第一篇:六年级奥数题
六年级奥数题
1、晶晶三天看完一本书,第一天看 了全书的1/4,第二天看了余下的 2/5第二天比第一天多看了15页,这本书共有多少页?
2、有一批货物,第天运了这批货物的1/4第二天运的是第一天的 3/5剩90吨没有运,这批货物有多少吨?
3、修路队在一条公路上施工,第一天修了这条公路的 1/4第二天修了余下的2/3,已知这两天共修路1200米,这条公路全长多少米?
4、加工一批零件,甲先加工了这批零件的 2/5接着乙加工余下的 4/9 ,已知乙加工个数比甲少200个,这批零件共有多少个?
5、某工厂有三个车间,第一车间的人数占三个车间总人数的25%,第二车间人数是第三车间的 3/4知第一车间比第二车间少40人,三个车间共有多少人?
6、某小学五年级三个班植树,一班植树棵数占三个班总棵数的1/5,二班与三班植树棵数的比是3:5,二班比三班少植树40棵,这三个班共植棵多少棵?
7、图书角有故事书、科技书、文艺书这三种书,故事书的本数占总数的 2/5技书的本数是文艺书的3/4,文艺书比故事书少20本,图书角共有书多少本?
8、食堂买来萝卜、青菜和土豆三种蔬菜,萝卜的重量占三种蔬菜总量的 2/5青菜的重量比土豆少3/4,萝卜比土豆少360千克,食堂买来萝卜多少千克?
9、牛的头数比羊的头数多25%,羊的头数比牛的头数少百分之几?
10、甲粮库存粮的吨数比乙粮库少40%,乙粮库存粮比甲粮库存粮的吨数多百分之几?
11、男生比女生少 2/7,女生比男生多几分这几?
12、水结成冰体积增加 1/10,冰化成水体积减少几分之几?
13、甲数是乙的2/3,乙数是丙数的3/4,甲、乙、丙的和是216,甲、乙、丙各是多少?
14、甲数是乙的5/6,乙数是丙数的3/4,甲、乙、丙的和是152,甲、乙、丙各是多少? 15.桔子的千克数是苹果的2/3,香蕉的千克数是桔子的1/2,香蕉和苹果共有220千克,桔子有多少千克?
16.某中学初中部三个年级中.初一的学生数是初二学生数的9/10,初二的学生数是初三学生数的5/4,这个学校里初三的学生数占初中部学生数的几分之几?
17、某班共有学生51人,男生人数的3/4等于女生人数的2/3。男、女学生各有多少人?
18、图书馆买来科技书和文艺书共340本,文艺书本数的1/3等于科技书本数的4/5,两种书各买来多少本?
19、学校合唱团比舞蹈队多24人,合唱团人数的2/5 等于舞蹈队人数的6/7。合唱团和舞蹈队各有多少人?
20、粮店里有大米、面粉和玉米共900吨,大米重量的1/4 等于面粉重量的1/3,玉米重200吨。大米和面粉的重量各是多少吨?
21、已知甲校学生数是乙校学生数的2/5,甲校女生数是甲校学生数的3/10,乙校男生数是乙校学生数的21/50。那么两校女生总数占两校学生总数的几分之几?
22、在一城市中,中学生数是居民的1/5,大学生数是中学生数的1/4,那么占大学生总数的2/5的理工科大学生是居民数的几分之几?
23、某人在一次选举中,需3/4的选票才能当选,计算2/3的选票后,他得到的选票已达到当选票数的5/6,他还要得剩下选票的几分之几才能当选?
24、某校有3/5的学生是男生,男生的1/20想当医生,全校想当医生的学生的3/4是男生,那么全校女生的几分之几想当医生?
25、某厂男职工比全厂职工人数的3/5多60人,女职工人数是国职工的1/3,这个厂共有职工多少人?
26、一筐苹果卖掉1/5后,又卖掉6千克,这时卖出的重量正好是剩下的1/2,这筐苹果原来有多少千克?
27、甲乙两车共运一堆煤,运完时,甲车运了总数的7/15多12吨,比乙车多运1/2,甲车运了多少吨?
28、纺织厂女工人数比全厂人数的75%还多100人,男工人数是女工人数1/5,这个纺织厂有男工人多少人?
29、有两筐梨,乙筐是甲筐的3/5,从甲筐取出5千克梨放入乙筐后,乙筐的梨是甲筐7/9,甲乙两筐梨共有多少千克? 30、某小学低年级原有少先队员是非少先队员的1/3,后来又有39名同学加入了少先队组织。这样少先队员的人数是非少先队员的7/8,低年级有学生多少人?
31、王师傅生产一批零件,不合格产品是合格产品的1/19,后来从合格产品中又发现2个不合格产品,这时算出产品合格率是94%,合格产品有多少个?
32、某校六年级上学期男生占总人数的54%,本学期初转进3名女生,转走3名男生,这时女生占总人数的48%,现有男生多少人?
33、某学校原有长跳绳的根数占长、短跳绳总数的3/8,后来又买进20根长跳绳,这时长跳绳根数占长,短跳绳总数的7/12。这个学校现有长、短跳绳的总数是多少根?
34、阅览室看书的同学中,女同学占3/5,从阅览室走出5位女同学,看书的同学中,女同学占4/7,原来阅览室里一共有多少名同学在看书?
35、一堆什锦糖,其中奶糖占45%,再放入16千克其他糖后,奶糖只占25%,这堆糖中奶糖多少千克?
36、数学课外小兴趣小组,上学期男生占5/9,这学期增加21名女生后,男生只占2/5了,这个小组现有女生多少人?
37、有两段布,一段布长40米,另一段布长30米,把两段布都用去同样长的一部分后,发现短的一段布剩下的长度是长的一段布所剩下长度的3/5,每段布用去多少米?
38、有两根绳子,一根长80米,另一根长40米,如果从两根绳上各剪去同样长一段后,短绳剩下的长度是长绳剩下的2/7,两根绳各剪去多少米?
39、今年父亲40岁,儿子12岁,当儿子的岁数是父亲的5/12时,儿子多少岁?
40、仓库里原来存大米和面粉袋数相等,运出800袋大米和500袋面粉后,仓库里所剩的大米袋数是面粉的3/4,仓库里原有大米和面粉各多少袋?
41、甲乙丙丁四个筑路队共筑1200米长的一段公路,甲队筑的路是其他三队的1/2,乙队筑的路是其他三队的1/3,丙队筑的路是其他三队的1/4,丁队筑了多少米?
42、某商店有黑白、彩色电视机630,其中黑白电视机占1/5,后来又运进一些黑白电视机。这时黑白电视机占两种电视机总台数的30%,问。又运进黑白电视机多少台?
43、书店运来科技书和文艺书共240,科技书占1/6,后来又运来一批科技书,这时科技书占两种书总和的3/11,现在两种书各有多少包?
44、某市派出60名选 手参加田径比赛,其中女选手占1/4,正式比赛时,有几名女选手因故缺席,这样女选手人数占参赛选手总数的2/11,总:正式参赛女选手有多少人?
45、把12克盐溶解于120克水中,得到132盐水,如果要使盐水中含盐8%,要往盐水中加盐还是加水?加多少克?
46、东风水果店上午运进梨和苹果共1020千克,其中梨占水果总数的1/5,下午又运进梨若干千克,这时梨占这两种水果总数的2/5,下午运进梨多少千克?
47、甲数是乙数、丙数、丁数之和的1/2, 乙数是甲数、丙数、丁数之和的1/3, 丙数是乙数、甲数、丁数之和的1/4,已知丁数是260,求甲、乙、丙、丁四数之和?
48、甲、乙、丙、丁四个筑路队共筑1200米长的一条公路,甲队筑的路是其他三个队的1/2, 乙队筑的路是其他三个队的1/3,丙队筑的路是其他三个队的1/4,丁队筑路多少米?
49、甲乙丙三人共同购买一艘游艇,甲支付的钱是其余两人的1/2, 乙支付的钱是其余两人的1/3,丙支付的钱恰好是5000元.这艘游艇的单价是多少元? 50、学校里买回四种图书,科技书是文艺书的3/4,连环画是其余三种书的1/3,史地书是其余三种书的1/4, 史地书比文艺书少80本,买回的四种书共多少本?
51、有一块合金,是由银和铜组成,其中银的重量比总重量的5/12多30克,铜的重量比总重量的7/16多5克,这块合金的总重量是多少克?
52、甲乙两个仓库存放一批化肥.甲仓库比乙仓库多120袋,如果从乙仓库运出25袋放入甲仓库,乙仓库化肥的袋数就是甲仓库的3/5,甲乙仓库原来各有化肥多少袋?
53、某校五年级共有学生152人,选出男同学的1/11和5 个女同学参加科技小组,剩下的男女同学人数刚好相等,这个年级男女同学各有多少人?
54、一筐苹果分给甲乙丙三人,甲分得全部苹果的1/5加5个苹果, 乙分得全部苹果的1/4加7个苹果, 丙分得其余苹果的1/2,最后剩下的苹果正好等于一筐苹果的1/8.这筐苹果有多少个?
55、图书室有文艺书.科技书.连环画共1880本,文艺书借出2/5,科技书借出50本,又买来40本连环画,这时三类书的本数相等.原来三种书各有多少本?
56、苹果和梨共77个,若拿出苹果的5/11和12个梨,则剩下的苹果是剩下的梨的3倍,问原来苹果和梨各有多少个?
57、某小学五年级有三个班,一班和二班人数相等,三班人数占全年级的7/20,并且比一班多3人,问五年级共有多少人?
58、有两只桶,共装44千克油.若从第一桶里倒出1/5,第二桶里倒进2.5千克,则两只桶内油相等,原来每只桶各装油多少千克?
59、足球比赛门票15元一张,降价后观众增加一倍,收入增加1/5,问一张门票降价多少元?
60、某班一次考试,平均分为70分,其中3/4及格,及格的同学平均分为80分,那么不及格同学的平均分是多少分? 61、游泳池里参加游泳的学生中,小学生占30%,又来了一批学生后,学生总数增加20%,小学生占学生总数的40%,小学生增加几分之几?
62、五年级三个班人数相等,一班的男生人数和二班女生人数相等,三班的男生人数是全部男生人数的2/5,全部女生人数占全年级人数的几分之几?
63、小王在一个小山坡来回运动,先从山下跑上山,每分钟跑200米,再从原路下山,每分钟跑240米,求小王的平均速度.64、小华上山的速度是每小时3千米,下山速度是每小时6千米,求上山后又沿原路下山的平均速度?
65、张师傅骑自行车往返A、B两地,去时每小时行15千米,返回时因逆风,每小时只行10千米,张师傅往返途中的平均速度是每小时多少千米?
66、小王骑摩托车往返A、B两地,平均速度为每小时48千米,如果他去时每小时行42千米,那么他返回时的平均速度是每小时多少千米?
67、某幼儿园中班的小朋友平均身高115米,其中男孩比女孩多1/5,女孩平均身高比男孩高16%,这个班男孩平均身高是多少?
68、某班男生人数是女生的2/3,男生平均身高138厘米.全班平均身高132厘米,问女生平均身高是多少厘米?
69、某班男生人数是女生的4/5,女生的平均身高比男生高15%,全班平均身高是130厘米,问男、女生的平均身高各是多少?
70、一长方形边长增加10%,那么,它的周长增加百分之几?它的面积增加百分之几?
71、一批零件,甲独做8天完成,乙独做10天完成,现在由两人合做这批零件,中途甲因事请假一天,完成这批零件共用多少天? 72、一件工作,甲独做15天完成,乙独做10天完成,两队合做若干天后甲休息了几天,结果共用8天才完成了任务,甲休息几天?
73、一项工作,甲乙合做12天可以完成,中途甲因事停工5天,因此用15天完成,甲独做这项工作要用多少天?
74、一项工程,甲乙合做4天后,再由乙单独做5天完成,已知甲比乙每天多完成这项工程的1/30,甲乙单独做这项工程各需多少天?
75、彩色电视机和黑白电视机共250台,如果彩色电视机卖出1/9,则比黑白电视机多5台,问两种电视机原来各有多少台?
76、姐妹俩养兔120只,如果姐姐卖掉1/7,还比妹妹多10只,姐姐和妹妹各养了多少只兔? 77、学校有篮球和足球共21个,篮球借出1/3后,比足球少1个,原来足球和篮球各有多少个?
78、小明家养的鸡和鸭共100只,如果将鸡卖掉1/20,还比鸭多17只,小明家原来养的鸡和鸭各有多少只?
79、甲乙两数和是300,甲数的2/5比乙数的1/4多55,甲乙两数各是多少?
80、畜牧场有绵羊山羊共800只,山羊的2/3比绵羊的1/2多50只,这个畜牧场有绵羊山羊各多少只?
81、师傅和徒弟共加工零件840个,师傅加工零件个数的5/8比徒弟加工零件的2/3多60个, 师傅和徒弟各加工零件多少个?
82、某校六年级甲乙两个班共种 100棵树,乙班种的1/10比甲班种的1/3少16棵,现两个班各种多少棵?
83、育红小学上学期共有学生750人,本学期男生增加1/6,女学生减少1/3,共有710人,本学期男、女学生各有多少人?
84、袋子里原有红球和黄球共119个,将红球增加3/8,黄球减少2/5后, 红球和黄球的总数变为121个,原来袋子里有红球和黄球各有多少个? 85、金放在水里称,重量减轻1/19.银放在水里称,重量减少1/10,一块重770克金银合金,放在水里称是720克,这块合金含金、银各多少克?
86、某中学去年共招新生475人,今年共招新生640人,其中初中招的拳生比去年增加48%,高中招的新生比去年增加20%,今年初、高中生各招收新生多少人? 87、水果店里西瓜个数与白兰瓜个数比是7:5.如果每天卖白兰瓜40个,西瓜50个,若干天后,白兰瓜正好卖完,西瓜还剩36个。水果店里原有西瓜多少个?
88、红星幼儿园里白皮球个数与红皮球个数比是3:5,给每个班发4个白皮球和10个红皮球,结果发现红皮球刚好发完,还多18个白皮球。红星幼儿园有多少个班?
89、食堂里面粉的重量是大米的1/2,每天吃去30千克面粉,45千克大米。若干天后,面粉正好吃完,大米还有15千克,食堂里原有面粉多少千克?
90、师徒两人加工一批零件,师傅的任务比徒弟多1/5,徒弟每天做7个,师傅每天做12个,若干天后,师傅正好完成任务,徒弟还有30个没做,这批零件共有多少个?
第二篇:六年级奥数题
六年级数学奥赛题
(一)四、应用题(每小题6分,计30分)
1、球从高处自由下落,每次接触地面后弹起的高度是前一次下落高度的2/3。如果球从25米高处落下,那么第三次弹起的高度是多少米?
2、在一块20公顷的土地上,用它的1/5种小麦,其余的种大豆和玉米,种大豆和玉米的公顷数比是3:5。种大豆和玉米各多少公顷?
3、水结成冰后,体积增加 1/10。现有一块冰,体积是2立方分米,融化后的体积是多少?
4.为民中药店计划收购中草药1500千克,上半年完成了计划的55%,下半年完成了计划的65%。为民中药店超额收购中草药多少千克?
5.公园的一个圆形花坛的直径是60米,这个花坛的面积是多少?如果一盆花占地面积大约是1/10平方米,这个花坛大约要摆多少万盆花?(得数保留整万数)
6.一部手机降价后只卖1800元,售价只有原来的9/10,比原来降价了多少元?
7.一台挂钟的分针长8厘米,在5小时里分针的针尖共走了多少厘米?
8.生物小组同学要测量一棵百年大榕树的横截面积,他们量得树干的周长是 6.28米,这棵树的横截面积是多少平方米?
9张老师有一套住房价值40万,由于急需现金,他以九折优惠卖给老李。过了一段时间后,房价上涨10%,张老师又想从老李处把房子买回来。想一想,如果老张买回房子,总共损失多少万元?
10、同学们参加野营活动。一个同学到负责后勤的教师那是去领碗。教师问他领多少,他说领55个,又问:“多少人吃饭?”他说:“一人一个饭碗,两人一个菜碗,三个人一个汤碗。”算一算这个同学给多少人领碗?
11、某校五、六年级共有学生200人。“六一”儿童节五年级有11人,六年级有25%的同学去市里参加庆祝活动,这时两个年级余下的人数相等。求六年级有学生多少人?
12、修一条路,第一天修了全路的1/3,第二天修了余下的2/5,两天共修路135米,这条路全长多少米?
13、幼儿园买来红气、蓝、黑气球共180个,其中红气球的个数是蓝气球的3倍,黑气球的个数是蓝气球的2倍,求红、蓝、黑气球各多少个?
14、小强买了一本书,第一天看了全书的2/5,第二天可能看了剩下的5/8,还有36页没看,这本书一共有多少页?
15、小东的存钱罐里存有1元的硬币若干,他每天取出一部分买零食,第一天取出1/9,以后7天分别取出当时硬币的1/
8、1/
7、1/
6、1/
5、1/
4、1/
3、1/2,8天后剩下5个硬币,原来罐内共有多少个硬币?
16、一条路全长60千米,分成上坡、平路、下坡三段,各段路程长的比依次是1:2:3,某人走各段路程所用时间比依次是4:5:6,已知他上坡的速度是每小时3千米,问此人走完全程用了多少时间?
第三篇:奥数题
1、一件工程原计划40人做,15天完成.如果要提前3天完成,需要增加多少人?
2、仓库有一批货物,运走的货物与剩下的货物的质量比为2:7.如果又运走64吨,那么剩下的货物只有仓库原有货物的五分之三。仓库原有货物多少吨?
3、育才小学原来体育达标人数与未达标人数比是3:5,后来又有60名同学达标,这时达标人数是未达标人数的9/11,育才小学共有学生多少人?
4、建筑工地有两堆沙子,一堆比2堆多85吨,两堆沙子各用去30吨后,一堆剩的是2堆的2倍,两堆沙子原来各有多少吨?
5、甲乙两地相距420千米,其中一段路面铺了柏油,另一段是泥土路.一辆汽车从甲地驶到乙地用了8小时,已知在柏油路上行驶的速度是每小时60千米,而在泥土路上的行驶速度是每小时40千米.泥土路长多少千米?
6、在浓度为40%的盐水中加入千克水,浓度变为30%,再加入多千克盐,浓度变为50%?
7、甲说:“我乙丙共有100元。”乙说:“如果甲的钱是现有的6倍,我的钱是现有的1/3,丙的钱不变,我们仍有钱100元。”丙说:“我的钱都没有30元。”三人原来各有多少钱?
8.某书店对顾客有一项优惠,凡购买同一种书100本以上,就按书价的90%收款。某学校到书店购买甲、乙两种书,其中乙种书的册数是甲种书册数的3/5只有甲种书得到了90%的优惠。其中买甲种书所付的钱数是买乙种书所付钱数的2倍。已知乙种书每本1.5元,那么甲种书每本定价多少元?
第四篇:奥数题
1,57辆军车通过一座桥,前后两车间保持2米距离。桥长1403米,每辆车长5米,车队每分钟前进45米。从第一辆车车头上桥到最后一辆车的车尾离开桥共需多少分钟?
2明明和丽丽同时从学校出发步行去动物园,明明每分钟走60米,丽丽每分钟走45米。结果明明先到,并在动物园门口等了10分钟丽丽才到,学校到动物园的距离是多少米?
3物业公司要给296户业主买296本挂历。挂历每本15元,现在正在促销优惠,每买7本送1本。算算物业公司买挂历需多少元?
4妈妈在超市买了4支小梦龙和3支可爱多冰激凌,共用去24元。妈妈对小丽说:“上星期我买了3支小梦龙和5支可爱多冰激凌共用去29元。;请你算算,小梦龙和可爱多每支各多少钱?
第五篇:小学六年级奥数题及答案
小学六年级奥数题及答案
工程问题
1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时? 解:
1/20+1/16=9/80表示甲乙的工作效率 9/80×5=45/80表示5小时后进水量 1-45/80=35/80表示还要的进水量
35/80÷(9/80-1/10)=35表示还要35小时注满 答:5小时后还要35小时就能将水池注满。
2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天? 解:由题意得,甲的工效为1/20,乙的工效为1/30,甲乙的合作工效为1/20*4/5+1/30*9/10=7/100,可知甲乙合作工效>甲的工效>乙的工效。
又因为,要求“两队合作的天数尽可能少”,所以应该让做的快的甲多做,16天内实在来不及的才应该让甲乙合作完成。只有这样才能“两队合作的天数尽可能少”。设合作时间为x天,则甲独做时间为(16-x)天 1/20*(16-x)+7/100*x=1 x=10 答:甲乙最短合作10天
3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。乙单独做完这件工作要多少小时? 解:
由题意知,1/4表示甲乙合作1小时的工作量,1/5表示乙丙合作1小时的工作量(1/4+1/5)×2=9/10表示甲做了2小时、乙做了4小时、丙做了2小时的工作量。
根据“甲、丙合做2小时后,余下的乙还需做6小时完成”可知甲做2小时、乙做6小时、丙做2小时一共的工作量为1。
所以1-9/10=1/10表示乙做6-4=2小时的工作量。1/10÷2=1/20表示乙的工作效率。
1÷1/20=20小时表示乙单独完成需要20小时。答:乙单独完成需要20小时。
4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成?
解:由题意可知
1/甲+1/乙+1/甲+1/乙+……+1/甲=1 1/乙+1/甲+1/乙+1/甲+……+1/乙+1/甲×0.5=1(1/甲表示甲的工作效率、1/乙表示乙的工作效率,最后结束必须如上所示,否则第二种做法就不比第一种多0.5天)
1/甲=1/乙+1/甲×0.5(因为前面的工作量都相等)得到1/甲=1/乙×2 又因为1/乙=1/17 所以1/甲=2/17,甲等于17÷2=8.5天
5.师徒俩人加工同样多的零件。当师傅完成了1/2时,徒弟完成了120个。当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个? 答案为300个
120÷(4/5÷2)=300个 可以这样想:师傅第一次完成了1/2,第二次也是1/2,两次一共全部完工,那么徒弟第二次后共完成了4/5,可以推算出第一次完成了4/5的一半是2/5,刚好是120个。
6.一批树苗,如果分给男女生栽,平均每人栽6棵;如果单份给女生栽,平均每人栽10棵。单份给男生栽,平均每人栽几棵? 答案是15棵
算式:1÷(1/6-1/10)=15棵
7.一个池上装有3根水管。甲管为进水管,乙管为出水管,20分钟可将满池水放完,丙管也是出水管,30分钟可将满池水放完。现在先打开甲管,当水池水刚溢出时,打开乙,丙两管用了18分钟放完,当打开甲管注满水是,再打开乙管,而不开丙管,多少分钟将水放完? 答案45分钟。
1÷(1/20+1/30)=12 表示乙丙合作将满池水放完需要的分钟数。
1/12*(18-12)=1/12*6=1/2 表示乙丙合作将漫池水放完后,还多放了6分钟的水,也就是甲18分钟进的水。
1/2÷18=1/36 表示甲每分钟进水 最后就是1÷(1/20-1/36)=45分钟。
8.某工程队需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几天? 答案为6天 解:
由“若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,”可知:
乙做3天的工作量=甲2天的工作量 即:甲乙的工作效率比是3:2 甲、乙分别做全部的的工作时间比是2:3 时间比的差是1份 实际时间的差是3天 所以3÷(3-2)×2=6天,就是甲的时间,也就是规定日期 方程方法:
[1/x+1/(x+2)]×2+1/(x+2)×(x-2)=1 解得x=6
9.两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟? 答案为40分钟。解:设停电了x分钟 根据题意列方程
1-1/120*x=(1-1/60*x)*2 解得x=40
二.鸡兔同笼问题
1.鸡与兔共100只,鸡的腿数比兔的腿数少28条,问鸡与兔各有几只? 解:
4*100=400,400-0=400 假设都是兔子,一共有400只兔子的脚,那么鸡的脚为0只,鸡的脚比兔子的脚少400只。
400-28=372 实际鸡的脚数比兔子的脚数只少28只,相差372只,这是为什么?
4+2=6 这是因为只要将一只兔子换成一只鸡,兔子的总脚数就会减少4只(从400只变为396只),鸡的总脚数就会增加2只(从0只到2只),它们的相差数就会少4+2=6只(也就是原来的相差数是400-0=400,现在的相差数为396-2=394,相差数少了400-394=6)
372÷6=62 表示鸡的只数,也就是说因为假设中的100只兔子中有62只改为了鸡,所以脚的相差数从400改为28,一共改了372只 100-62=38表示兔的只数
三.数字数位问题
1.把1至2005这2005个自然数依次写下来得到一个多位数123456789.....2005,这个多位数除以9余数是多少? 解:
首先研究能被9整除的数的特点:如果各个数位上的数字之和能被9整除,那么这个数也能被9整除;如果各个位数字之和不能被9整除,那么得的余数就是这个数除以9得的余数。解题:1+2+3+4+5+6+7+8+9=45;45能被9整除
依次类推:1~1999这些数的个位上的数字之和可以被9整除
10~19,20~29……90~99这些数中十位上的数字都出现了10次,那么十位上的数字之和就是10+20+30+……+90=450 它有能被9整除
同样的道理,100~900 百位上的数字之和为4500 同样被9整除 也就是说1~999这些连续的自然数的各个位上的数字之和可以被9整除;
同样的道理:1000~1999这些连续的自然数中百位、十位、个位 上的数字之和可以被9整除(这里千位上的“1”还没考虑,同时这里我们少***320042005 从1000~1999千位上一共999个“1”的和是999,也能整除; ***320042005的各位数字之和是27,也刚好整除。最后答案为余数为0。
2.A和B是小于100的两个非零的不同自然数。求A+B分之A-B的最小值...解:
(A-B)/(A+B)=(A+B2 * B/(A+B)前面的 1 不会变了,只需求后面的最小值,此时(A-B)/(A+B)最大。对于 B /(A+B)取最小时,(A+B)/B 取最大,问题转化为求(A+B)/B 的最大值。
(A+B)/B = 1 + A/B,最大的可能性是 A/B = 99/1(A+B)/B = 100(A-B)/(A+B)的最大值是: 98 / 100
3.已知A.B.C都是非0自然数,A/2 + B/4 + C/16的近似值市6.4,那么它的准确值是多少? 答案为6.375或6.4375 因为A/2 + B/4 + C/16=8A+4B+C/16≈6.4,所以8A+4B+C≈102.4,由于A、B、C为非0自然数,因此8A+4B+C为一个整数,可能是102,也有可能是103。
当是102时,102/16=6.375 当是103时,103/16=6.4375
4.一个三位数的各位数字 之和是17.其中十位数字比个位数字大1.如果把这个三位数的百位数字与个位数字对调,得到一个新的三位数,则新的三位数比原三位数大198,求原数.答案为476 解:设原数个位为a,则十位为a+1,百位为16-2a 根据题意列方程100a+10a+16-2a-100(16-2a)-10a-a=198 解得a=6,则a+1=7 16-2a=4 答:原数为476。
5.一个两位数,在它的前面写上3,所组成的三位数比原两位数的7倍多24,求原来的两位数.答案为24 解:设该两位数为a,则该三位数为300+a 7a+24=300+a a=24 答:该两位数为24。
6.把一个两位数的个位数字与十位数字交换后得到一个新数,它与原数相加,和恰好是某自然数的平方,这个和是多少? 答案为121 解:设原两位数为10a+b,则新两位数为10b+a 它们的和就是10a+b+10b+a=11(a+b)因为这个和是一个平方数,可以确定a+b=11 因此这个和就是11×11=121 答:它们的和为121。
7.一个六位数的末位数字是2,如果把2移到首位,原数就是新数的3倍,求原数.答案为85714 解:设原六位数为abcde2,则新六位数为2abcde(字母上无法加横线,请将整个看成一个六位数)再设abcde(五位数)为x,则原六位数就是10x+2,新六位数就是200000+x 根据题意得,(200000+x)×3=10x+2 解得x=85714 所以原数就是857142 答:原数为857142
8.有一个四位数,个位数字与百位数字的和是12,十位数字与千位数字的和是9,如果个位数字与百位数字互换,千位数字与十位数字互换,新数就比原数增加2376,求原数.答案为3963 解:设原四位数为abcd,则新数为cdab,且d+b=12,a+c=9 根据“新数就比原数增加2376”可知abcd+2376=cdab,列竖式便于观察 abcd 2376 cdab 根据d+b=12,可知d、b可能是3、9;
4、8;
5、7;
6、6。
再观察竖式中的个位,便可以知道只有当d=3,b=9;或d=8,b=4时成立。先取d=3,b=9代入竖式的百位,可以确定十位上有进位。根据a+c=9,可知a、c可能是1、8;
2、7;
3、6;
4、5。再观察竖式中的十位,便可知只有当c=6,a=3时成立。再代入竖式的千位,成立。得到:abcd=3963 再取d=8,b=4代入竖式的十位,无法找到竖式的十位合适的数,所以不成立。
9.有一个两位数,如果用它去除以个位数字,商为9余数为6,如果用这个两位数除以个位数字与十位数字之和,则商为5余数为3,求这个两位数.解:设这个两位数为ab 10a+b=9b+6 10a+b=5(a+b)+3 化简得到一样:5a+4b=3 由于a、b均为一位整数 得到a=3或7,b=3或8 原数为33或78均可以
10.如果现在是上午的10点21分,那么在经过28799...99(一共有20个9)分钟之后的时间将是几点几分? 答案是10:20 解:
(28799……9(20个9)+1)/60/24整除,表示正好过了整数天,时间仍然还是10:21,因为事先计算时加了1分钟,所以现在时间是10:20
四.排列组合问题
1.有五对夫妇围成一圈,使每一对夫妇的夫妻二人动相邻的排法有()A 768种 B 32种 C 24种 D 2的10次方中 解:
根据乘法原理,分两步:
第一步是把5对夫妻看作5个整体,进行排列有5×4×3×2×1=120种不同的排法,但是因为是围成一个首尾相接的圈,就会产生5个5个重复,因此实际排法只有120÷5=24种。
第二步每一对夫妻之间又可以相互换位置,也就是说每一对夫妻均有2种排法,总共又2×2×2×2×2=32种
综合两步,就有24×32=768种。2 若把英语单词hello的字母写错了,则可能出现的错误共有()A 119种 B 36种 C 59种 D 48种 解:
5全排列5*4*3*2*1=120 有两个l所以120/2=60 原来有一种正确的所以60-1=59
五.容斥原理问题
1. 有100种赤贫.其中含钙的有68种,含铁的有43种,那么,同时含钙和铁的食品种类的最大值和最小值分别是()A 43,25 B 32,25 C32,15 D 43,11 解:根据容斥原理最小值68+43-100=11 最大值就是含铁的有43种
2.在多元智能大赛的决赛中只有三道题.已知:(1)某校25名学生参加竞赛,每个学生至少解出一道题;(2)在所有没有解出第一题的学生中,解出第二题的人数是解出第三题的人数的2倍:(3)只解出第一题的学生比余下的学生中解出第一题的人数多1人;(4)只解出一道题的学生中,有一半没有解出第一题,那么只解出第二题的学生人数是()A,5 B,6 C,7 D,8 解:根据“每个人至少答出三题中的一道题”可知答题情况分为7类:只答第1题,只答第2题,只答第3题,只答第1、2题,只答第1、3题,只答2、3题,答1、2、3题。分别设各类的人数为a1、a2、a3、a12、a13、a23、a123 由(1)知:a1+a2+a3+a12+a13+a23+a123=25…① 由(2)知:a2+a23=(a3+ a23)×2……② 由(3)知:a12+a13+a123=a1-1……③ 由(4)知:a1=a2+a3……④ 再由②得a23=a2-a3×2……⑤
再由③④得a12+a13+a123=a2+a3-1⑥ 然后将④⑤⑥代入①中,整理得到 a2×4+a3=26 由于a2、a3均表示人数,可以求出它们的整数解: 当a2=6、5、4、3、2、1时,a3=2、6、10、14、18、22 又根据a23=a2-a3×2……⑤可知:a2>a3 因此,符合条件的只有a2=6,a3=2。
然后可以推出a1=8,a12+a13+a123=7,a23=2,总人数=8+6+2+7+2=25,检验所有条件均符。
故只解出第二题的学生人数a2=6人。
3.一次考试共有5道试题。做对第1、2、3、、4、5题的分别占参加考试人数的95%、80%、79%、74%、85%。如果做对三道或三道以上为合格,那么这次考试的合格率至少是多少? 答案:及格率至少为71%。假设一共有100人考试 100-95=5 100-80=20 100-79=21 100-74=26 100-85=15 5+20+21+26+15=87(表示5题中有1题做错的最多人数)
87÷3=29(表示5题中有3题做错的最多人数,即不及格的人数最多为29人)100-29=71(及格的最少人数,其实都是全对的)及格率至少为71%
六.抽屉原理、奇偶性问题 1.一只布袋中装有大小相同但颜色不同的手套,颜色有黑、红、蓝、黄四种,问最少要摸出几只手套才能保证有3副同色的?
解:可以把四种不同的颜色看成是4个抽屉,把手套看成是元素,要保证有一副同色的,就是1个抽屉里至少有2只手套,根据抽屉原理,最少要摸出5只手套。这时拿出1副同色的后4个抽屉中还剩3只手套。再根据抽屉原理,只要再摸出2只手套,又能保证有一副手套是同色的,以此类推。把四种颜色看做4个抽屉,要保证有3副同色的,先考虑保证有1副就要摸出5只手套。这时拿出1副同色的后,4个抽屉中还剩下3只手套。根据抽屉原理,只要再摸出2只手套,又能保证有1副是同色的。以此类推,要保证有3副同色的,共摸出的手套有:5+2+2=9(只)答:最少要摸出9只手套,才能保证有3副同色的。
2.有四种颜色的积木若干,每人可任取1-2件,至少有几个人去取,才能保证有3人能取得完全一样? 答案为21 解:
每人取1件时有4种不同的取法,每人取2件时,有6种不同的取法.当有11人时,能保证至少有2人取得完全一样: 当有21人时,才能保证到少有3人取得完全一样.3.某盒子内装50只球,其中10只是红色,10只是绿色,10只是黄色,10只是蓝色,其余是白球和黑球,为了确保取出的球中至少包含有7只同色的球,问:最少必须从袋中取出多少只球? 解:需要分情况讨论,因为无法确定其中黑球与白球的个数。当黑球或白球其中没有大于或等于7个的,那么就是: 6*4+10+1=35(个)如果黑球或白球其中有等于7个的,那么就是: 6*5+3+1=34(个)
如果黑球或白球其中有等于8个的,那么就是: 6*5+2+1=33 如果黑球或白球其中有等于9个的,那么就是: 6*5+1+1=32
4.地上有四堆石子,石子数分别是1、9、15、31如果每次从其中的三堆同时各取出1个,然后都放入第四堆中,那么,能否经过若干次操作,使得这四堆石子的个数都相同?(如果能请说明具体操作,不能则要说明理由)不可能。
因为总数为1+9+15+31=56 56/4=14 14是一个偶数
而原来1、9、15、31都是奇数,取出1个和放入3个也都是奇数,奇数加减若干次奇数后,结果一定还是奇数,不可能得到偶数(14个)。
七.路程问题
1.狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。问:狗再跑多远,马可以追上它? 解:
根据“马跑4步的距离狗跑7步”,可以设马每步长为7x米,则狗每步长为4x米。
根据“狗跑5步的时间马跑3步”,可知同一时间马跑3*7x米=21x米,则狗跑5*4x=20米。可以得出马与狗的速度比是21x:20x=21:20 根据“现在狗已跑出30米”,可以知道狗与马相差的路程是30米,他们相差的份数是21-20=1,现在求马的21份是多少路程,就是 30÷(21-20)×21=630米
2.甲乙辆车同时从a b两地相对开出,几小时后再距中点40千米处相遇?已知,甲车行完全程要8小时,乙车行完全程要10小时,求a b 两地相距多少千米? 答案720千米。
由“甲车行完全程要8小时,乙车行完全程要10小时”可知,相遇时甲行了10份,乙行了8份(总路程为18份),两车相差2份。又因为两车在中点40千米处相遇,说明两车的路程差是(40+40)千米。所以算式是(40+40)÷(10-8)×(10+8)=720千米。
3.在一个600米的环形跑道上,兄两人同时从同一个起点按顺时针方向跑步,两人每隔12分钟相遇一次,若两个人速度不变,还是在原来出发点同时出发,哥哥改为按逆时针方向跑,则两人每隔4分钟相遇一次,两人跑一圈各要多少分钟? 答案为两人跑一圈各要6分钟和12分钟。解:
600÷12=50,表示哥哥、弟弟的速度差 600÷4=150,表示哥哥、弟弟的速度和
(50+150)÷2=100,表示较快的速度,方法是求和差问题中的较大数(150-50)/2=50,表示较慢的速度,方法是求和差问题中的较小数 600÷100=6分钟,表示跑的快者用的时间 600/50=12分钟,表示跑得慢者用的时间
4.慢车车长125米,车速每秒行17米,快车车长140米,车速每秒行22米,慢车在前面行驶,快车从后面追上来,那么,快车从追上慢车的车尾到完全超过慢车需要多少时间? 答案为53秒
算式是(140+125)÷(22-17)=53秒
可以这样理解:“快车从追上慢车的车尾到完全超过慢车”就是快车车尾上的点追及慢车车头的点,因此追及的路程应该为两个车长的和。
5.在300米长的环形跑道上,甲乙两个人同时同向并排起跑,甲平均速度是每秒5米,乙平均速度是每秒4.4米,两人起跑后的第一次相遇在起跑线前几米? 答案为100米
300÷(5-4.4)=500秒,表示追及时间 5×500=2500米,表示甲追到乙时所行的路程
2500÷300=8圈……100米,表示甲追及总路程为8圈还多100米,就是在原来起跑线的前方100米处相遇。
6.一个人在铁道边,听见远处传来的火车汽笛声后,在经过57秒火车经过她前面,已知火车鸣笛时离他1360米,(轨道是直的),声音每秒传340米,求火车的速度(得出保留整数)答案为22米/秒 算式:1360÷(1360÷340+57)≈22米/秒
关键理解:人在听到声音后57秒才车到,说明人听到声音时车已经从发声音的地方行出1360÷340=4秒的路程。也就是1360米一共用了4+57=61秒。
7.猎犬发现在离它10米远的前方有一只奔跑着的野兔,马上紧追上去,猎犬的步子大,它跑5步的路程,兔子要跑9步,但是兔子的动作快,猎犬跑2步的时间,兔子却能跑3步,问猎犬至少跑多少米才能追上兔子。
正确的答案是猎犬至少跑60米才能追上。解:
由“猎犬跑5步的路程,兔子要跑9步”可知当猎犬每步a米,则兔子每步5/9米。由“猎犬跑2步的时间,兔子却能跑3步”可知同一时间,猎犬跑2a米,兔子可跑5/9a*3=5/3a米。从而可知猎犬与兔子的速度比是2a:5/3a=6:5,也就是说当猎犬跑60米时候,兔子跑50米,本来相差的10米刚好追完
8. AB两地,甲乙两人骑自行车行完全程所用时间的比是4:5,如果甲乙二人分别同时从AB两地相对行使,40分钟后两人相遇,相遇后各自继续前行,这样,乙到达A地比甲到达B地要晚多少分钟? 答案:18分钟
解:设全程为1,甲的速度为x乙的速度为y 列式40x+40y=1 x:y=5:4 得x=1/72 y=1/90 走完全程甲需72分钟,乙需90分钟 故得解
9.甲乙两车同时从AB两地相对开出。第一次相遇后两车继续行驶,各自到达对方出发点后立即返回。第二次相遇时离B地的距离是AB全程的1/5。已知甲车在第一次相遇时行了120千米。AB两地相距多少千米? 答案是300千米。
解:通过画线段图可知,两个人第一次相遇时一共行了1个AB的路程,从开始到第二次相遇,一共又行了3个AB的路程,可以推算出甲、乙各自共所行的路程分别是第一次相遇前各自所走的路程的3倍。即甲共走的路程是120*3=360千米,从线段图可以看出,甲一共走了全程的(1+1/5)。因此360÷(1+1/5)=300千米
从A地到B地,甲、乙两人骑自行车分别需要4小时、6小时,现在甲乙分别AB两地同时出发相向而行,相遇时距AB两地中点2千米。如果二人分别至B地,A地后都立即折回。第二次相遇点第一次相遇点之间有()千米
10.一船以同样速度往返于两地之间,它顺流需要6小时;逆流8小时。如果水流速度是每小时2千米,求两地间的距离?
解:(1/6-1/8)÷2=1/48表示水速的分率 2÷1/48=96千米表示总路程
11.快车和慢车同时从甲乙两地相对开出,快车每小时行33千米,相遇是已行了全程的七分之四,已知慢车行完全程需要8小时,求甲乙两地的路程。解:
相遇是已行了全程的七分之四表示甲乙的速度比是4:3 时间比为3:4 所以快车行全程的时间为8/4*3=6小时 6*33=198千米
12.小华从甲地到乙地,3分之1骑车,3分之2乘车;从乙地返回甲地,5分之3骑车,5分之2乘车,结果慢了半小时.已知,骑车每小时12千米,乘车每小时30千米,问:甲乙两地相距多少千米? 解:
把路程看成1,得到时间系数 去时时间系数:1/3÷12+2/3÷30 返回时间系数:3/5÷12+2/5÷30 两者之差:(3/5÷12+2/5÷30)-(1/3÷12+2/3÷30)=1/75相当于1/2小时 去时时间:1/2×(1/3÷12)÷1/75和1/2×(2/3÷30)1/75 路程:12×〔1/2×(1/3÷12)÷1/75〕+30×〔1/2×(2/3÷30)1/75〕=37.5(千米)
八.比例问题
1.甲乙两人在河边钓鱼,甲钓了三条,乙钓了两条,正准备吃,有一个人请求跟他们一起吃,于是三人将五条鱼平分了,为了表示感谢,过路人留下10元,甲、乙怎么分?快快快 答案:甲收8元,乙收2元。解:
“三人将五条鱼平分,客人拿出10元”,可以理解为五条鱼总价值为30元,那么每条鱼价值6元。又因为“甲钓了三条”,相当于甲吃之前已经出资3*6=18元,“乙钓了两条”,相当于乙吃之前已经出资2*6=12元。
而甲乙两人吃了的价值都是10元,所以 甲还可以收回18-10=8元 乙还可以收回12-10=2元 刚好就是客人出的钱。
2.一种商品,今年的成本比去年增加了10分之1,但仍保持原售价,因此,每份利润下降了5分之2,那么,今年这种商品的成本占售价的几分之几? 答案22/25 最好画线段图思考:
把去年原来成本看成20份,利润看成5份,则今年的成本提高1/10,就是22份,利润下降了2/5,今年的利润只有3份。增加的成本2份刚好是下降利润的2份。售价都是25份。所以,今年的成本占售价的22/25。
3.甲乙两车分别从A.B两地出发,相向而行,出发时,甲.乙的速度比是5:4,相遇后,甲的速度减少20%,乙的速度增加20%,这样,当甲到达B地时,乙离A地还有10千米,那么A.B两地相距多少千米? 解:
原来甲.乙的速度比是5:4 现在的甲:5×(1-20%)=4 现在的乙:4×(1+20%)4.8 甲到B后,乙离A还有:5-4.8=0.2 总路程:10÷0.2×(4+5)=450千米
4.一个圆柱的底面周长减少25%,要使体积增加1/3,现在的高和原来的高度比是多少? 答案为64:27 解:根据“周长减少25%”,可知周长是原来的3/4,那么半径也是原来的3/4,则面积是原来的9/16。根据“体积增加1/3”,可知体积是原来的4/3。体积÷底面积=高
现在的高是4/3÷9/16=64/27,也就是说现在的高是原来的高的64/27 或者现在的高:原来的高=64/27:1=64:27
5.某市场运来香蕉、苹果、橘子和梨四种水果其中橘子、苹果共30吨香蕉、橘子和梨共45吨。橘子正好占总数的13分之2。一共运来水果多少吨? 第二题:答案为65吨 橘子+苹果=30吨 香蕉+橘子+梨=45吨
所以橘子+苹果+香蕉+橘子+梨=75吨
橘子÷(香蕉+苹果+橘子+梨)=2/13 说明:橘子是2份,香蕉+苹果+橘子+梨是13份 橘子+香蕉+苹果+橘子+梨一共是2+13=15份