第一篇:博弈论论文
博弈论课程论文
生活中的博弈论
学院:
姓名:
学号:
生活中的博弈论
摘要:本文从实际生活入手,主要是把生活中所会出现的一些问题、一些选择用博弈论的思想进行分析。有时候看起来很简单的问题,其实深究起来并不是那么简单,不能只看表面,要仔细分析每一个问题参与者的心理,做出多种情况的假设,才能做出最有利的选择。关键词:博弈,心理,生活,假设
一、博弈论简介
博弈论又被称为对策论既是现代数学的一个新分支,也是运筹学的一个重要学科。博弈论主要研究公式化了的激励结构间的相互作用。是研究具有斗争或竞争性质现象的数学理论和方法。博弈论考虑游戏中的个体的预测行为和实际行为,并研究它们的优化策略。生物学家使用博弈理论来理解和预测进化论的某些结果。
博弈论已经成为经济学的标准分析工具之一。在生物学、经济学、国际关系、计算机科学、政治学、军事战略和其他很多学科都有广泛的应用。
基本概念中包括局中人、行动、信息、策略、收益、均衡和结果等。其中局中人、策略和收益是最基本要素。局中人、行动和结果被统称为博弈规则。类型:
(1)合作博弈——研究人们达成合作时如何分配合作得到的收益,即收益分配问题。
(2)非合作博弈——研究人们在利益相互影响的局势中如何选决策使自己的收益最大,即策略选择问题[1]。
(3)完全信息/不完全信息博弈:参与者对所有参与者的策略空间及策略组合下的支付有充分了解称为完全信息;反之,则称为不完全信息。
(4)静态博弈和动态博弈
静态博弈:指参与者同时采取行动,或者尽管有先后顺序,但后行动者不知道先行动者的策略。
动态博弈:指双方的行动有先后顺序并且后行动者可以知道先行动者的策略。
二、博弈例证
(一)囚徒困境
在博弈论中,一个著名例子是由塔克给出的“囚徒困境”博弈模型。该模型用一种特别的方式为我们讲述了一个警察与小偷的故事。假设有两个小偷A和B联合犯事、私入民宅被警察抓住。警方将两人分别置于不同的两个房间内进行审讯,对每一个犯罪嫌疑人,警方给出的政策是:如果两个犯罪嫌疑人都坦白了罪行,交出了赃物,于是证据确凿,两人都被判有罪,各被判刑8年;如果只有一个犯罪嫌疑人坦白,另一个人没有坦白而是抵赖,则以妨碍公务罪(因已有证据表明其有罪)再加刑2年,而坦白者有功被减刑8年,立即释放。如果两人都抵赖,则警方因证据不足不能判两人的偷窃罪,但可以私入民宅的罪名将两人各判入狱1年。
对A来说,尽管他不知道B作何选择,但他知道无论B选择什么,他选择“坦白”总是最优的。显然,根据对称性,B也会选择“坦白”,结果是两人都被判刑8年。但是,倘若他们都选择“抵赖”,每人只被判刑1年。由于每个囚徒都发现供认是自己更好的选择,因此,博弈的稳定结果是两个囚徒都会选择供认。这就是博弈的纳什均衡。囚徒困境还适用于很多其他情况。单次多重
单次发生的囚徒困境,和多次重复的囚徒困境结果不会一样。
在重复的囚徒困境中,博弈被反复地进行。因而每个参与者都有机会去“惩罚”另一个参与者前一回合的不合作行为。这时,合作可能会作为均衡的结果出现。欺骗的动机这时可能被惩罚的威胁所克服,从而可能导向一个较好的、合作的结果。作为反复接近无限的数量,纳什均衡趋向于帕累托最优。主旨
囚徒们虽然彼此合作,坚不吐实,可为全体带来最佳利益,但在资讯不明的情况下,因为出卖同伙可为自己带来利益(缩短刑期),也因为同伙把自己招出来可为他带来利益,因此彼此出卖虽违反最佳共同利益,反而是自己最大利益所在。但实际上,执法机构不可能设立如此情境来诱使所有囚徒招供,因为囚徒们必须考虑刑期以外之因素(出卖同伙会受到报复等),而无法完全以执法者所设立之利益(刑期)作考量[2]。
(二)现实生活中的博弈案例
博弈的例子在生活中还有很多在这里列举其中两个
1、支票交换
现在有一个盒子,其中装有四张支票,分别是价值1万、2万、3万、4万的支票。规则是甲和乙两个人一起在这个盒子中抽取一张支票,分别看过自己支票的价值,在双方都同意的情况下可以进行交换。
甲抽到一张2万价值的支票,在看过价值后表示同意交换,乙看过自己的支票价值后也表示同意交换,试问甲获利的概率是多少。如果只是单纯地进行统计,甲抽到的支票是2万价值的,则还剩3张支票分别代表1完、3万、4万价值,则有乙抽得的支票价值共有三种可能情况,有3万和4万两种情况可能会比甲的2万支票价值高,由此可以得出甲获利的概率是三分之二。这是最简单的分析方法,存在很明显的漏洞,倘若乙抽到的是价值4万的支票,他可能同意交换吗?4万的支票是所有支票中价值最高的,无论是什么样的情况都不可能获利,所以这种情况要排除,乙抽到的必然不是是价值4万的支票。那么还剩下1万和3万两种可能,获利的概率是二分之一?这样得出结论还为时过早,换位思考,乙抽到如果是价值3万的支票,那么获利的唯一可能就是甲抽到4万的支票,但甲抽到4万的支票同样是不可能同意交换的。所以最终可以得出结论,乙抽到的必然是价值1万的支票,甲获利的可能性为零。
2、三人分金
传统的两人分金的情况较为简单,只需要一个人分,另一个人进行挑选即可得到比较公平并且双方都没有异议的分配方案,现在来考虑一下更为复杂的三人分金的情况。
现有一堆金币,共100个,要分配给三个人,三个人依照抽签决定先后顺序,根据先后顺序逐个提出自己的分配方案,提出一个方案后,让所有游戏参与者对这个方案进行评价,如果方案不能获得超过半数的参与者认同,提方案的人就会出局并受到惩罚,再由下一个人提出方案。
表面上看起来最后一个人是最有优势的,只要否定前面所有人的方案就行了,前面的人都出局了,金币就都是他的了。道理看似简单,但结果真是如此吗?
其实在这个问题中,最关键的并不是抽签顺序,而是你分配的方法。原本第一个人为了不出局,一定愿意放弃所有金币给后两个人。而第二个人人,同样因为决定权完全在第三个人,也只能放弃所有的金币给后者。因此,一般看来,第一人0枚金币,第二人0枚金币,第三人100枚金币是唯一的结果,事实真的是这样吗?我们来考虑这样一个分配方案,第一人99枚金币,第二人1枚金币,第三人0枚金币。这个方案表面上看似不可能通过,多分点给后两人尚且可能不同意,这样应该更不可能。但第二个人何不设想一下,如果第一个人出局,只剩下两个人,在只剩下两个人的情况下,只要第三个不同意第二个人的方案,那就只能是出局的结果,就算第二个人愿意把所有的金币都给第三个人,第三个人同样可以不同意这个方案,而且还不用担心被报复,比起那样,现在的这个方案,不仅不会被出局受到惩罚,而且还能拿到一枚金币,根本没有理由不接受,所以第二个人一定会同意这个方案。三个人当中已经有两个人同意了,第三个人是不是反对已经不重要了。很多情况,看似有利实则无利,看似劣势却是优势。
三、博弈论在电子信息领域的意义
其实在电子信息方面也包含有博弈的思想,就每个大学生都会使用的笔记本电脑为例,一个笔记本电脑是由很多部分所组成,CPU、显卡、硬盘、内存等,每一项指标都有等级上的优劣之分,一般来说,各项配置越高,电脑就越好,但是要考虑的不能只是这一个方面,配置越高相应带来的是更高昂的成本,就会导致更高的售价,会影响销售情况。而且,配置越高,各个部分工作产生的热量也会越高,所需要的散热能力也会相应升高,如果不能很好地协调各个方面的影响,就无法制作出一台好的笔记本电脑。
注释与参考文献:
[1]约翰·福布斯·纳什,《非合作博弈》[D],1951.[2]威廉姆•庞德斯通,《囚徒的困境》[M]
第二篇:博弈论论文
博弈论相关论文
今天下午我们班班级活动里面有做游戏的环节,每个人闭上眼睛,根据主持人的描述对一张纸进行折叠。于是第一轮游戏开始了,每个人闭上眼睛,根据主持人对折纸的描述,然后每个人自己的理解,闭着眼睛进行操作,最后睁开眼睛的时候发现每个人的结果几乎都是不一样的,这是怎么回事呢?首先我们只是靠着听觉对主持人的描述进行理解,中文博大精深,加上每个人对一个中文字,一个词的理解是不一样的,所以每个人对整个折纸过程的理解也是不一样的,最后的结果当然就不一样了。在这个博弈中,我和主持人均是博弈方,只是博弈方的得益不是很明显。我按照主持人的描述最终却和主持人想要的结果是不一样的,造成这样的结果是因为博弈方之间的信息不对称,如果博弈方是先在游戏进行前,对每一个游戏涉及到的词进行统一的定义,即博弈双方的信息完全对称,那么结果就会达到我们想要的结果。
信息不对称不得不让我想到中国的股市。据说中国的股市股民之间的比例是1:2:7.百分之七十的人进入股市的亏损,百分之二十的人是不亏不赢,只有百分之一十的人盈利的。为什么会出现这样的情况?我们都知道信息拥有量与得益必然有正相关性。我的理解是这样的,首先是每个人具有的经济知识和技术分析能力不够,炒股票我们需要一定的经济学知识,我们国家的经济是由政府主导的,其中政府发布的宏观数据和政策都会对市场有很大的影响,那么我们要用经济学的知识和技术分析法,那么关于基本面即宏观经济指标,经济政策走势,行业发展状况,公司销售,财务状况等这些数据的来源,是否具有真实性,及时性以及有效性呢?这又要涉及到作为博弈方的股民,是否掌握了这些真实有效的数据,如果股民掌握了数据,并且进行的认真的分析做出正确的决策那么股民就会在股市中获得盈利,当然一般的股民是不具备这样的能力的,他们一般是根据自己对所购买股票的分析及国家公布的宏观经济指标,还有自己的风险偏好来做出的选择。
那么作为理财公司呢?理财公司其中一部分的盈利来自于顾客理财盈利中抽成,理财公司站在非常公正的立场上严格地按照客户的实际情况来帮客户分析自身财务状况和理财的需求,通过科学的方式在个人理财方案里配备各种金融工具。通常,第三方独立理财机构会先对客户的基本情况进行了解,包括的资产状况,投资偏好和财富目标,然后,根据具体情况为客户定制财富管理策略,提供理财产品,实现客户的财富目标。理财公司具有一定的能力对投资产品进行基本面分析,对数据进行技术分析和量化分析。当然,理财公司投行等这些根据自身的利益进行的投资也希望自己能够早日得到比任何人都先知道的属于国家机密的宏观经济指标和经济政策,如果比市场上任何一个人先知道,那么及时的做出正确的决策实现自身利益最大化,当然这样也导致了国家宏观数据泄密案件的发生,背后都是存在参与人利益的驱动的原因的。
信息对称性的程度会影响我们决策。法玛根据市场信息的反应的强弱将有效市场分为三种,即弱势市场,半强式有效市场和强式有效市场。在弱式有效市场中,证券价格充分反映了历史上一系列交易价格和交易量中所隐含的信息。在半强式有效市场中,证券当前价格完全反映所有公开信息,不仅包括证券价格序列信息,还包括有关公司价值、宏观经济形势和政策方面的信息。如果市场是半强式有效的,那么仅仅以公开资料为基础的分析将不能提供任何帮助,因为针对当前已公开的资料信息,目前的价格是合适的,未来的价格变化依赖于新的公开信息。在这样的市场中,只有那些利用内幕信息者才能获得非正常的超额回报。在强式有效市场中,证券价格总是能及时充分地反映所有相关信息,包括所有公开的信息和内幕信息,任何人都不可能通过对公开或内幕信息的分析来获取超额收益。证券价格反映了所有即时信息。在这种市场中,任何企图寻找内部资料信息来打击市场的做法都是不明智的。强式有效市场假设下,任何专业投资者的边际市场价值为零,因为没有任何资料来源和加工方式能够稳定地增加收益。对于证券组合的管理者来说,如果市场是强式有效的,管理者会选择消极保守的态度,只求获得市场平均的收益水平。所以信息完全的对称有些时候并不是我们所想要的,尤其是作为一名想要依靠证券组合来实现自身利益最大化的人。
关于信息不对称在生活的应用是有很多的,比如说我们在买二手车是最典型的信息不对称的例子,卖主对车子的性能和相关指数很了解,一般人在卖车之前都会对车进行修饰一番。那么买主就恰恰相反,他只能根据车主提供的数据和对车自身的观测来判断这个二手车。我想提一下最近闹得很凶的食品安全问题,就是商家与消费者的博弈。不是说人民存在贪小便宜的心理,毕竟三鹿也是一个大型企业。如果我们能够带有理性的认识选择食品这样就会减少我们吃到劣质有毒的食品,如果没有消费者的需求的存在,那么供求市场也不会存在。我认为的对食品理性认识和理性选择是指能够客观的估计该食品的价值与价格,理性选择即使我们的监管局没有做到信息完全透露我们的选择也会减少偏向错误性的。当然我是希望我们的政府部门,监管部门是能够在人民生活生活最基本的保质上能够将这些信息完全公开的并且加大法制制度和监管力度的,这样人民的生活才能得以保证。(最后说一说关于上博弈论的感受吧,本来是打算写关于博弈论中信息不对称,就打算看一下教材关于不完全信息静态博弈和不完全信息动态的博弈的,看了发现看不懂,其实我觉得博弈论这本教材编的真的很好,博弈论本身就是一门不错的学科,就是我希望老师能够多讲一些,这一本书我认为这学期所接触的知识相对于整本书是很少的,我想这样的结果也是和博弈困这门课程本身的难度,毕竟对数学要求很高,以及课程时间比较短的原因,仅仅只有一学期啊,吴老师平时上课讲了很多有关博弈论以及生活人生的认识很喜欢的。)
第三篇:博弈论论文
中国社会热点问题透视毕业论文—胡鑫
对“爱情的罗森塞尔蜈蚣博弈”的几点个人思考
爱情就是一种男女双方通过多次接触、交流信息达到信任而最终结合的过程。而交流是以公共知识为起点,逐渐过渡到私人生活。说白了就是从浅入深的试探的过程。试探就是看对方能否有这样实力去帮助自己实现利益最大化。这种利不仅仅指地位、金钱,还因包括个人情感的满足,甚至还包括应付父母之命,舆论之驱的需要。所以,追求爱情的过程就是一种追求个人利益最大化过程,是一种动态双人博弈过程。1981年罗森塞尔提出的蜈蚣博弈很好解释这点。引文如下:
“ 假定阿花(女)和阿肥(男)是这个蜈蚣博弈的主角,这个博弈中他们每人都有两个战略选择,一是继续,一是甩。他们的博弈展开式如下: 阿花 —阿肥-„„-阿花-阿肥—阿花-阿肥-(10,10)| | | | | |
(1,1)(0,3)(8,8)(7,10)(9,9)(8,10)
在图中,博弈从左到右进行,横向连杆代表继续交往战略,向下的连杆代表甩掉她(他)战略。每个人下面对应的括号代表相应的人甩了对方,爱情结束后,各自的爱情效用收益,括号内左边的数字代表阿花的收益,右边代表阿肥的收益。可以看到,阿肥和阿花甩战略对应的括号数字每个都不同,这是因为爱情效用在不断增加,这里假设爱情每继续一次总效用增加1,如第一个括号中总效用为1+1=2,第二个括号则为0+3=3,只是由于选择甩战略的人不同,而在两人之间进行分配。由于男女生理结构和现实因素不同,阿花甩战略只能使效用在二人之间平分,即两败俱伤,阿肥选择甩战略则能占到3个便宜。显然,甩战略对于被甩的一方来说是一种欺骗行为。
请看,首先,交往初期阿花如果甩了阿肥,则两人各得1的收益,阿花如果选择继续,则轮到阿肥选择,阿肥如果选择甩了阿花,则阿花属受骗,收益为0,阿肥占了便宜收益为3,这样完成一个阶段的博弈。可以看到每一轮交往之后,双方了解程度加深,两人爱情总效用在不断增长。这样一直博弈下去,直到最后两人都得到10的收益,为圆满爱情结局——总体效益最大。遗憾的是这个圆满结局很难达到!
大家注意,当阿肥到达甩了阿花可得收益是10的时候,他很难有动力继续交往下去,继续下去不但收益不会增长,而且有被阿花甩掉反而减少收益的风险。阿花则更不利,因为她从来就没有占先的机会,她无论哪次选择甩阿肥,二者都是两败俱伤,而且还有可能被阿肥欺骗减少收益的危险,在爱情过程中,女人总体来讲处于不利地位。因此,每一次交往,无论阿肥还是阿花都有选择甩来中止爱情的动机,更详细的数学可以证明,如果他们是极端个人主义的话,爱情圆满的结局不可能达到。个人效益最大与总体效益最大之间有矛盾。(《博弈论的诡计》——哈尔滨出版社)”
从以上分析可以看出,在临近成功【10,10】时,男方为了利益最大化而选择分手。女方预测到这种背叛后理智的先发制人地选择分手。这是男女双方“完全理性”的表现,缺乏必要的信任。所谓“海枯石烂、海誓山盟”就是极力用谎言维护这种信任,使能继续交往下去。可是从屡见不鲜的恋爱失败先例中我们可以发现这种信任是多么脆弱!个人享受主义影响下成长的一代更多表现出是自负与见异思迁。美国极高的离婚率和随之而产生的单亲家庭模式不就可以看成中国未来的预演?每当我走在校园内,发现一对对情侣十指相扣、提前承诺,有着永不分离的气势时觉得多么可笑与担忧。未来工作、住宿、家长态度、个人取向和个人命运不可预知性使大学生恋爱成功率不足5%,并且对终身的承诺变成十足的谎言。从实际中可以看出大学生的冲动和不计后果使恋爱失败不再是蜈蚣博弈中的有所收益,而是对双方产生不可预料的损失,尤其是在个人未来发展方面。既然大学生选择恋爱是一种严格劣策略,那么为什么所谓“高智商、高理智”之人屡试不爽?孔子说“食色,性也。”他将吃饭与恋爱看成是同样性质的事情。更进一步说恋爱就是在激素作用下人不自觉行动。于是我中国社会热点问题透视毕业论文—胡鑫
想到一个“谬论”:既然对异性追求是人类和单细胞动物都有的一种行为,那么为什么人类自己的这行为自诩为圣神不可侵犯的“爱情”,而非人类的这行为却是可以被利用来创造价值的东西?
另一方面,从图中可以看出,女方永远处在恋爱的劣势中。难道就没有一种方法改变这种劣势吗?也就是说没有一种方法使男方选择背叛则使自己损失大于女方?纵观恋爱过程,也可以看作男方不断投入的过程。从日常伙食费到车船旅费,从住房到购车,这都是男方为了博得女方而投入的金钱、时间、精力。女方不停提出要求,男方更多是疲于满足这一个又一个要求。表面看女方的这种行为与中国传统女子道德相违背。而从另一角度看行为的结果增加男方恋爱投资,增加男方因背叛而付出的浸没成本。一旦男方支付超过预算,他选择背叛的收益将不再领先,可能出现负数,以至于陷入“协和博弈”的恶性循环中。为了前期高额投入不至于打水漂,男方不得不进行下一阶段交往,并且投入将增加。就像输了钱的赌徒希望下次可以咸鱼翻身而投入更多钱一样。依次递增,男方将血本无归。极度盼望到达【10,10】点将成为男方!恋爱时,男方大费小费全包不仅仅是表现的绅士风度,更多则是女方的生存策略。忠诚度并非与金钱、精力、时间投入成正比,但这些东西的过分投入会使男方积重难返,从而非自愿的提高忠诚度。
另一方面,男方能够及时摆脱困境的方法也就是在恋爱时少投入或者在可承受范围内投入。从实际可以看出这种投入具有刚性,投入的减少会使女方产生不满与怀疑,使信任机制出现裂痕,促使蜈蚣博弈中先下手为强般的背叛出现。因此“不要把所有鸡蛋放在一个篮子里”就成为男方的一个可选且可行的策略。也即男方为了降低投资一方面带来的高失败率而选择投资于多方,他将不再仅仅和一个人谈恋爱,而多线作战,将恋爱这种排他性的行为完全变成个人的风险投资看待。男方将在每个女方面前欺骗,到处漫天承诺,希望在被发现前交往阶段到达【10,10】。一旦其中一个成功,投资就得到回报。现实中感情欺骗并不触犯法律,靠道德下的自我反省显得不现实。人们总在寻求对这种“风险投资”的惩罚与约束机制。但目前的优势策略我认为就是上段提起的女方策略。但结果是女方要求男方加大投资而男方极力减少投资,双方经过多次讨价还价,最终达到纳什均衡点。任何一方变动都会引起均衡点剧烈波动。重则使关系破裂,轻则在动荡后经过一段时间磨合,从新到达新的均衡点。“治大国如烹小鲜。”难道爱情马拉松不也可以看成“烹小鲜”的过程吗?
其实现实恋爱过程中双方并非完全理智。道德、习惯、风俗、文化、学识等都可以影响这一过程。人并非“经济人”,一个社会人在行动中会受到内在和外在多方因素影响。用双人动态博弈模型并不能概括恋爱这一社会学问题。数学模型解释感性认识的问题时只会取其一部而忽略大部。万法归宗,一切科学解释都是为了更好、更容易认识周围事物。这也是我认识的最重要的问题之一。
胡鑫
第四篇:博弈论论文
关 于 博 弈 论 的 认 识
外国语学院 09级 英本二班 李菲
091020218
关于博弈论的认识
一年一度的选修课如往常一样的进行着,不同的是今年选了博弈论,经过一段时间的学习,对博弈论有了一些肤浅的理解,诚然,一门学问想在短时间内有所深入理解是不现实的。
这篇论文的产生是由于考试答题的取消(本人并不反对一答题的形式考查,毕竟课上听过了方法,做题更easy些,but写论文似乎对于锻炼更有好处),一开始的笔试考试说是否是个博弈呢?在老师的课上引导及最近的突击博弈论书籍,故此论文新鲜出炉。
闲言少叙,文归正文。由于本人水平有限,论文中出现错误望批评指正。
生活之中到处充满着博弈,有人说没有,那是因为缺少发现博弈现象的眼睛。人生就是在弈棋,学会博弈。虽说博弈不是万能的,但没有博弈现象存在的生活是万万不能的。
现以一个例子来说明博弈的重要,就是一个小game,有了theory就是game theory---博弈。
一个阳光明媚的日子,KFC(以后去吃记得要发票哦)中,一个小伙子(是否帅气不计在内)。见到一女生有KFC优惠券,于是乎欲要一张,于是一场2人博弈就此产生,小伙子在无优惠券的情况下要花费40元来购物,而有优惠券后只需32元,其中有8元差价。假设女生的优惠券的是以非耗费方式获得。最终两人会以多少钱成交 本是二人博弈,看起来像是讨价还价博弈,但实质上他不同于讨价还价问题。关键看我们的想法,是否能够以理性的思维去考虑问题。
我在校内网上发布了一个关于这个问题的测试。截止到现在,共有69来自不同学校的大学生参与投票,其中有46人----0元;1人----1元;0人选择2元;2人选择3元;9人-------4元;1人5元;1人6元;2人7元;7人8元。本人在当时的课上也仅仅是选择了7元。为何这有极少数的人选择了4元,只有13.043%。
所说那只是一道所谓的没有正确答案的问题,但是当我们当代大学生面对这一问题时,给出的答案千奇百怪。首先选择4的人是比较少,其次就是选择了4,那么其中的人是否是经过了理性的分析与思考才得到的结果呢?我不知道这道题目似乎是在测试不同人对待人、事物的看法,测试人的心理,但是我现在要强调的是我现在要对其从博弈的角度去分析,实际上这是一场双人博弈,博弈的参与者双方的目的是为了获得最大利润的话,两人最终的成交结果就是4,达到双赢。分析:男出价0(8,0)女生心地太善良了; 男出价1(7,1);男2(6,2);男 3(5,3);男4(4,4)利润似乎不是太高;男 5(3,5);男 6(2,6);男 7(1,7);男 8(0,8)与其在此浪费时间不如直接去买。显然理性的双方为了为了最后都能得到利润,说句土话就是使自己不吃亏,只有(4,4)均衡。
(1776年,亚当说过:“我们的晚餐并不是来自屠夫、啤酒酿造者或点心师傅放入善心,而是源于他们对自身利益的考虑„„【每个人】只关心他自己的安全、他自己的利益。他有一直看不见的手引导着,躯体社工她原本没有想过的另一目标。她通过追求自己的利益,结果提升了社会的利益,„„”)(引自《国富论》,引自《策略思维》page183).本例中参与者不能作出有具体模型的博弈分析,因为M不知道W,W不知道M知不知道自己,M不知道W不知道M不知道自己„„只能通过理性逻辑思维来获得理想的利益得失。显然,每个参与者的战略制定都要体现这种博弈规则的变动、完善与强化。在一些潜在的规则的约束下,各参与者博弈的结果是利益总得益趋向扩大,各方得益多寡虽可能会(本例除外)有所不同但总体趋向于不为零的正数,所以,这种条件下的博弈本质上是合作的共赢性博弈。这种博弈是对各方都有益处的博弈,是共赢的结局。各博弈方就是要致力于通过优化自己的策略与行动方案,使之趋于合理化,间接造福于各博弈主体。社会生活中,共赢是一种优良的博弈方式。双赢策略其实是一种很高的智慧,帮助别人的同时接受别人的帮助,双方最终将获得独自奋战所不能拥有的东西。放弃内心的宁予外贼不予家奴的思想。中国人对竞争的理解大多不是“你死”就是“我活”,胜利的含义似乎就是阻止别人成功,可是这“胜利”是那么虚假,经不起风吹雨打,经不起时间考验。拥抱双赢,拥抱明天。双赢强调的是博弈双方的利益都要兼顾,就是所谓的“赢者不全赢,输者不全输”。但是双方都得到了满意的结果。
我们的生存空间不仅仅是960万平方公理,我们是地球村的村民,世界很大,我们可以分的不仅是面前的那一块蛋糕。
唉,不要说的太远了,再说就成了双赢策略专访了,还是在回到博弈论专栏吧。
但是从这一问题中我们是否也应该看到另一个侧面,那就是博弈的应用又是一门学问,如果生活之中死搬硬套博弈思想那么,后果可想而知。女方若从理性的博弈出发,提出4,而男的自认为自己很帅认为只需2元甚至更少来达到目的,那么,好吧,男的最后得花正常价买,女的眼看到手的钱,溜走了。就是说生活中遇到智力功能障碍的人,不要和傻子玩博弈。试想没有司马懿,谁和诸葛亮玩空城计„„
这也不是说博弈伦毫无用途,博弈提供的是一种逻辑思维方式,培养人的一种向前推理,向后验证。”倒后推理”法。博弈论是在力图用最简单的假设下得到最大范围的推理应用。博弈论的这种方法与很多应用广泛的学科都是相似的。
然而,博弈的技术分析有着严格的前提条件,博弈的不同的模型多种多样,什么完全信息静态博弈、完美信息动态博弈、不完全信息静态博弈,不完全信息动态博弈等,都要求博弈参与者逻辑严密,思路清晰。遗憾的是,这种技术分析的应用范围却是非常地狭窄。由此可见,博弈论的思想比任何技术性的分析都要重要。
所以说当代大学生过多的以自己为中心,主观思想占据理性的高地,处理问题思维的火花闪现的太少。但是人类当然包括大学生不可能是完全理性的,由于时间地点资金的限制,不可能掌握和了解所有知识和信息,也就不可能搜集到所需要的全部信息。再者正真的智者也要意识到信息的采集需要成本和精力,而不是毫不费成本的。
因为我们如果必须为此付出大量的时间等等。妄想和渴望得到所有的信息,企图能作出收益最优的决策,有时反而是最不理性的行为。赔了夫人又折兵,付出一定要与回报成比例哦。
但是,当我们退而求其次时,博弈论可以得到对现实的客观世界描述的近似。理性思维,呼唤理性思维的回归。逻辑思维,渴望拥有合理缜密的思维。由KFC事例引出双赢问题到现实生活的博弈思维再到博弈的实用性与适用性,我们透过现象看本质,可能会洞察博弈的精彩。
策略与博弈的不可预知性,不可预测的行为可能会有一个好处,就是使平凡枯燥的人生更加富有生机和活力。
自古人生多博弈,宇宙万物在博弈。一句禅语:博弈就是没在博弈,没有博弈即是在博弈。博弈无形!
第五篇:博弈论论文
学习博弈论的意义
选修博弈论之前只是看到博弈论当中含有“弈”这个字,由于对博弈论根本没什么了解,所以以为博弈论就是与下棋有关的,也就兴致勃勃的选修了这门课。谁知道上第一堂课的时候发现并不是这样,觉得很是失望,可是听了老师的第一堂课,觉得也不是很烦,并且还发现能从老师所讲的当中学到一些很有用的东西。不仅对自己的学习有不帮助,对自己的生活也有很大的帮助啊,于是对这博弈论产生了很大的兴趣了。
什么事博弈论呢?对这很是好奇,于是我就上网查了一些关于博弈论的资料,发现博弈论是研究理性的行动者相互作用的形式理论,而实际上正深入到经济学、政治学、社会学等等,被各门社会科学所应用博弈论是指某个个人或是组织,面对一定的环境条件,在一定的规则约束下,依靠所掌握的信息,从各自选择的行为或是策略进行选择并加以实施,并从各自取得相应结果或收益的过程,在经济学上博弈论是个非常重要的理论概念。
古语有云,世事如棋。生活中每个人如同棋手,其每一个行为如同在一张看不见的棋盘上布一个子,精明慎重的棋手们相互揣摩、相互牵制,人人争赢,下出诸多精彩纷呈、变化多端的棋局(摘自百度文库)。博弈论是研究棋手们 “出棋” 着数中理性化、逻辑化的部分,并将其系统化为一门科学。换句话说,就是研究个体如何在错综复杂的相互影响中得出最合理的策略。事实上,第1 页,共4页
博弈论正是衍生于古老的游戏或曰博弈如象棋、扑克等。数学家们将具体的问题抽象化,通过建立自完备的逻辑框架、体系研究其规律及变化。这可不是件容易的事情,我也很喜欢下棋,所以胆敢就下棋稍微分析一下:以最简单的二人对弈为例,稍想一下便知此中大有玄妙:若假设双方都精确地记得自己和对手的每一步棋且都是最“理性” 的棋手,甲出子的时候,为了赢棋,得仔细考虑乙的想法,而乙出子时也得考虑甲的想法,所以甲还得想到乙在想他的想法,乙当然也知道甲想到了他在想甲的想法,这样都得一直考虑很周全才能让自己不占下风,这不是件简单的事情啊!
话虽这样说,博弈论怎样着手分析解决问题,怎样对作为现实归纳的抽象数学问题求出最优解、从而为在理论上指导实践提供可能性呢?就像我们生活当中处理人际关系一样,你要选怎一个最好的处理办法,把你的人际关系处理得最好才可以交更多的朋友。
博弈论是一个热得烫手的概念。它不仅仅存在于数学的运筹学中,也正在经济学中占据越来越重要的地位(近几年诺贝尔经济学奖就频频授予博弈论研究者)(查资料所得),但如果你认为博弈论的应用领域仅限于此的话,那你就大错了。实际上,博弈论甚至在我们的工作和生活中无处不在!在工作中,你在和上司博弈,也在和下属博弈,你也同样会跟其他相关部门人员博
第2 页,共4页
弈;而要开展业务,你更是在和你的客户以及竞争对手博弈。在生活中,博弈仍然无处不在。博弈论代表着一种全新的分析方法和全新的思想。要想在现代社会做个有价值的人,你就必须对博弈论有个大致的了解。也可以这样说,要相赢得生意,不可不学博弈论;要想赢得生活,同样不可不学博弈论。
在当今,最能震动人类感情的是博弈论,同样,博弈论对未来的影响力也是不可忽视的。所以我们不只是应该学博弈论,更应该把博弈论学得更好,让自己在生活中有理可博,在生活中遇到一些问题的时候可以运用博弈论去解决,能够把博弈论从理论变为实实在在的解决问题的有助工具。
我所学习的软件工程是一门研究用工程化方法构建和维护有效的、实用的和高质量的软件的学科。它涉及到程序设计语言,数据库,软件开发工具,系统平台,标准,设计模式等方面。在现代社会中,软件应用于多个方面。典型的软件比如有电子邮件,嵌入式系统,人机界面,办公套件,操作系统,编译器,数据库,游戏等,然而博弈论在这些方面当中的应用都是很广泛的,在学习这些开发技能当中,我们可以运用博弈论的一些道理去衡量到底使用哪一种开发方案能够让顾客更加满意,能让自己的团队获得最大的经济效益。一个好的开发方案也是衡量自己的开发项目成功与否的一个最主要的标志!因此,博弈论的道理理论对我们的开发有莫大的帮助,有些方案的选择还需要博弈论对的支撑。
第页,共4页
学习博弈论不只是单单学习了博弈论的知识,而是学习了如何将自己从博弈论当中学到的知识运用到自己今后的人生当中,要学有所用,要运用博弈论去解决一些可以用博弈论解决的问题。在生活当中要学会用博弈论来让自己的生活更加精彩,同样,在用博弈论解决问题的同时也要想法通过博弈论为祖国创造一些财富,为建设祖国贡献自己的一分力量。
学好博弈论,为以后的生活做点准备。
第页,共4页