疗,透入深度有选择性,就是它的一大优势。这就是其它外加热方式(如神灯,红外线灯属外加热)无法达到的。
4、微波应用的选择
微波辐射器的面越小,能量就越集中,输出功率越大能量也越大,所以手术治疗时其幅射器或说探头形状就要越小越尖,让辐射头与组织接触释放更大能量产生高温进行凝固或切割。而理疗则相反。
所以根据治疗目的的不同,幅射器的选择和功率的大小范围也不同。治疗目的有两种即手术治疗和康复理疗。对手术治疗,微波主要由辐射头吸收,要瞬间产生高热,所以功率必须大,并根据部位和手术要求来调整;理疗是完全辐射透热,以热的有益效应来加强疗效,功率不能太大。
正确安全的使用必须注意如下几方面在我们医院应用最广的主要是理疗,治疗是医生专用,使用上不存在什么问题,所以这里着重针对理疗来谈其使用和维护。
YWY-2B型微波治疗仪设定功率范围在0~30W(电路设定),其输出频率固定在2400MHZ(误差30MHZ)。
1)金属物的影响
导电金属材料不能吸收微波,微波不能透入金属内部而被反射,故由于金属对微波的强反射作用如果反射波与入射波叠加,会起到增强作用这时就会相应升高透射组织内的温度;如果反射波与入射波不在同一方向对透射组织的温度的影响就不大。所以我们要考虑金属物的形状与照射面的深浅程度,这会影响到反射波的方向,比如直于金属圆环平面从中心照射(覆盖到整个金属),其中心面必然会获得较多的反射波,而且会在某一点获得更大的能量,形成热点;如果是条形的金属截面是圆形,大部份会散射开去;如果金属位于足够的深度,因波的衰减,所投射的波已微乎其微;另外,金属的良好导热性也会拉到一定的散热作用,从这一点来看会增加一定的升温难度。
因此,在患处照射区存在金属物的情况下应综合考虑金属的反射性以及散热性能,酌情考量,要注意观察,记录,适时调整,积累经验。基本原则是情况未明时,尽量从小功率开始,以策万全。
2)生物组织的物理特性的影响
含水量高的组织(肌肉和内脏器官)比含水量低的组织(脂肪和骨髓)介电常数高出一个数量级(电导率则相反),相对更容易升温。而且在组织分界层之间也会因此而产生一定的反射使得在分界层温度升高,尤其骨髓对微波的吸收率更小,具有强烈的反射,它又位于机体的深层,故骨质所能吸收的功率很小。这些将影响到组织治疗的深度和温升的高低。
所以治疗时,要考虑患处的组织特性,选择好照射区域和方向。决定输出的大小。原则是含水量高的部位功率要低些,肥胖的人功率也要低些。
微波对生物组织的效应有累积效应,其影响不会即时消失,一次照射时间不宜太长,也不宜太频。一般一天一次,一次10至20分钟即可。
3)不能仅以即时的温度感觉来衡量治疗的有效性
确实热疗的一个基本点就是使组织温度上升促使血液循环达到一种有利的反应。实验表明,要产生有效的充血反应组织温度必须在41度以上,(但不能超过45度,否则正常组织的新陈代谢会停止)但是也要看到另外一面,像刚刚手术的伤口,有出血性的伤口,血液循环太强,会导致内压过高而出现渗血,甚至伤口破裂。治疗温度不宜高
微波是有穿透性的,是内部的整体性的加热,加热速度极快,而内部组织比皮肤脆弱,散热效率较差,痛觉又较迟钝。温度过高很可能伤人于无形。
由于微波的非致热效应,在没有明显升温时,也是有一定的良好的生理反应的,这一点是得到临床证明的。
4)不能对肿瘤病人进行理疗
微波可以用来治疗肿瘤但它是基于其供血不足,局部营养不良和供血不足等原因造成的耐热性差,却又更易吸收微波的原理,以大功率高温使其致死来达到目的。理疗是在较低温度的情况下进行的,在低温下它反而会起到促进作用,使之转移和扩散。
从这一点来说“治”和“疗”是两种不同的理念。“治”是以产生热力来除去病变组织和或杀死它;“疗”是改变患处组织的“环境”是“扶”。因此治疗对象是选择性是不同的,治疗方法是变化的。微波治疗是一种专业性较强的学问,有效性和复杂性远非一般的神灯和红外线灯所能比拟的,不可等同视之。总之谨慎、小心、积累和总结临床经验是最重要的。
二、微波治疗仪的结构原理及维护与维修
1、微波治疗仪的结构及部分主要器件原理说明
file:///C:UsersADMINI~1AppDataLocalTempksohtmlwpsBBE8.tmp.jpg
从以上结构上我们看出,微波机主要由电源,输入输出控制电路,磁控管等三大核心部分组成。
控制电路一般由单片机芯片组成,较多是用的AT89C51。实现时间,功率控制和参数显示功能,控制磁控管的微波发射及发射功率、治疗时间、病人患部治疗微波功率和温度的采集处理以及保护和故障报警指示功能
电源电路的功能是:提供磁控管的灯丝工作电源、磁控管的阳极高压电源和制系统所需的电。
file:///C:UsersADMINI~1AppDataLocalTempksohtmlwpsBBF9.tmp.jpg
在闭合电源开关后,低压电源变压器T2向磁控管和控制板供电。在微机或微处理器的控制下,磁控管开始预热,由于此时控制微机或微处理器没有向固态继电器和MC3021发出触发控制信号,因此,固态继电器截止,高压电源无高压输出。预热完成后,微机或微处理器程序对人工设定的参数和阳极高压、患部治疗微波功率和温度进行综合计算,输出触发控制信号,通过对双向可控硅BT136输入触发电压信号导电角的控制,从而控制加在磁控管上的负高压,进而实现对磁控管输出的微波功率的控制。
磁控管实质上是一个置于恒定磁场中的真空二极管。管内电子在相互垂直的恒定磁场和恒定电场的控制下,相互作用,产生高频振荡,从而达到产生微波。
磁控管由管芯和磁钢(或电磁铁)组成。管芯的结构包括阳极、阴极、能量输出器和磁路系统等四部分。磁控管的磁路系统就是产生恒定磁场的装置。磁路系统分永磁和电磁两大类。大功率管多用电磁铁产生磁场,管芯和电磁铁配合使用。磁控管工作时,可以很方便的靠改变磁场强度的大小,来调整输出功率和工作频率。
广州生产的YWY-2B型微波治疗仪的磁路系统是永磁的;EBH-IV耳鼻喉综合治疗仪的磁控管的磁路系统就是电磁激励,并将阳极电流反馈入电磁线包以提高管子工作的稳定性。下面是DWY-IV妇科炎症治疗仪的电原理图并与EBH-IV型的电路相似。
MAX是D/A数模转换器
LM324是四运放,L就是加在磁控管中的作为电磁的线包,限流电阴同时又作为电压采样电阻,将阳极电流馈入与89C51给出的控制信号在LM324中进行比较放大给电磁线包以提高管子功率输出的稳定性。
G3M是固态继电器
AT89C51是一种带4K字节闪烁可编程可擦除只读存储器的低电压,高性能CMOS8位微处理器,俗称单片机。
部分管脚说明:
file:///C:UsersADMINI~1AppDataLocalTempksohtmlwpsBC1A.tmp.jpg
P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。当P1口的管脚第一次写1时,被定义为高阻输入。P0能够用于外部程序数据存储器,它可以被定义为数据/地址的低八位。在FIASH编程时,P0口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须被拉高。
P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。在FLASH编程和校验时,P1口作为第八位地址接收。
P2口:P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。并因此作为输入时,P2口的管脚被外部拉低,将输出电流。这是由于内部上拉的缘故。P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。P2口在FLASH编程和校验时接收高八位地址信号和控制信号。
P3口:P3口管脚是8个带内部上拉电阻的双向I/O口,可接收输出4个TTL门电流。当P3口写入“1”后,它们被内部上拉为高电平,并用作输入。作为输入,由于外部下拉为低电平,P3口将输出电流(ILL)这是由于上拉的缘故。
ALE只有在执行MOVX,MOVC指令时ALE才起作用。
/PSEN:外部程序存储器的选通信号。
MOC3021是MOTOROLA公司生产的器件光藕合双向可控硅驱动器蕊片由于采用了光电隔离, 并且能用TTL 电平驱动, 它很容易与微处理器接口, 进行各种自动控制设备的实时控制。它有触发电路简单可靠的特点。
图中的固态继电器也是一种光藕合器件
BT136是双向可控硅。
2、设备的日常维护要点
同轴导线可以弯曲,但是不能过分弯曲,一般不能超过120度,那样会使微波在内部反射,易损坏同轴导线,增加微波的泄漏。
要经常注意紧固输出导线及辐射器,防止接口松动。接触不好会使接口外的反射系数变大。
同轴导线的性能是否良好,可看它在治疗中是否会发热,发热说明其内部阻抗已不匹配,微波反射自身吸收发热,必须更换;是否有输出可就进用电话对着探头测试,当然要尽量小的功率,如果有,话筒中会听到明显的干扰杂音(收音机或电视机等都行),否则说明没有输出,查一下接口若没问题,那就得送修了。
3、设备故障的分析与维修。
广州生产的YWY-2B型微波治疗仪在维修过程中,发生故障主要为如下几方面:
A、辐射头无微波输出
原因:
1)从微波管输出口到辐射头输出之间的传输通道存在问题,此时要检查接口是否松动,同轴导线是否异常,通常都是由于同轴导线与辐射头之间的接口松,导致微波大量反射,将同轴导线末端网线烧断;
2)高压电源板故障:主要是可控硅击穿,没有直流高压加到磁控管,可控硅经常击穿主要是接地不良;高压整流二极管极端在潮湿有尘埃的情况下发生高压打火。
3)可控硅性能不良
在我们的实际维修中,这三点处理好了,该故障就基本上不再发生。
判断:
1)查传输通道
表面无异状时,可用数字表单表笔在两个输出接口端的蕊线碰触,如果有感应(接触瞬间会有打火,时间不可太长),说明是后级故障,否则是前级,这样很快就要以判断是否同轴导线有问题。
2)查高压电源板
先测可控硅,一般都是短路或阻值太小要更换;或者同时会在二极管极端发现打火的痕迹,打烂旁边线路,要将碳化部分刮掉清理干净,最好另引一条接地线,以确保接地良好;高压二极管性能不良,可用高压摇表进行测量,一般万用表是测不出来的。
3)查高电源板外接部件。高压变压器,磁控管用久有可能对地电阻下降导致漏电,可用高压摇表进行测量。可控硅前级的触发电路有无坏,限流电阻也是容易坏的一个零件。
B、开机无显示
原因:电源线断;烧保险,多半是由于高压电源板高压打火导致。
判断:查保险,查输入电源线和输入电压;查高压电源板。如果很快又烧保险则多半是高压电源板高压打火,要进行处理。显示及控制电路一般都正常。
C、按健无效
原因:控制板键膜坏;由于连续使用,机身温度升高,电路受电磁干扰死机。
判断:停机一阵再开机,若不行可查键膜,基本上都是键膜坏,更换或另加按键。
D、开机报警
原因:接触不良或元器件故障。
判断:主要是输出输入接口接触不良。将接口或IC再接插一遍或焊接其接口脚一般即可排除。
E、散热风扇坏
F、开机即有输出
此故障可谓特例(CPU损坏)。但是从这一例中我们发现它少一种保护,即温度保护或应急保护。
温度保护:在输出突然失控时,温度会骤然上升,此时控制电路在温度超过设定值时就自动切断输出;
应急保护:温度有一个方便病人掌握的手持开关,在病人突感异常时,可自己切断输出。
一般更换CPU可以解决故障。
使用日关灯管测试有治疗器有无微波输出
第五篇:导波雷达液位计的原理及应用
导波雷达料位计的原理及应用
导波雷达料位计的原理及应用
一、导波雷达料位计概述
料位是工业生产中的一个重要参数。料位测量的方法很多,针对不同的工况和介质可以使用不同测量原理的料位计,吹气法、静压式、浮球式、重锤式、超声波等几种常用的料位测量仪表,都有各自的特点和应用范围。导波雷达料位计运用先进的雷达测量技术,以其优良的性能,尤其是在槽罐中有搅拌、温度高、蒸汽大、介质腐蚀性强、易结疤等恶劣的测量条件下,显示出其卓越的性能,在工业生产中发挥着越来越重要的作用。
二、原理及技术性能
雷达波是一种特殊形式的电磁波,导波雷达料位计利用了电磁波的特殊性能来进行料位检测。电磁波的物理特性与可见光相似,传播速度相当于光速。其频率为300MHz-3000GHz。电磁波可以穿透空间蒸汽、粉尘等干扰源,遇到障碍物易于被反射,被测介质导电性越好或介电常数越大,回波信号的反射效果越好。雷达波的频率越高,发射角越小,单位面积上能量(磁通量或场强)越大,波的衰减越小,导波雷达料位计的测量效果越好。1.导波雷达料位计的基本原理
导波雷达料位计组成:它主要由发射和接收装置、信号处理器、天线、操作面板、显示、故障报警等几部分组成。
发射-反射-接收是导波雷达料位计工作的基本原理。雷达传感器的天线以波束的形式发射最小5.8GHz的雷达信号。反射回来的信号仍由天线接收,雷达脉冲信号从发射到接收的运行时间与传感器到介质表面的距离以及物位成比例。即:h=?H–vt/2? 式中?h为料位;H为槽高;?v为雷达波速度;t为雷达波发射到接收的间隔时间; 2.导波雷达料位计测量料位的先进技术:(1)回波处理新技术的应用
从导波雷达料位计的测量原理可以知道,导波雷达料位计是通过处理雷达波从探头发射到介质表面然后返回到探头的时间来测量料位的,在反射信号中混合有许多干扰信号,所以,对真实回波的处理和对各种虚假回波的识别技术就成为导波雷达料位计能够准确测量的关键因素。(2)测量数据处理:
由于液面波动和随机噪声等因素的影响,检测信号中必然混有大量噪声。为了提高检测的准确度,必须对检测信号进行处理,尽可能消除噪声。
经过大量的实验验证,采用数据平滑方法可以达到满意的效果。此方法也可有效的克服罐内搅拌器对测量的影响。(3)导波雷达料位计的特点:
由于导波雷达料位计采用了上述先进的回波处理和数据处理技术,加上雷达波本身频率高,穿透性能好的特点,所以,导波雷达料位计具有比接触式料位计和同类非接触料位计更加优良的性能。①可在恶劣条件下连续准确地测量。②操作简单,调试方便。③准确安全且节省能源。④无需维修且可靠性强。⑤几乎可以测量所有介质。
三、安装应注意的问题
(1)当测量液态物料时,传感器的轴线和介质表面保持垂直;当测量固态物料时,由于固体介质会有一个堆角,传感器要倾斜一定的角度。
(2)尽量避免在发射角内有造成假反射的装置。特别要避免在距离天线最近的1/3锥形发射区内有障碍装置(因为障碍装置越近,虚假反射信号越强)。若实在避免不了,建议用一个折射板将过强的虚假反射信号折射走。这样可以减小假回波的能量密度,使传感器较容易地将虚假信号滤出。(3)要避开进料口,以免产生虚假反射。
(4)传感器不要安装在拱形罐的中心处(否则传感器收到的虚假回波会增强),也不能距离罐壁很近安装,最佳安装位置在容器半径的1/2处。
(5)要避免安装在有很强涡流的地方。如:由于搅拌或很强的化学反应等,建议采用导波管或旁通管测量。
(6)若传感器安装在接管上,天线必须从接管伸出来。喇叭口天线伸出接管至少10mm。棒式天线接管长度最大100或250mm。接管直径最小250mm。可以采取加大接管直径的方法,以减少由于接管产生的干扰回波。
(7)关于导波管天线:导波管内壁一定要光滑,下面开口的导波管必须达到需要的最低液位,这样才能在管道中进行测量。传感器的类型牌要对准导波管开孔的轴线。若被测介电常数小于4,需在导波管末端安装反射板,或将导波管末端弯成一个弯度,将容器底的反射回波折射走。
四、应用中存在的问题及解决方法
有些工况下所使用的导波雷达料位计,因为传感器安装位置不当及条件所致,出现了一些问题,下面将对一些使用中的问题提出解决方案,供大家参考。1.探头结疤和频繁故障的解决方法
第一个办法是将探头安装位置提高,但是有时候安装条件限制,不能提高的情况下,就应采用将料位测量值与该槽的泵联锁的办法,解决这一难题:将最高料位设定值减小0.5m左右,当料位达到该最高值时,即可停进料泵或开启出料泵。2.导波雷达料位计被淹相应的改进办法? 解决这种问题的办法是将导波雷达料位计改为导波管式测量。仍在原开孔处安装导波管式导波雷达料位计,导波管高于排汽管0.2m左右,?这样一来,即使出现料浆从排汽管溢出的恶劣工况,也不会使料位计天线被料浆淹没,而且避免了搅拌器涡流的干扰及大量蒸汽从探头处冒出,减少了对探头的损害,同时由于导波管聚焦效果好,接收的雷达波信号更强,取得了很好的测量效果。使用导波管测量方式,可以改善表计测量条件,提高仪表测量性能,具有很高的推广应用价值。3.关于泡沫对测量的影响:
干泡沫和湿泡沫能将雷达波反射回来,对测量无影响;中性泡沫则会吸收和扩散雷达波,因而严重影响回波的反射甚至没有回波。当介质表面为稠而厚的泡沫时,测量误差较大或无法测量,在这种工况下,导波雷达料位计不具有优势,这是其应用的局限性。
4.对于天线结疤的处理:
介电常数很小的挂料在干燥状态下对测量无影响,而介电常数很高的挂料则对测量有影响。可用压缩空气吹扫(或清水冲洗),且冷却的压缩空气可降低法兰和电器元件的温度。还可用酸性清洗液清洗碱性结疤,但在清洗期间不能进行料位测量。
五、结束语
导波雷达料位计是目前各类料位测量仪表计中适用范围最广、测量最精确、维护最方便的料位测量仪表。随着其价格的进一步降低,性价比的提高,应用将会越来越广泛,在料位测量中发挥越来越重要的作用。本文对其进行系统的阐述,旨在为广大维护人员更好地使用和掌握它,希望能对大家提供一些借鉴和帮助。
导波雷达物位计 工作原理:导波雷达物位计是一种微波物位计,它是微波(雷达)定位技术的一种运用。它是通过一个可以发射能量波(一般为脉冲信号)的装置发射能量波,能量波在波导管中传输,能量波遇到障碍物反射,反射的能量波由波导管传输至接收装置,再由接收装置接收反射信号。根据测量能量波运动过程的时间差来确定物位变化情况。由电子装置对微波信号进行处理,最终转化成与物位相关的电信号。能量辐射水平低,该设备使用能量波的是脉冲能量波(频率一般比智能雷达物位计低)。一般脉冲能量波的最大脉冲能量为1mW左右(平均功率为1μW左右),不会对其他设备以及人员造成辐射伤害。适用范围及特点:导波微波物位仪表用于对液体、浆料及颗粒料等介电常数比较小的介质的进行接触连续测量,适用于温度、压力变化大、有惰性气体或蒸汽存在的场合。具有以下特点
1、通用性强:可测量液位及料位,可满足不同温度、压力、介质的测量要求,最高测量温度可达800℃,最大压力可达5MPa,并可应用于腐蚀、冲击等恶劣场合。
2、防挂料:独特的电路设计和传感器结构,使其测量可以不受传感器挂料影响,无需定期清洁,避免误测量。
3、免维护:测量过程无可动部件,不存在机械部件损坏问题,无须维护。
4、抗干扰:接触式测量,抗干扰能力强,可克服蒸汽、泡沫及搅拌对测量的影响。
5、准确可靠:测量量多样化,使测量更加准确,测量不受环境变化影响,稳定性高,使用寿命长。主要技术参数: 正常工作条件:环境温度:-20~50℃;相对湿度:5%~100%(包括直接湿);环境压力:86kPa~108 kPa;测量范围: 0~6米,缆式最大可达35米;过程连接: 螺纹 或者法兰;过程温度:-40-250℃;过程压力: 0.1~6Mpa;工作频率: 1.8GHz;响应速度: ≥0.2s(根据具体情况而定)重 复 性: ± 3mm ;分 辨 率: 1mm ;电流信号: 4~20mA/HART;精
度: <0.1% ;通讯接口: HART 通讯协议 ;电
源: 24V DC(+/-10%)/波纹电压:1Vpp;耗 电 量: max22.5mA ;防爆认证: Exia II CT6 ;外壳保护等级: IP68;两线制接线: 供电和信号输出公用一根两芯线;电缆入口: 两个M20ⅹ1.5(电缆直径5 … 9mm)。型号及说明: TQ-DLUL 厂家代号 C1 8㎜缆式探头/不锈钢(最大量程35m、-40~250℃)探头型式及材料 C2 10㎜杆式探头/不锈钢(最大量程6m、-40~250℃)C3 同轴管式探头/不锈钢(最大量程6m、-40~350℃)0 螺纹连接 过程连接 1 标准法兰 0 一体化(普通型)电子部件相关 1 分离型(3m电缆)2 其他 P 普通型 防爆选项 I 本安型 1 现场显示 显示及编程器 2 编程器 3 现场显示+编程器 4 无 X 客户的特殊要求:如防爆外壳、量程等 其他选项