六年级小升初奥数(汇编)

时间:2020-11-13 11:20:23下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《六年级小升初奥数》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《六年级小升初奥数》。

第一篇:六年级小升初奥数

奥林匹克数学竞赛或数学奥林匹克竞赛,简称奥数。奥数体现了数学与奥林匹克体育运动精神的共通性:更快、更高、更强。小升初可以通过奥数这门竞赛来为自己争取到更好的机会。下面就是小编为大家梳理归纳的内容,希望能够帮助到大家。

六年级小升初奥数

1、一个两位数除72,余数是12,那么满足要求的所有两位数有几个?分别是多少?

解答:由题意知,所求的两位数应是7212=60的约数,还应大于12。在60的约数中,两位数有10、12、15、20、30、60这六个数,大于12的有:15、20、30、60这四个数。所以满足要求的两位数有4个,分别是15、20、30、60。

2、有写着5、9、17的卡片各8张,现在从中任意抽出5张,这5张卡片上的数字之和可能是()。

A、31  B、39  C、55  D、41

解答:5、9、17三个数除以4都是余1的,任取5张,也是除以4余1的,所以是D。

3、某校五年级学生排成一个实心方阵,最外一层总人数为60人,问方阵最外层每边有多少人?这个方阵共有学生多少人?

解答:方阵最外层每边人数:604+1=16(人)

整个方阵共有学生人数:1616=256(人)

4、12张乒乓球台上共有34人在打球,那么正在进行单打和双打的台子各有多少张?

解答:利用鸡兔同笼的想法,假设都在进行单打,那么应有122=24人,多出34-24=10人。把单打变为双打,每个台子需要增加2人,所以双打的台子有102=5张,单打的台子有12-5=7张。

5、一队学生站成20行20列方阵,如果去掉4行4列,那么要减少多少人?

解答:20-4=16(人),2020=400(人),1616=256(人),400-256=144(人)

6、有黑白两种棋子共300枚,按每堆3枚分成100堆。其中只有1枚白子的共27堆,有2枚或3枚黑子的共42堆,有3枚白子的与有3枚黑子的堆数相等。那么在全部棋子中,白子共有多少枚?

解答:271+432+153=158(枚)

7、有336个苹果、252个桔子、210个梨,用这些水果最多可以分成多少份同样的礼物?每份礼物中的三样水果各有多少个?

解答:(336,252)=(84,252)=84

(84,210)=(84,42)=42所以可以分成42份礼物

苹果:33642=8(个)桔子:25242=6(个)梨:21042=5(个)

8、正方形操场四周栽了一圈树,每两棵树相隔5米。甲乙二人同时从一个角出发,向不同的方向走去,甲的速度是乙的2倍,乙在拐了第一弯之后的第5棵树与甲相遇。操场四周一共栽了多少棵树?

解答:由于甲速是乙速的2倍,所以乙在拐了第一弯时,甲正好拐了两个弯,即两个人开始同时沿着最上边走。

乙走过了5棵树,也就是走过了5个间隔,所以甲走过了10个间隔,四周一共有(5+10)4=60个间隔,根据植树问题,一共栽了60棵树。

9、有甲乙丙三种货物,若购甲3件,乙7件,丙1件共需315元。若购甲4件,乙10件,丙1件共需420元。现购甲乙丙各一件共需多少元?

解答:设甲、乙、丙每件分别为x、y、z元

3x+7y+z=315

4x+10y+z=420

可知x+3y=105,2x+6y=210,x+y+z=105,即三种货物各一件需要105元。

10、某年一月份有4个星期四、5个星期五,这一年1月4日是星期几?

解答:画一个日历表,从表中马上看出:1月4日星期一。

说明:根据“有五个星期五”,可知从第一个星期五到第五个星期五之间共有29天。31-29=2(天),这多余的2天是在第一个星期五前,还是在第五个星期五之后呢?如果在第一个星期五之前,那就多一个星期四,这与题中条件不符。

小学六年级奥数小升初测试题

1、一个三位数除以43,商是a,余数是b(a、b都是整数)则a+b的值是。

2、上底是10厘米,下底是25厘米的梯形,如果下底减少8厘米,而上底不变,面积就减少84平方厘米,那么原梯形的面积是平方厘米。

3、有甲、乙、丙三个数,甲、乙两数的和是147,丙、乙两数的和是123,甲、丙两数的和是132,则甲数是,乙数是,丙数是。

4、用一个小数减去一个末尾数字不为零的整数,如果给整数添上一个小数点,使它变成小数,差就增加154.44,那么这个整数是。

5、一个表面积为54平方分米的正方体,切成两个完全相等的长方体后,表面积总和是。

6、把一根长3米的长方体木料,平均锯成3段,表面积增加了2.4平方米,这根木料的体积是立方米。

7、有一筐苹果,第一次取出全部的一半多2个,第二次取出余下的一半少2个,筐中还剩20个,筐中原有苹果个。

8、小军期末考试,语文、英语(论坛)、科学三门的平均成绩是78分,数学成绩公布后,四门的平均成绩提高了5分,小军数学考了分。

二、应用题(每题6分,共60分)

1、甲、乙两列火车从相距470千米的两城相向而行,甲车每小时行驶38千米,乙车每小时行驶40千米。乙车先出发两小时后,甲车才出发,甲车行驶多少小时后与乙车相遇?

2、某小队学生参加工厂劳动,平均每人生产76个零件,已知每个人至少做70个,其中一人做了88个,如果不把这个同学计算在内,那么平均每人做74个,这个小队做得最多的同学可以做多少个零件?

3、已知两个自然数的积是5766,它们的公因数是31,求这两个数。

4、把一根长2.4米,宽0.8米,高0.4米的木料锯成体积相等的两份,它的表面积最少增加多少平方米?

5、甲、乙、丙、丁四个数,每次去掉一个数,将其余三个数求平均数,这样算了四次,得到以下四个数:45,60,65,70,求甲、乙、丙、丁四个数的平均数。

6、小明前几次数学测验的平均成绩是84分,这次要考100分才能把平均成绩提高到86分,问这次是第几次测试?

7、小红每分钟行80米,小英每分钟行60米,两人在同一地点同时相背而行,走了三分钟后,小红调头去追小英,追上小英时,两人各行了多少米?

8、张老师找甲、乙、丙三名学生来办公室谈话,甲要10分钟谈完,乙要12分钟谈完,丙要8分钟谈完,怎么样安排三人的谈话顺序,使三人花的总时间最少?最少是几分钟?

小升初面试经典奥数思维题

1、已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?

2、3箱苹果重45千克。一箱梨比一箱苹果多5千克,3箱梨重多少千克?

3、甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。甲比乙速度快,甲每小时比乙快多少千米?

4、李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。每支铅笔多少钱?

5、甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。甲车每小时行40千米,乙车每小时行45千米,两地相距多少千米?(交换乘客的时间略去不计)

6、学校组织两个课外兴趣小组去郊外活动。第一小组每小时走4.5千米,第二小组每小时行3.5千米。两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。多长时间能追上第二小组?

7、有甲乙两个仓库,每个仓库平均储存粮食32.5吨。甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?

8、甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。甲、乙两队每天共修多少米?

9、学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元?

10、一列火车和一列慢车,同时分别从甲乙两地相对开出。快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米?

11、某玻璃厂托运玻璃250箱,合同规定每箱运费20元,如果损坏一箱,不但不付运费还要赔偿100元。运后结算时,共付运费4400元。托运中损坏了多少箱玻璃?

12、五年级一中队和二中队要到距学校20千米的地方去春游。第一中队步行每小时行4千米,第二中队骑自行车,每小时行12千米。第一中队先出发2小时后,第二中队再出发,第二中队出发后几小时才能追上一中队?

13、某厂运来一堆煤,如果每天烧1500千克,比计划提前一天烧完,如果每天烧1000千克,将比计划多烧一天。这堆煤有多少千克?

14、妈妈让小红去商店买5支铅笔和8个练习本,按价钱给小红3.8元钱。结果小红却买了8支铅笔和5本练习本,找回0.45元。求一支铅笔多少元?

15、学校组织外出参观,参加的师生一共360人。一辆大客车比一辆卡车多载10人,6辆大客车和8辆卡车载的人数相等。都乘卡车需要几辆?都乘大客车需要几辆?

16、某筑路队承担了修一条公路的任务。原计划每天修720米,实际每天比原计划多修80米,这样实际修的差1200米就能提前3天完成。这条公路全长多少米?

17、某鞋厂生产1800双鞋,把这些鞋分别装入12个纸箱和4个木箱。如果3个纸箱加2个木箱装的鞋同样多。每个纸箱和每个木箱各装鞋多少双?

18、某工地运进一批沙子和水泥,运进沙子袋数是水泥的2倍。每天用去30袋水泥,40袋沙子,几天以后,水泥全部用完,而沙子还剩120袋,这批沙子和水泥各多少袋?

19、学校里买来了5个保温瓶和10个茶杯,共用了90元钱。每个保温瓶是每个茶杯价钱的4倍,每个保温瓶和每个茶杯各多少元?

20、两个数的和是572,其中一个加数个位上是0,去掉0后,就与第二个加数相同。这两个数分别是多少?

21、一桶油连桶重16千克,用去一半后,连桶重9千克,桶重多少千米?

22、一桶油连桶重10千克,倒出一半后,连桶还重5.5千克,原来有油多少千克?

23、用一只水桶装水,把水加到原来的2倍,连桶重10千克,如果把水加到原来的5倍,连桶重22千克。桶里原有水多少千克?

24、小红和小华共有故事书36本。如果小红给小华5本,两人故事书的本数就相等,原来小红和小华各有多少本?

25、有5桶油重量相等,如果从每只桶里取出15千克,则5只桶里所剩下油的重量正好等于原来2桶油的重量。原来每桶油重多少千克?

26、把一根木料锯成3段需要9分钟,那么用同样的速度把这根木料锯成5段,需要多少分?

27、一个车间,女工比男工少35人,男、女工各调出17人后,男工人数是女工人数的2倍。原有男工多少人?女工多少人?

28、李强骑自行车从甲地到乙地,每小时行12千米,5小时到达,从乙地返回甲地时因逆风多用1小时,返回时平均每小时行多少千米?

29、甲、乙二人同时从相距18千米的两地相对而行,甲每小时行走5千米,乙每小时走4千米。如果甲带了一只狗与甲同时出发,狗以每小时8千米的速度向乙跑去,遇到乙立即回头向甲跑去,遇到甲又回头向飞跑去,这样二人相遇时,狗跑了多少千米?

30、有红、黄、白三种颜色的球,红球和黄球一共有21个,黄球和白球一共有20个,红球和白球一共有19个。三种球各有多少个?

31、在一根粗钢管上接细钢管。如果接2根细钢管共长18米,如果接5根细钢管共长33米。一根粗钢管和一根细钢管各长多少米?

32、水泥厂原计划12天完成一项任务,由于每天多生产水泥4.8吨,结果10天就完成了任务,原计划每天生产水泥多少吨?

33、学校举办歌舞晚会,共有80人参加了表演。其中唱歌的有70人,跳舞的有30人,既唱歌又跳舞的有多少人?

34、学校举办语文、数学双科竞赛,三年级一班有59人,参加语文竞赛的有36人,参加数学竞赛的有38人,一科也没参加的有5人。双科都参加的有多少人?

35、学校买了4张桌子和6把椅子,共用640元。2张桌子和5把椅子的价钱相等,桌子和椅子的单价各是多少元?

36、父亲今年45岁,5年前父亲的年龄是儿子的4倍,今年儿子多少岁?

37、有两桶油,甲桶油重是乙桶油重的4倍,如果从甲桶倒入乙桶18千克,两桶油就一样重,原来每桶各有多少千克油?

38、光明小学举办数学知识竞赛,一共20题。答对一题得5分,答错一题扣3分,不答得0分。小丽得了79分,她答对几道,答错几道,有几题没答?

39、甲列火车长240米,每秒行20米;乙列火车长264米,每秒行16米,两车相向而行,从两车头相遇到两车尾相离需要几秒?

40、一列火车长600米,通过一条长1150米的隧道,已知火车的速度是每分700米,问火车通过隧道需要几分?

41、小明从家里到学校,如果每分走50米,则正好到上课时间;如果每分走60米,则离上课时间还有2分。问小明从家里到学校有多远?

42、有一周长600米的环形跑道,甲、乙二人同时、同地、同向而行,甲每分钟跑300米,乙每分钟跑400米,经过几分钟二人第一次相遇?

43、有一个长方形纸板,如果只把长增加2厘米,面积就增加8平方米;如果只把宽增加2厘米,面积就增加12平方厘米。这个长方形纸板原来的面积是多少?

44、妈妈买苹果和梨各3千克,付出20元找回7.4元。每千克苹果2.4元,每千克梨多少元?

45、甲乙两人同时从相距135千米的两地相对而行,经过3小时相遇。甲的速度是乙的2倍,甲乙两人每小时各行多少千米?

46、盒子里有同样数目的黑球和白球。每次取出8个黑球和5个白球,取出几次以后,黑球没有了,白球还剩12个。一共取了几次?盒子里共有多少个球?

47、上午6时从汽车站同时发出1路和2路公共汽车,1路车每隔12分钟发一次,2路车每隔18分钟发一次,求下次同时发车时间。

48、父亲今年45岁,儿子今年15岁,多少年前父亲的年龄是儿子年龄的11倍?

49、王老师有一盒铅笔,如平均分给2名同学余1支,平均分给3名同学余2支,平均分给4名同学余3支,平均分给5名同学余4支。问这盒铅笔最少有多少支?

50、一块平行四边形地,如果只把底增加8米,或只把高增加5米,它的面积都增加40平方米。求这块平行四边形地原来的面积?

小升初的奥数题精选

1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?

考点:列方程解含有两个未知数的应用题;差倍问题。

专题:和倍问题;列方程解应用题。

分析:设一把椅子的价格是x元,则一张桌子的价格就是10x元,根据等量关系:“一张桌子比一把椅子多288元”,列出方程即可解答.解答:解:设一把椅子的价格是x元,则一张桌子的价格就是10x元,根据题意可得方程:

10x﹣x=288,9x=288,x=32;

则桌子的价格是:32×10=320(元),答:一张桌子320元,一把椅子32元.点评:此题也可以用算术法计算:由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10﹣1)倍,由此可求得一把椅子的价钱.再根据椅子的价钱,就可求得一张桌子的价钱,所以:一把椅子的价钱:288÷(10﹣1)=32(元)一张桌子的价钱:32×10=320(元);答:一张桌子320元,一把椅子32元.2.3箱苹果重45千克.一箱梨比一箱苹果多5千克,3箱梨重多少千克?

考点:整数、小数复合应用题。

专题:简单应用题和一般复合应用题。

分析:可先求出3箱梨比3箱苹果多的重量,再加上3箱苹果的重量,就是3箱梨的重量.据此解答

解答:解:45+5×3,=45+15,=60(千克);

答:3箱梨重60千克.点评:本题的关键是先求出3箱梨比3箱苹果多的重量,然后再根据加法的意义求出3箱梨的重量.3.甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇.甲比乙速度快,甲每小时比乙快多少千米?

考点:简单的行程问题。

专题:行程问题。

分析:根据在距离中点4千米处相遇和甲比乙速度快,可知甲比乙多走4×2千米,又知经过4小时相遇.即可求甲比乙每小时快多少千米.解答:解:4×2÷4

=8÷4,=2(千米);

答:甲每小时比乙快2千米.点评:解答此题的关键是确定甲比乙在4小时内多走了多少千米,然后再根据路程÷时间=速度进行计算即可.4.李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱.每支铅笔多少钱?

考点:整数、小数复合应用题。

专题:简单应用题和一般复合应用题。

分析:根据两人付同样多的钱买同一种铅笔和李军要了13支,张强要了7支,可知每人应该得(13+7)÷2支,而李军要了13支比应得的多了3支,因此又给张强0.6元钱,即可求每支铅笔的价钱.据此解答.解答:解:0.6÷[13﹣(13+7)÷2],=0.6÷[13﹣20÷2],=0.6÷3,=0.2(元);

答:每支铅笔0.2元.点评:本题的关键是求出李军给张强0.6元钱,是几支铅笔的价钱.5.甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸.由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点.甲车每小时行40千米,乙车每小时行45千米,两地相距多少千米?(交换乘客的时间略去不计)

考点:简单的行程问题。

专题:行程问题。

分析:根据已知两车上午8时从两站出发,下午2点返回原车站,可求出两车所行驶的时间.根据两车的速度和行驶的时间可求两车行驶的总路程.解答:解:下午2点是14时.往返用的时间:14﹣8=6(时)

两地间路程:(40+45)×6÷2

=85×6÷2,=255(千米);

答:两地相距255千米.点评:解答此题的关键是确定两车行驶的时间,然后再根据公式速度×时间=路程计算出两车行驶的总路程,再除以就是两地相距的距离.6.学校组织两个课外兴趣小组去郊外活动.第一小组每小时走4.5千米,第二小组每小时行3.5千米.两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组.多长时间能追上第二小组?

考点:追及问题。

专题:行程问题。

分析:第一小组停下来参观果园时间,第二小组多行了[3.5﹣(4.5﹣3.5)]千米,也就是第一组要追赶的路程.又知第一组每小时比第二组快(4.5﹣3.5)千米,由此便可求出追赶的时间.解答:解:第一组追赶第二组的路程:

3.5﹣(4.5﹣3.5),=3.5﹣1,=2.5(千米);

第一组追赶第二组所用时间:

2.5÷(4.5﹣3.5),=2.5÷1,=2.5(小时);

答:第一组2.5小时能追上第二小组.点评:此题属于复杂的追击应用题,此类题的解答方法是根据“追及路程÷速度差=追及时间”,代入数值,计算即可

7.有甲乙两个仓库,每个仓库平均储存粮食32.5吨.甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?

考点:列方程解含有两个未知数的应用题;和倍问题。

专题:简单应用题和一般复合应用题;和倍问题。

分析:设乙仓库的存粮是x吨,则甲仓库的存粮是4x﹣5吨,则根据等量关系:“两个仓库的存粮一共有32.5×2=65吨”,由此列出方程解决问题.解答:解:设乙仓库的存粮是x吨,则甲仓库的存粮是4x﹣5吨,根据题意可得方程:

x+4x﹣5=32.5×2,5x=70,x=14,则甲仓库存粮:14×4﹣5=51(吨),答:甲仓库有51吨,乙仓库有14吨.点评:此题属于含有两个未知数的应用题,这类题用方程解答比较容易,关键是找准数量间的相等关系,设一个未知数为x,另一个未知数用含x的式子来表示,进而列并解方程即可.8.甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米.甲、乙两队每天共修多少米?

考点:简单的工程问题。

专题:工程问题。

分析:根据甲队每天比乙队多修10米,可以这样考虑:如果把甲队修的4天看作和乙队4天修的同样多,那么总长度就减少4个10米,这时的长度相当于乙(4+5)天修的.由此可求出乙队每天修的米数,进而再求两队每天共修的米数.解答:解:乙每天修的米数:

(400﹣10×4)÷(4+5),=(400﹣40)÷9,=360÷9,=40(米);

甲乙两队每天共修的米数:

40×2+10=80+10=90(米);

答:两队每天修90米.点评:本题不能直接求出甲乙的工作效率和,要采取假设法,假设甲乙的工作效率相同,找出由此引起的工作量的变化,再根据工作效率=工作量÷工作时间求解.9.学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元?

考点:简单的等量代换问题。

专题:简单应用题和一般复合应用题。

分析:已知每张桌子比每把椅子贵30元,如果桌子的单价与椅子同样多,那么总价就应减少30×6元,这时的总价相当于(6+5)把椅子的价钱,由此可求每把椅子的单价,再求每张桌子的单价.解答:解:每把椅子的价钱:

(455﹣30×6)÷(6+5),=(455﹣180)÷11,=275÷11,=25(元);

每张桌子的价钱:

25+30=55(元);

答:每张桌子55元,每把椅子25元.点评:解答此题的关键是根据“每张桌子比每把椅子贵30元,”得出总价里面减去每张桌子多的30元,剩下的就相当于是(6+5)=11把椅子的价格,从而求出椅子的价格即可解答问题.10.一列火车和一列慢车,同时分别从甲乙两地相对开出.快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米?

考点:简单的行程问题。

专题:行程问题。

分析:根据已知的两车的速度可求速度差,根据两车的速度差及快车比慢车多行的路程,可求出两车行驶的时间,进而求出甲乙两地的路程.解答:解:(75+65)×[40÷(75﹣65)],=140×[40÷10],=140×4,=560(千米);

答:甲乙两地相距560千米.点评:解题的关键是理解用快车比慢车多行的路程÷两车的速度差=两车行驶的时间,再根据速度和×两车行驶的时间求出两地的距离.11.某玻璃厂托运玻璃250箱,合同规定每箱运费20元,如果损坏一箱,不但不付运费还要赔偿100元.运后结算时,共付运费4400元.托运中损坏了多少箱玻璃?

考点:盈亏问题。

专题:简单应用题和一般复合应用题。

分析:根据已知托运玻璃250箱,每箱运费20元,可求出应付运费总钱数.根据每损坏一箱,不但不付运费还要赔偿100元的条件可知,则损坏一个就少收运费100+20元,应付的钱数和实际付的钱数的差里有几个(100+20)元,就是损坏几箱.解答:解:(20×250﹣4400)÷(100+20),=600÷120,=5(箱)

答:损坏了5箱.点评:明确损坏一个就少收运费100+20元是完成本题的关键.12.五年级一中队和二中队要到距学校20千米的地方去春游.第一中队步行每小时行4千米,第二中队骑自行车,每小时行12千米.第一中队先出发2小时后,第二中队再出发,第二中队出发后几小时才能追上一中队?

考点:追及问题。

专题:行程问题。

分析:因第一中队早出发2小时比第二中队先行4×2千米,即此时两个中队之间的距离是8千米,而每小时第二中队比第一中队多行(12﹣4)千米,由此即可求第二中队追上第一中队的时间.解答:解:4×2÷(12﹣4);

=4×2÷8;

=1(时);

答:第二中队1小时能追上第一中队.点评:本题体现了追及问题的基本关系式:路程差÷速度差=追及时间.13.某厂运来一堆煤,如果每天烧1500千克,比计划提前一天烧完,如果每天烧1000千克,将比计划多烧一天.这堆煤有多少千克?

考点:有关计划与实际比较的三步应用题。

专题:简单应用题和一般复合应用题。

分析:由已知条件可知道,前后烧煤总数量相差(1500+1000)千克,是由每天相差(1500﹣1000)千克造成的,由此可求出原计划烧的天数,进而再求出这堆煤的数量.解答:解:原计划烧煤天数:

(1500+1000)÷(1500﹣1000),=2500÷500,=5(天);

这堆煤的重量:

1500×(5﹣1),=1500×4,=6000(千克);

答:这堆煤有6000千克.点评:解答此题的关键是求原计划烧的天数,用前后烧煤总数相差除以每天烧煤量之差即原计划烧的天数,进而求出这堆煤的数

六年级小升初奥数

第二篇:六年级奥数题

六年级数学奥赛题

(一)四、应用题(每小题6分,计30分)

1、球从高处自由下落,每次接触地面后弹起的高度是前一次下落高度的2/3。如果球从25米高处落下,那么第三次弹起的高度是多少米?

2、在一块20公顷的土地上,用它的1/5种小麦,其余的种大豆和玉米,种大豆和玉米的公顷数比是3:5。种大豆和玉米各多少公顷?

3、水结成冰后,体积增加 1/10。现有一块冰,体积是2立方分米,融化后的体积是多少?

4.为民中药店计划收购中草药1500千克,上半年完成了计划的55%,下半年完成了计划的65%。为民中药店超额收购中草药多少千克?

5.公园的一个圆形花坛的直径是60米,这个花坛的面积是多少?如果一盆花占地面积大约是1/10平方米,这个花坛大约要摆多少万盆花?(得数保留整万数)

6.一部手机降价后只卖1800元,售价只有原来的9/10,比原来降价了多少元?

7.一台挂钟的分针长8厘米,在5小时里分针的针尖共走了多少厘米?

8.生物小组同学要测量一棵百年大榕树的横截面积,他们量得树干的周长是 6.28米,这棵树的横截面积是多少平方米?

9张老师有一套住房价值40万,由于急需现金,他以九折优惠卖给老李。过了一段时间后,房价上涨10%,张老师又想从老李处把房子买回来。想一想,如果老张买回房子,总共损失多少万元?

10、同学们参加野营活动。一个同学到负责后勤的教师那是去领碗。教师问他领多少,他说领55个,又问:“多少人吃饭?”他说:“一人一个饭碗,两人一个菜碗,三个人一个汤碗。”算一算这个同学给多少人领碗?

11、某校五、六年级共有学生200人。“六一”儿童节五年级有11人,六年级有25%的同学去市里参加庆祝活动,这时两个年级余下的人数相等。求六年级有学生多少人?

12、修一条路,第一天修了全路的1/3,第二天修了余下的2/5,两天共修路135米,这条路全长多少米?

13、幼儿园买来红气、蓝、黑气球共180个,其中红气球的个数是蓝气球的3倍,黑气球的个数是蓝气球的2倍,求红、蓝、黑气球各多少个?

14、小强买了一本书,第一天看了全书的2/5,第二天可能看了剩下的5/8,还有36页没看,这本书一共有多少页?

15、小东的存钱罐里存有1元的硬币若干,他每天取出一部分买零食,第一天取出1/9,以后7天分别取出当时硬币的1/

8、1/

7、1/

6、1/

5、1/

4、1/

3、1/2,8天后剩下5个硬币,原来罐内共有多少个硬币?

16、一条路全长60千米,分成上坡、平路、下坡三段,各段路程长的比依次是1:2:3,某人走各段路程所用时间比依次是4:5:6,已知他上坡的速度是每小时3千米,问此人走完全程用了多少时间?

第三篇:六年级奥数教案

思源学校第二课堂(第六周)

判断与推理 2 授课人:雍尧

教学要求:(1)理解逻辑推理的四条基本规律,学会运用分析、推理方法解决问题。

(2)培养学生逻辑推理能力.教学重点:学会运用分析、推理方法解决问题。

教学难点: 理解、掌握分析、推理方法。

教学方法:讲解法、图表法、练习法。

(一)教学过程:

一、复习。

上节课的习题例2

二、教学新课 教学例3

甲乙丙三人被蒙上眼睛,告诉他们每个人头上都戴了一顶帽子,帽子的颜色不是红的就是绿的。然后,就去掉蒙眼睛的布,要求每个人如果看见别人(一个或两个)戴的是红帽子就举手,并且谁能断定自己头上帽子的颜色,谁就马上离开房间。三人碰巧戴的都是红帽子,因此三个人都举了手,几分钟后,丙首先走开了,他是怎么推导出自己头上帽子的颜色的?

(1)学生审题,理解题意。(2)同座位讨论。

(3)分析:此题关键:注意到甲乙两人没有立即离开房间这个事实。丙推理,我的帽子如果是绿的,甲根据乙举手立即知道自己的帽子是红的,那他应走出房间,乙会做同样的推理离开房间。甲乙不能很快判断自己帽子的颜色,说明我的帽子不是绿的,而是红的。(4)说说你的推理过程。

3、比较前面例2例3有什么相同不同之处。

三、巩固练习。教学例4 学田小学举行科技知识竞赛,同学们对一贯刻苦学习爱好读书的四名学生的成绩作了如下估计:(1)丙得第一,乙得第二;

(2)丙得第二,丁得第三;(3)甲得第二,丁得第四。

比赛结果一公布,果然是这四名学生获得前四名。但以上三种估计,每一种都对了一半错一半。他们各得第几名?(1)学生审题,理解题意。(2)同座位讨论。(3)分析:利用图表帮助学生去推理判断。

第一种假定“丙第一错,乙第二对”出现矛盾。照此推理“丙第一对,乙第二错”没有出

现矛盾。所以丙第一,甲第二,丁第三,乙第四。(4)每人口述推理过程。

四、小结。

这节课你学会了什么?

第四篇:六年级奥数题

六年级奥数题

1、晶晶三天看完一本书,第一天看 了全书的1/4,第二天看了余下的 2/5第二天比第一天多看了15页,这本书共有多少页?

2、有一批货物,第天运了这批货物的1/4第二天运的是第一天的 3/5剩90吨没有运,这批货物有多少吨?

3、修路队在一条公路上施工,第一天修了这条公路的 1/4第二天修了余下的2/3,已知这两天共修路1200米,这条公路全长多少米?

4、加工一批零件,甲先加工了这批零件的 2/5接着乙加工余下的 4/9 ,已知乙加工个数比甲少200个,这批零件共有多少个?

5、某工厂有三个车间,第一车间的人数占三个车间总人数的25%,第二车间人数是第三车间的 3/4知第一车间比第二车间少40人,三个车间共有多少人?

6、某小学五年级三个班植树,一班植树棵数占三个班总棵数的1/5,二班与三班植树棵数的比是3:5,二班比三班少植树40棵,这三个班共植棵多少棵?

7、图书角有故事书、科技书、文艺书这三种书,故事书的本数占总数的 2/5技书的本数是文艺书的3/4,文艺书比故事书少20本,图书角共有书多少本?

8、食堂买来萝卜、青菜和土豆三种蔬菜,萝卜的重量占三种蔬菜总量的 2/5青菜的重量比土豆少3/4,萝卜比土豆少360千克,食堂买来萝卜多少千克?

9、牛的头数比羊的头数多25%,羊的头数比牛的头数少百分之几?

10、甲粮库存粮的吨数比乙粮库少40%,乙粮库存粮比甲粮库存粮的吨数多百分之几?

11、男生比女生少 2/7,女生比男生多几分这几?

12、水结成冰体积增加 1/10,冰化成水体积减少几分之几?

13、甲数是乙的2/3,乙数是丙数的3/4,甲、乙、丙的和是216,甲、乙、丙各是多少?

14、甲数是乙的5/6,乙数是丙数的3/4,甲、乙、丙的和是152,甲、乙、丙各是多少? 15.桔子的千克数是苹果的2/3,香蕉的千克数是桔子的1/2,香蕉和苹果共有220千克,桔子有多少千克?

16.某中学初中部三个年级中.初一的学生数是初二学生数的9/10,初二的学生数是初三学生数的5/4,这个学校里初三的学生数占初中部学生数的几分之几?

17、某班共有学生51人,男生人数的3/4等于女生人数的2/3。男、女学生各有多少人?

18、图书馆买来科技书和文艺书共340本,文艺书本数的1/3等于科技书本数的4/5,两种书各买来多少本?

19、学校合唱团比舞蹈队多24人,合唱团人数的2/5 等于舞蹈队人数的6/7。合唱团和舞蹈队各有多少人?

20、粮店里有大米、面粉和玉米共900吨,大米重量的1/4 等于面粉重量的1/3,玉米重200吨。大米和面粉的重量各是多少吨?

21、已知甲校学生数是乙校学生数的2/5,甲校女生数是甲校学生数的3/10,乙校男生数是乙校学生数的21/50。那么两校女生总数占两校学生总数的几分之几?

22、在一城市中,中学生数是居民的1/5,大学生数是中学生数的1/4,那么占大学生总数的2/5的理工科大学生是居民数的几分之几?

23、某人在一次选举中,需3/4的选票才能当选,计算2/3的选票后,他得到的选票已达到当选票数的5/6,他还要得剩下选票的几分之几才能当选?

24、某校有3/5的学生是男生,男生的1/20想当医生,全校想当医生的学生的3/4是男生,那么全校女生的几分之几想当医生?

25、某厂男职工比全厂职工人数的3/5多60人,女职工人数是国职工的1/3,这个厂共有职工多少人?

26、一筐苹果卖掉1/5后,又卖掉6千克,这时卖出的重量正好是剩下的1/2,这筐苹果原来有多少千克?

27、甲乙两车共运一堆煤,运完时,甲车运了总数的7/15多12吨,比乙车多运1/2,甲车运了多少吨?

28、纺织厂女工人数比全厂人数的75%还多100人,男工人数是女工人数1/5,这个纺织厂有男工人多少人?

29、有两筐梨,乙筐是甲筐的3/5,从甲筐取出5千克梨放入乙筐后,乙筐的梨是甲筐7/9,甲乙两筐梨共有多少千克? 30、某小学低年级原有少先队员是非少先队员的1/3,后来又有39名同学加入了少先队组织。这样少先队员的人数是非少先队员的7/8,低年级有学生多少人?

31、王师傅生产一批零件,不合格产品是合格产品的1/19,后来从合格产品中又发现2个不合格产品,这时算出产品合格率是94%,合格产品有多少个?

32、某校六年级上学期男生占总人数的54%,本学期初转进3名女生,转走3名男生,这时女生占总人数的48%,现有男生多少人?

33、某学校原有长跳绳的根数占长、短跳绳总数的3/8,后来又买进20根长跳绳,这时长跳绳根数占长,短跳绳总数的7/12。这个学校现有长、短跳绳的总数是多少根?

34、阅览室看书的同学中,女同学占3/5,从阅览室走出5位女同学,看书的同学中,女同学占4/7,原来阅览室里一共有多少名同学在看书?

35、一堆什锦糖,其中奶糖占45%,再放入16千克其他糖后,奶糖只占25%,这堆糖中奶糖多少千克?

36、数学课外小兴趣小组,上学期男生占5/9,这学期增加21名女生后,男生只占2/5了,这个小组现有女生多少人?

37、有两段布,一段布长40米,另一段布长30米,把两段布都用去同样长的一部分后,发现短的一段布剩下的长度是长的一段布所剩下长度的3/5,每段布用去多少米?

38、有两根绳子,一根长80米,另一根长40米,如果从两根绳上各剪去同样长一段后,短绳剩下的长度是长绳剩下的2/7,两根绳各剪去多少米?

39、今年父亲40岁,儿子12岁,当儿子的岁数是父亲的5/12时,儿子多少岁?

40、仓库里原来存大米和面粉袋数相等,运出800袋大米和500袋面粉后,仓库里所剩的大米袋数是面粉的3/4,仓库里原有大米和面粉各多少袋?

41、甲乙丙丁四个筑路队共筑1200米长的一段公路,甲队筑的路是其他三队的1/2,乙队筑的路是其他三队的1/3,丙队筑的路是其他三队的1/4,丁队筑了多少米?

42、某商店有黑白、彩色电视机630,其中黑白电视机占1/5,后来又运进一些黑白电视机。这时黑白电视机占两种电视机总台数的30%,问。又运进黑白电视机多少台?

43、书店运来科技书和文艺书共240,科技书占1/6,后来又运来一批科技书,这时科技书占两种书总和的3/11,现在两种书各有多少包?

44、某市派出60名选 手参加田径比赛,其中女选手占1/4,正式比赛时,有几名女选手因故缺席,这样女选手人数占参赛选手总数的2/11,总:正式参赛女选手有多少人?

45、把12克盐溶解于120克水中,得到132盐水,如果要使盐水中含盐8%,要往盐水中加盐还是加水?加多少克?

46、东风水果店上午运进梨和苹果共1020千克,其中梨占水果总数的1/5,下午又运进梨若干千克,这时梨占这两种水果总数的2/5,下午运进梨多少千克?

47、甲数是乙数、丙数、丁数之和的1/2, 乙数是甲数、丙数、丁数之和的1/3, 丙数是乙数、甲数、丁数之和的1/4,已知丁数是260,求甲、乙、丙、丁四数之和?

48、甲、乙、丙、丁四个筑路队共筑1200米长的一条公路,甲队筑的路是其他三个队的1/2, 乙队筑的路是其他三个队的1/3,丙队筑的路是其他三个队的1/4,丁队筑路多少米?

49、甲乙丙三人共同购买一艘游艇,甲支付的钱是其余两人的1/2, 乙支付的钱是其余两人的1/3,丙支付的钱恰好是5000元.这艘游艇的单价是多少元? 50、学校里买回四种图书,科技书是文艺书的3/4,连环画是其余三种书的1/3,史地书是其余三种书的1/4, 史地书比文艺书少80本,买回的四种书共多少本?

51、有一块合金,是由银和铜组成,其中银的重量比总重量的5/12多30克,铜的重量比总重量的7/16多5克,这块合金的总重量是多少克?

52、甲乙两个仓库存放一批化肥.甲仓库比乙仓库多120袋,如果从乙仓库运出25袋放入甲仓库,乙仓库化肥的袋数就是甲仓库的3/5,甲乙仓库原来各有化肥多少袋?

53、某校五年级共有学生152人,选出男同学的1/11和5 个女同学参加科技小组,剩下的男女同学人数刚好相等,这个年级男女同学各有多少人?

54、一筐苹果分给甲乙丙三人,甲分得全部苹果的1/5加5个苹果, 乙分得全部苹果的1/4加7个苹果, 丙分得其余苹果的1/2,最后剩下的苹果正好等于一筐苹果的1/8.这筐苹果有多少个?

55、图书室有文艺书.科技书.连环画共1880本,文艺书借出2/5,科技书借出50本,又买来40本连环画,这时三类书的本数相等.原来三种书各有多少本?

56、苹果和梨共77个,若拿出苹果的5/11和12个梨,则剩下的苹果是剩下的梨的3倍,问原来苹果和梨各有多少个?

57、某小学五年级有三个班,一班和二班人数相等,三班人数占全年级的7/20,并且比一班多3人,问五年级共有多少人?

58、有两只桶,共装44千克油.若从第一桶里倒出1/5,第二桶里倒进2.5千克,则两只桶内油相等,原来每只桶各装油多少千克?

59、足球比赛门票15元一张,降价后观众增加一倍,收入增加1/5,问一张门票降价多少元?

60、某班一次考试,平均分为70分,其中3/4及格,及格的同学平均分为80分,那么不及格同学的平均分是多少分? 61、游泳池里参加游泳的学生中,小学生占30%,又来了一批学生后,学生总数增加20%,小学生占学生总数的40%,小学生增加几分之几?

62、五年级三个班人数相等,一班的男生人数和二班女生人数相等,三班的男生人数是全部男生人数的2/5,全部女生人数占全年级人数的几分之几?

63、小王在一个小山坡来回运动,先从山下跑上山,每分钟跑200米,再从原路下山,每分钟跑240米,求小王的平均速度.64、小华上山的速度是每小时3千米,下山速度是每小时6千米,求上山后又沿原路下山的平均速度?

65、张师傅骑自行车往返A、B两地,去时每小时行15千米,返回时因逆风,每小时只行10千米,张师傅往返途中的平均速度是每小时多少千米?

66、小王骑摩托车往返A、B两地,平均速度为每小时48千米,如果他去时每小时行42千米,那么他返回时的平均速度是每小时多少千米?

67、某幼儿园中班的小朋友平均身高115米,其中男孩比女孩多1/5,女孩平均身高比男孩高16%,这个班男孩平均身高是多少?

68、某班男生人数是女生的2/3,男生平均身高138厘米.全班平均身高132厘米,问女生平均身高是多少厘米?

69、某班男生人数是女生的4/5,女生的平均身高比男生高15%,全班平均身高是130厘米,问男、女生的平均身高各是多少?

70、一长方形边长增加10%,那么,它的周长增加百分之几?它的面积增加百分之几?

71、一批零件,甲独做8天完成,乙独做10天完成,现在由两人合做这批零件,中途甲因事请假一天,完成这批零件共用多少天? 72、一件工作,甲独做15天完成,乙独做10天完成,两队合做若干天后甲休息了几天,结果共用8天才完成了任务,甲休息几天?

73、一项工作,甲乙合做12天可以完成,中途甲因事停工5天,因此用15天完成,甲独做这项工作要用多少天?

74、一项工程,甲乙合做4天后,再由乙单独做5天完成,已知甲比乙每天多完成这项工程的1/30,甲乙单独做这项工程各需多少天?

75、彩色电视机和黑白电视机共250台,如果彩色电视机卖出1/9,则比黑白电视机多5台,问两种电视机原来各有多少台?

76、姐妹俩养兔120只,如果姐姐卖掉1/7,还比妹妹多10只,姐姐和妹妹各养了多少只兔? 77、学校有篮球和足球共21个,篮球借出1/3后,比足球少1个,原来足球和篮球各有多少个?

78、小明家养的鸡和鸭共100只,如果将鸡卖掉1/20,还比鸭多17只,小明家原来养的鸡和鸭各有多少只?

79、甲乙两数和是300,甲数的2/5比乙数的1/4多55,甲乙两数各是多少?

80、畜牧场有绵羊山羊共800只,山羊的2/3比绵羊的1/2多50只,这个畜牧场有绵羊山羊各多少只?

81、师傅和徒弟共加工零件840个,师傅加工零件个数的5/8比徒弟加工零件的2/3多60个, 师傅和徒弟各加工零件多少个?

82、某校六年级甲乙两个班共种 100棵树,乙班种的1/10比甲班种的1/3少16棵,现两个班各种多少棵?

83、育红小学上学期共有学生750人,本学期男生增加1/6,女学生减少1/3,共有710人,本学期男、女学生各有多少人?

84、袋子里原有红球和黄球共119个,将红球增加3/8,黄球减少2/5后, 红球和黄球的总数变为121个,原来袋子里有红球和黄球各有多少个? 85、金放在水里称,重量减轻1/19.银放在水里称,重量减少1/10,一块重770克金银合金,放在水里称是720克,这块合金含金、银各多少克?

86、某中学去年共招新生475人,今年共招新生640人,其中初中招的拳生比去年增加48%,高中招的新生比去年增加20%,今年初、高中生各招收新生多少人? 87、水果店里西瓜个数与白兰瓜个数比是7:5.如果每天卖白兰瓜40个,西瓜50个,若干天后,白兰瓜正好卖完,西瓜还剩36个。水果店里原有西瓜多少个?

88、红星幼儿园里白皮球个数与红皮球个数比是3:5,给每个班发4个白皮球和10个红皮球,结果发现红皮球刚好发完,还多18个白皮球。红星幼儿园有多少个班?

89、食堂里面粉的重量是大米的1/2,每天吃去30千克面粉,45千克大米。若干天后,面粉正好吃完,大米还有15千克,食堂里原有面粉多少千克?

90、师徒两人加工一批零件,师傅的任务比徒弟多1/5,徒弟每天做7个,师傅每天做12个,若干天后,师傅正好完成任务,徒弟还有30个没做,这批零件共有多少个?

第五篇:六年级奥数教学计划

六年级奥数教学计划

六年级奥数教学计划1

一、指导思想:

当学生接受一定的课本数学知识后已不满足课内的学习,希望通过丰富的课外活动来扩大自己的视野、拓宽知识、发展特长。作为一名数学教师应积极组织各种数学课外活动为学生创造一个自由、宽松、生动活泼的学习环境,它比课堂教学更具开放性,更有利于因材施教。开展丰富的数学笔记活动,激发学生的兴趣为着眼点,使学生喜欢活动,乐意参与。无论是活动的目标设计、题目拟定、内容安排、形式选择、效果评价都应体现趣味性。趣味性是针对活动课的内容和方法而言,以吸引学生参与,使学生在活动过程中寓学于乐、寓智于趣,生动活泼主动地获取知识。让学生一个良好的学习环境中培养了学生健康的学习情感,创设了一个敢于竞争、善于竞争的学习氛围,培养了学生忠诚、坚定、自信的意志品格。

二、活动目标:

通过开设数学奥数社团活动的形式,激发学生稳定而有效的数学学习兴趣,产生积极的内部动机,培养思维创新能力。更重要的是有利于培养学生数学学习的良好习惯,全面提升学生的数学素养。

三、活动要点:

认真组建数学奥数社团,带领学生走进丰富的数学世界。

1、开学初组织成立数学奥数社团。制定兴趣小组活动计划,落实详尽的兴趣小组活动方案,体现小组的特色。

2、奥数社团活动定课程,为开展广泛的数学活动提供切实素材。把学生的数学活动落到实处,为学生安排一定的时间,每周的活动时间,教师专门指导。力求做到周周有内容,有目标。

3、开展读报和阅读数学书籍活动。指导学生广泛阅读,让学生享受读报的快乐。要求有条件的学生自行购买数学书籍,课外阅读的书籍还可以向学校图书馆借阅。教师在学生开展阅读前都搜集了一些书籍中的背景资料介绍给学生。教材中的思考题、你知道吗等内容教师都在数学兴趣活动课上组织学生阅读并指导,并适当介绍拓展些的知识,鼓励学生自行阅读、独立思考等。利用生活中的数学资源,让学生体验数学的实用价值。生活中处处有数学,各种媒体中数学内容也非常丰富。一方面教师要广泛收集适合于学生的数学资料、信息,一方面要求学生针对学习内容收集生活中的各种数学问题,旅游中购买门票的数学问题等等,然后组织学生在课堂中讨论研究收集到的数学问题和信息,这样既拓展了教材内容,又让学生充分体验了数学的应用价值,同时又增强了学生学好数学的信心!

4、开展丰富多彩的活动,为“数学兴趣活动”提供动力支撑。在正常进行数学兴趣活动的同时,开展一定的主题活动把数学课外活动推向高潮。

四、活动安排

1-----2周3—— 4周5—— 6周7—— 8周9----10周11——12周13——14周15——16周17——18周

代数的初步认识

有理数及其运算一元一次方程与一元一次方程组

应用题三角形

一元一次不等式和一元一次不等式组整式的运算

平行线和相交线生活中的数据

六年级奥数教学计划2

一、指导思想

奥数活动是一项全面培养学生能力、尤其是数学兴趣的活动。现在越来越多的人已经意识到学习奥数的重要性,奥数曾经一度被人误认为是孩子的负担,而今却变成了提高孩子思考能力,改善孩子思维方式的好武器。应当说,这样的认识对小学奥数教学的健康发展和小学数学教学的健康发展都是有利的。基于这样的认识,在奥数不至于冲击正常的数学教学秩序的情况下,奥数教学可以提升小学生的品质和提高教师的教学水平的积极作用。

二、活动目标

1、以培养学生的数学思想为目标所谓数学思想,是指现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果。在小学阶段,数学思想主要有符号思想、集合思想、类比思想、分类思想、替换思想、方程与函数思想、数形结合思想、转化思想、统筹及最优化思想、建模思想等。《小学数学新课程标准》提出:“学生通过学习,能够获得适应未来社会生活和进一步发展所必需的重要数学知识以及基本的数学思想方法。”因此,小学奥数培训应该着重数学思想的培养,应该以这些思想为目标进行奥数内容的选择和培训。

2、以发展学生的.数学思维能力为基础

思维活动的强弱,决定一个人的思维品质。而数学思维能力则是指人们从事数学活动时所必需的各种能力的综合,其中数学思维能力是核心。数学教学的核心是促进学生思维的发展。奥数培训必须以发展学生的数学思维为基础,教师要千方百计地通过学生学习数学知识,全面揭示数学思维过程,启迪和发展学生思维,将知识发生、发展过程与学生学习知识的心理活动统一起来。教师要依据学生的思维特征、认知规律,让学生多动脑、动手、动口,给学生主动研究、探索、分析、归纳、推理和判断等数学活动的时空,学会数学的逻辑性、有序性、最优化、假设与验证等思维方法,从而发展学生的数学思维能力,为以后更高阶段的学习奠定坚实的基础。

3、以提高学生的学习兴趣为出发点

兴趣是人对客观事物的一种积极的认识,在数学教学中,兴趣是学生学习的强大动力。必须通过许多途径去提高学生的学习兴趣,以激发他们的学习动机。因而奥数培训就要创造机会让孩子体验成功感,感受数学学习的乐趣。其次可以通过一些生活或数学小故事,让孩子感受到奥数与生活密切相关,奥数能解决生活中的实际问题,增长人们的智慧。另外,奥数培训还要讲究适时地引导点拨。由于奥数学习的内容有一定难度,学生在找不到解题方法时会感到沮丧,容易产生厌学的情绪。这个时候老师就要及时地帮助他们,通过一些巧妙的方法演算或点拨,让孩子领悟到数学的奥妙,体验到成功的莫大喜悦,从而坚定学习信念。

4、加强学生非智力因素的培养奥数的学习除了对智力、思维发展有很多促进作用以外,对孩子们的非智力因素也有很大帮助。由于小学奥数的培训对象年龄小,意志品质等较差,对非智力因素的培养效果更明显。同时,非智力因素也很大程度上影响奥数学习的成效。所以奥数教学要重视学生的学习习惯(包括审题、验算等)、学习态度(细心、专心等)和意志力的培养,使学生在奥数学习中获得良好心理品质的发展。

三、实施措施

(一)坚持系统科学的分阶段训练

小学阶段是少年儿童智力,特别是逻辑思维发展非常重要的启蒙阶段。根据小学不同阶段学生的特点和思维规律,系统科学设计教法,能最大限度开发少年儿童智力。

1、低年级培训应以兴趣培养为前提。低年级的孩子以直观形象思维为主,兴趣容易转移,情绪波动大,对教师认同度高,喜欢口头表扬。针对低年级学生的思维特点,奥数培训的题型选择应以动手操作的为主,设计的问题能联系实际的具体事例,培训中要学生明白通过探索可以尝试到成功,并能觉得奥数学习真有用。例如:认识图形与物体,比较物体的大小、多少、长短,数物体,拼图形等让学生认识一些事物的特性或联系,培养一定的空间能力。这些动手操作的学习内容,学生学习起来兴趣盎然,同时又发展了学生的思维能力、观察能力。建议有条件的学校能够从—年级开始每周有一节奥数培训课进行思维训练。如果没条件的学校可以让任课教师,每天数学课后安排一道思维训练题,也能很好地激发学生兴趣。低年级孩子情感上易引导,喜好红花之类的奖励,教师可注意及时表扬和奖励,就能够吸引孩子,培养兴趣。低年级的学生往往对思维训练有一种莫名的冲动与喜爱,教师一定要考虑题目的难易适度,让学生易接受。教学方法上考虑使用现代多媒体技术进行对比讲解,能够让学生明白易懂,且兴趣大增。另外值得注意的是低年级学生的概念认识不足,老师要适当地进行知识的反复呈现。

2、中年级培训应以习惯培养为基础。小学中年级的学生开始出现抽象逻辑思维,情绪开始稳定,有一定的自控能力。建议教师按年级不同进行分级训练,即同一内容可以选择不同难度循环安排教学。教师可以选择速算和巧算、数字谜及趣味算式、和差倍数应用题、还原问题、逻辑推理等内容对学生进行系统训练。如在和差倍数应用题训练中,关键在于掌握题目中的数量关系,从已知条件寻求它们之间的内在联系,注意各种量之间的转换,然后统一到所求量上来。在教学中,要培养学生认真分析,细心观察,多方求证,小心验算的学习习惯,教会学生一些画图,抽取条件,列表等的数学方法,为今后高年级的学习打下基础。同时适当加强意志力培养,逐步在学习中树立不轻言放弃的信念,大胆假设。培训时间安排上要保证每周有一节课的时间,可以是学校的校本课程时间或是地方课程。如在学校课程中安排不上的,建议在学生课外活动课中开设思维训练课程,保证教学的时间和课程内容。

3、高年级培训应以思维能力发展为重点。由于高年级学生的抽象思维能力进一步发展,求知欲发展快。因此内容的选择上更多地考虑综合题型的训练或是变式训练,让他们更好地了解知识间的联系,形成较为完整的知识网络或系统,着重帮助他们建立数学模型,加大空间思维的训练。在高年级的奥数教学中,由于出现一些抽象的概念,往往使学生在学习数学时或产生困难,或不以为然,丧失兴趣。教师一定要及时鼓励并帮助其建立一些数学抽象知识和运算的具体形象或模型,做到数学与生活的沟通,数学与生活实际的结合,为孩子创设学习数学的生活情境,孩子们就会感受到数学就在我的身边,自然而然的产生一种想了解数学、研究数学的愿望,继而喜欢数学。

(二)培养学生良好的思维习惯。

奥数学习中良好的思维习惯是一个主要内容,要真正发展起数学的思想,具有“条条大路通罗马”的开阔思路,会运用不同的方法解题,能运用字母、图形、数字等建立数学模型,尝试验证结论的合理性和准确性,使学生学会了概括总结,培养了转化的数学思想。

(三)注意让奥数学习与实际生活的联系

奥数的内容其实也有很多是与生活实际紧密相连的,如银行的利率计算,超市物品捆绑出售以及打折,投资利润计算涉及到市场经济的数学问题等等。奥数的题目有好一部分都出自古时候的游戏,因而可以通过游戏的形式增强学生的理解,并激发兴趣。培训中还可以直接用数学家的故事或是童话故事,如丢番图墓碑之谜———神奇的碑文,用曹冲称象的故事渗透等量代换思想,激发学生探究的兴趣。

下载六年级小升初奥数(汇编)word格式文档
下载六年级小升初奥数(汇编).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    六年级奥数5篇

    六年级奥数专题 时钟问题 专题介绍]钟面上有时针与分针,每针转动的速度是确定的。分针每分钟旋转的速度:360°÷60=6°时针每分钟旋转的速度:360°÷(12×60)=0.5° 在钟面上总是......

    小升初毕业奥数竞赛测试题

    最新推荐小升初毕业奥数竞赛测试题_____年级_____班姓名_____得分_____一、填空题1.计算:211×555+445×789+555×789+211×445=______.2.纽约时间是香港时间减13小时,你与......

    小升初奥数必考的知识点

    小升初奥数必考的知识点,可以和小学家长沟通时用到:众所周知,小升初要实现"笑胜出",孩子在重点中学的数学测验中脱颖而出是十分必要的。从三年级就开始学习的奥数积累到六年级,孩......

    小升初奥数题(5篇模版)

    过桥问题(1) 1. 一列火车经过南京长江大桥,大桥长6700米,这列火车长140米,火车每分钟行400米,这列火车通过长江大桥需要多少分钟? 分析:这道题求的是通过时间。根据数量关系式,我们知......

    六年级奥数小组工作总结

    六年级奥数小组工作总结 本学期,我又一次担任了六年级奥数的教学任务,从接任伊始,我就从各方面严格要求自己,结合本班(奥术兴趣小组)特点和实际情况,勤勤恳恳,兢兢业业,使教学工作有......

    六年级奥数计数综合

    计数综合教学目标 1.使学生正确理解排列、组合的意义;正确区分排列、组合问题; 2.了解排列、排列数和组合数的意义,能根据具体的问题,写出符合要求的排列或组合; 3.掌握排列组合......

    六年级奥数教案3

    第二课堂牛吃草问题(2)练习课 一、课堂例题: 5. 快、中、慢三车同时从A地出发,追赶一辆正在行驶的自行车。三车的速度分别是每小时24千米、20千米、19千米。快车追上自行车用了6......

    小学六年级奥数教案

    小学六年级奥数教案:行程问题 第一讲 行程问题 走路、行车、一个物体的移动,总是要涉及到三个数量: 距离走了多远,行驶多少千米,移动了多少米等等; 速度在单位时间内(例如1小时内......