六年级奥数的测试题

时间:2019-05-15 13:04:55下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《六年级奥数的测试题》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《六年级奥数的测试题》。

第一篇:六年级奥数的测试题

一、填空。(20分 1分×20)

1、在150克水中加入10克盐,盐与水的比是(),如果有盐25克,要配成同样的盐水应加水()克。

2、a×1/7+b×1/7=30,那么2(a+b)=()

3、一个长方形的周长是40厘米,它的长和宽的比是5:3,这个长方形的面积是(),如果在这个长方形内画一个最大的圆,这个圆的周长是()厘米。

4、按规律填空:

(1)8/

9、4/

9、2/

9、1/

9、()、1/

36、();

(2)2、5、10、17、26、()、()

5、一个圆柱体底面的周长是31.4厘米,高是6厘米,这个圆柱体的表面积是()平方厘米,体积是()立方厘米。

6、有一个两位数,十位上数是个位上数的2/3,十位上的数加上2就和个位上的数相等,这个两位数是()。

7、一个钟面的分针长10厘米,从7时到11时,分针的针尖走()厘米。

8、一个圆柱体和一个圆锥体等底等高,圆柱体比圆锥体的体积多6.28立方分米,那么这个圆锥体的体积是()立方分米,圆柱体的体积是()立方分米。

9、配制一种盐水,盐和水的重量比是1:2,盐是盐水重量的()。

10、一个圆柱体和一个圆锥体等底等高,现在如果要让它们体积相等的话,圆柱体的高如果为16厘米,则圆锥体的高就应当是()厘米。

11、甲数的五分之三比乙数的二分之一多10,甲数是40,乙数是()。

12、一种喷洒果树的农药,农药和水的质量比是1:150,现有农药3千克,需要加水()千克。

二、判断题。(10分 1分×10)

1、如果甲队比乙队多运一堆货物的1/4,则乙队比甲队少运这堆货物的1/4。()

2、有两根都是2米长的钢管,第一根截去1/4米,第二根截去1/4,剩下的一样长。()

3、已知A ≠0,A×5/3=B×9/10=C÷3/4=D÷6/5,B 最大。()

4、把一根2米长的绳子剪成5段,两段是全长的2/5。()

5、有3块同样大小的蛋糕,如果把其中的2块平均分给7个女孩,另一块平均分给3个男孩,那么,每个女孩比男孩分得的蛋糕多。()

6、圆柱体有无数条高。()

7、等底等高的圆柱体和圆锥体,如把圆锥体高增加两倍,这时圆柱体和圆锥体的体积相等。()

8、折线统计图更容易看出数量增减变化的情况。()

9、1.3除以0.3的商是4,余数是1。()

10、一批玉米种子,发芽粒数与没有发芽粒数的比是4:1,这批种子的发芽率是75%。()

四、计算,能简算的要简算:24分

6.87×0.25+ 3/4×6.87 4.6+(63/5 -3。5)477×9.9+47。7

5.52-7.35+ 3/8×10 7.2×22/9 +5。22 8。2÷41/10 ×3/8

五、应用题。(32分)

1、等底等高的一个圆柱体和圆锥体,它们的体积和是314立方分米,高是3分米,那么圆柱体的半径是多少?(5分)

2、一项工程,甲、乙两人合做15天完成,若乙队做3天,甲队接着做5天,只完成全工程的7/30,甲队单独做几天可以完成?(5分)

3、一个圆柱体的侧面展开是一个长方形,长方形的长是62。8厘米,宽是6厘米,那么这个圆柱体的体积是多少?(5分)

4、在一个棱长8厘米的正方体中切出一个最大的圆柱体,这个圆柱体的体积是多少?(5分)

5、张大伯家的小麦堆成了一个圆锥形,张大伯量得其底面周长是9。42米,高是2。5米,这堆小麦的体积是多少立方米?如果每立方米小麦的质量是700千克,这堆小麦有多少千克?(7分)

第二篇:六年级下册奥数测试题

一、画图解应用题技巧

【例1】甲、乙、丙、丁与小强五位同学一起比赛象棋,每两人都要比赛一盘。到现在为止,甲已经赛了4盘,乙赛了3盘,丙赛了2盘,丁赛了1盘。问:小强已经赛了几盘?分别与谁赛过?

【例2】一群人在两片草地上割草,大的一片草地比小的正好大1倍。他们先全体在大的一片草地干了半天,下午留下一半人在大草地上继续干,收工时正好把草割完;另一半人到小草地上干,收工时还余下一块地,这块地再用1人经1天也可以割完。问:这群干活的人共有多少位?

【例3】把一笔22500元的科研獎金发给一、二、三等獎获獎者,每个一等獎的獎金是每个二等獎獎金的2倍多500元,每个二等獎的獎金是每个三等獎的2倍,一、二、三等獎的获獎者各是3人,那么每个一等獎的獎金是多少元呢?

【例4】两名运动员在长为50米的游泳池里来回游泳。甲运动员的速度是1米/秒,乙运动员的速度是0.5米/秒,他们同时分别在游泳池的两端出发,来回共游了5分钟,如果不计转向时间,那么这段时间里共相遇了几次?

练习

1.三年级一班有42人,全班都订了杂志。订“少年文艺”的有38人,订“少年科学画报” 的有24人。两种杂志都订的有多少人?

2.有三堆围棋子,每堆棋子数相等。第一堆中的黑子与第二堆中的白子一样多,第三堆中的黑子占全部黑子的25,那么三堆棋子中,白子占全部棋子的几分之几?

3.甲、乙两辆汽车同时从东、西两城相向而行,甲车每小时行42千米,乙车每小时行35千米,经过若干小时后,两车在离中点14千米處相遇。两城之间的路程是多少千米?

4.甲、乙两车同时从A、B两地出发相向而行,两车在离B地64千米處第一次相遇。相遇后两车仍以原速继续行驶,并且在到达对方出发点后,立即沿原路返回,途中两车在距A地48千米處第二次相遇,问两次相遇点相距多少千米?

二、用方程解应用题技巧

【例1】某县农机厂加工车间有77个工人。已知每个工人平均每天加工甲种零件5个或乙种零件4个或丙种零件3个。但加工3个甲种零件、1个乙种零件和9个丙种零件才恰好配成一套。问:应安排生产甲、乙、丙种零件各多少人时,才能使生产的三种零件恰好配套。

【例2】某建筑公司有红、灰两种颜色的砖,红砖量是灰砖量的2倍,计划修建住宅若干座。若每座住宅使用红砖80立方米,灰砖30立方米,那么,红砖缺40立方米,灰砖剩40立方米。问:计划修建住宅多少座?

【例3】两个数的和是100,差是8,求这两个数。

练习:

1.两个缸内共有48桶水,甲缸给乙缸加水一倍,然后乙缸又给甲缸加甲缸剩余水的一倍,则两缸的水量相等,求两个水缸原来各有多少桶水?

2.早晨6点多钟有两辆汽车先后离开学校向同一目的地开去,6点32分时,第一辆汽车离开学校的距离是第二辆汽车的3倍。到6点39分的时候,第一辆汽车离开学校的距离是第二辆汽车的2倍,求第一辆汽车是6点几分离开学校的?

3.一人乘竹排沿江顺水漂流而下,迎面遇到一艘逆流而上的快艇,他问快艇驾驶员:“你后面有轮船开过来吗?”快艇驾驶员回答:“半小时前我超过一艘轮船。”竹排继续顺水漂流了1小时遇到了迎面开来的这艘轮船。那么快艇静水速度是轮船静水速度的多少倍?

4.丢番图是古希腊著名的数学家,他的墓志铭与众不同,碑文是:“过路人!这里埋葬着丢番图,他一生的六分之一是幸福的童年;又活了一生的十二分之一,面部长起了胡须;随后是一生的七分之一的单身汉生活;婚后五年,他有了一个儿子;可是,儿子活到丢番图一生年龄一半时,不幸夭折;儿子死后,父亲在深深的悲哀中又过了4年也与世长辞……”你能计算出他一生中经历的主要年龄吗?

练习:

1.如果:2→(3)表示2+3+4=9;5→(4)表示5+6+7+8=26,那么6→(100)为()。

A.5000 B.5550 C.5500 D.555

52.如果“△◎□”表示△乘以△,再乘以□,那么下列数中,表示“4◎3”所得结果的数是()。

A.12 B.27 C.36 D.48 E.6

43.x、y表示两个数,规定两个新运算“※”及“△”:,其中m、n、k都是自然数。已知1※2=5,(2※3)△4=64,求(1△2)※3的值。

4.对于两个数a、b,a△b=a+b-1。

(1)计算(7△8)△6=?

(2)已知(5△x)△x=84,求x。

5.对于两个数x、y,x⊙y表示y×A-x×2,并且已知82⊙65=31,计算29⊙57的值。

6.我们规定符号“ ”表示选择两数中较大数的运算,符号“ ” 表示选择两数中较小数的运算,例如5 3=3 5=5,5 3=3 5=3,试计算:

[(0.6 0.8)+(3 3.1)]× [(2.1 2.11)-(0.21 2.10)]

第三篇:六年级奥数题

六年级数学奥赛题

(一)四、应用题(每小题6分,计30分)

1、球从高处自由下落,每次接触地面后弹起的高度是前一次下落高度的2/3。如果球从25米高处落下,那么第三次弹起的高度是多少米?

2、在一块20公顷的土地上,用它的1/5种小麦,其余的种大豆和玉米,种大豆和玉米的公顷数比是3:5。种大豆和玉米各多少公顷?

3、水结成冰后,体积增加 1/10。现有一块冰,体积是2立方分米,融化后的体积是多少?

4.为民中药店计划收购中草药1500千克,上半年完成了计划的55%,下半年完成了计划的65%。为民中药店超额收购中草药多少千克?

5.公园的一个圆形花坛的直径是60米,这个花坛的面积是多少?如果一盆花占地面积大约是1/10平方米,这个花坛大约要摆多少万盆花?(得数保留整万数)

6.一部手机降价后只卖1800元,售价只有原来的9/10,比原来降价了多少元?

7.一台挂钟的分针长8厘米,在5小时里分针的针尖共走了多少厘米?

8.生物小组同学要测量一棵百年大榕树的横截面积,他们量得树干的周长是 6.28米,这棵树的横截面积是多少平方米?

9张老师有一套住房价值40万,由于急需现金,他以九折优惠卖给老李。过了一段时间后,房价上涨10%,张老师又想从老李处把房子买回来。想一想,如果老张买回房子,总共损失多少万元?

10、同学们参加野营活动。一个同学到负责后勤的教师那是去领碗。教师问他领多少,他说领55个,又问:“多少人吃饭?”他说:“一人一个饭碗,两人一个菜碗,三个人一个汤碗。”算一算这个同学给多少人领碗?

11、某校五、六年级共有学生200人。“六一”儿童节五年级有11人,六年级有25%的同学去市里参加庆祝活动,这时两个年级余下的人数相等。求六年级有学生多少人?

12、修一条路,第一天修了全路的1/3,第二天修了余下的2/5,两天共修路135米,这条路全长多少米?

13、幼儿园买来红气、蓝、黑气球共180个,其中红气球的个数是蓝气球的3倍,黑气球的个数是蓝气球的2倍,求红、蓝、黑气球各多少个?

14、小强买了一本书,第一天看了全书的2/5,第二天可能看了剩下的5/8,还有36页没看,这本书一共有多少页?

15、小东的存钱罐里存有1元的硬币若干,他每天取出一部分买零食,第一天取出1/9,以后7天分别取出当时硬币的1/

8、1/

7、1/

6、1/

5、1/

4、1/

3、1/2,8天后剩下5个硬币,原来罐内共有多少个硬币?

16、一条路全长60千米,分成上坡、平路、下坡三段,各段路程长的比依次是1:2:3,某人走各段路程所用时间比依次是4:5:6,已知他上坡的速度是每小时3千米,问此人走完全程用了多少时间?

第四篇:六年级奥数教案

思源学校第二课堂(第六周)

判断与推理 2 授课人:雍尧

教学要求:(1)理解逻辑推理的四条基本规律,学会运用分析、推理方法解决问题。

(2)培养学生逻辑推理能力.教学重点:学会运用分析、推理方法解决问题。

教学难点: 理解、掌握分析、推理方法。

教学方法:讲解法、图表法、练习法。

(一)教学过程:

一、复习。

上节课的习题例2

二、教学新课 教学例3

甲乙丙三人被蒙上眼睛,告诉他们每个人头上都戴了一顶帽子,帽子的颜色不是红的就是绿的。然后,就去掉蒙眼睛的布,要求每个人如果看见别人(一个或两个)戴的是红帽子就举手,并且谁能断定自己头上帽子的颜色,谁就马上离开房间。三人碰巧戴的都是红帽子,因此三个人都举了手,几分钟后,丙首先走开了,他是怎么推导出自己头上帽子的颜色的?

(1)学生审题,理解题意。(2)同座位讨论。

(3)分析:此题关键:注意到甲乙两人没有立即离开房间这个事实。丙推理,我的帽子如果是绿的,甲根据乙举手立即知道自己的帽子是红的,那他应走出房间,乙会做同样的推理离开房间。甲乙不能很快判断自己帽子的颜色,说明我的帽子不是绿的,而是红的。(4)说说你的推理过程。

3、比较前面例2例3有什么相同不同之处。

三、巩固练习。教学例4 学田小学举行科技知识竞赛,同学们对一贯刻苦学习爱好读书的四名学生的成绩作了如下估计:(1)丙得第一,乙得第二;

(2)丙得第二,丁得第三;(3)甲得第二,丁得第四。

比赛结果一公布,果然是这四名学生获得前四名。但以上三种估计,每一种都对了一半错一半。他们各得第几名?(1)学生审题,理解题意。(2)同座位讨论。(3)分析:利用图表帮助学生去推理判断。

第一种假定“丙第一错,乙第二对”出现矛盾。照此推理“丙第一对,乙第二错”没有出

现矛盾。所以丙第一,甲第二,丁第三,乙第四。(4)每人口述推理过程。

四、小结。

这节课你学会了什么?

第五篇:六年级奥数题

六年级奥数题

1、晶晶三天看完一本书,第一天看 了全书的1/4,第二天看了余下的 2/5第二天比第一天多看了15页,这本书共有多少页?

2、有一批货物,第天运了这批货物的1/4第二天运的是第一天的 3/5剩90吨没有运,这批货物有多少吨?

3、修路队在一条公路上施工,第一天修了这条公路的 1/4第二天修了余下的2/3,已知这两天共修路1200米,这条公路全长多少米?

4、加工一批零件,甲先加工了这批零件的 2/5接着乙加工余下的 4/9 ,已知乙加工个数比甲少200个,这批零件共有多少个?

5、某工厂有三个车间,第一车间的人数占三个车间总人数的25%,第二车间人数是第三车间的 3/4知第一车间比第二车间少40人,三个车间共有多少人?

6、某小学五年级三个班植树,一班植树棵数占三个班总棵数的1/5,二班与三班植树棵数的比是3:5,二班比三班少植树40棵,这三个班共植棵多少棵?

7、图书角有故事书、科技书、文艺书这三种书,故事书的本数占总数的 2/5技书的本数是文艺书的3/4,文艺书比故事书少20本,图书角共有书多少本?

8、食堂买来萝卜、青菜和土豆三种蔬菜,萝卜的重量占三种蔬菜总量的 2/5青菜的重量比土豆少3/4,萝卜比土豆少360千克,食堂买来萝卜多少千克?

9、牛的头数比羊的头数多25%,羊的头数比牛的头数少百分之几?

10、甲粮库存粮的吨数比乙粮库少40%,乙粮库存粮比甲粮库存粮的吨数多百分之几?

11、男生比女生少 2/7,女生比男生多几分这几?

12、水结成冰体积增加 1/10,冰化成水体积减少几分之几?

13、甲数是乙的2/3,乙数是丙数的3/4,甲、乙、丙的和是216,甲、乙、丙各是多少?

14、甲数是乙的5/6,乙数是丙数的3/4,甲、乙、丙的和是152,甲、乙、丙各是多少? 15.桔子的千克数是苹果的2/3,香蕉的千克数是桔子的1/2,香蕉和苹果共有220千克,桔子有多少千克?

16.某中学初中部三个年级中.初一的学生数是初二学生数的9/10,初二的学生数是初三学生数的5/4,这个学校里初三的学生数占初中部学生数的几分之几?

17、某班共有学生51人,男生人数的3/4等于女生人数的2/3。男、女学生各有多少人?

18、图书馆买来科技书和文艺书共340本,文艺书本数的1/3等于科技书本数的4/5,两种书各买来多少本?

19、学校合唱团比舞蹈队多24人,合唱团人数的2/5 等于舞蹈队人数的6/7。合唱团和舞蹈队各有多少人?

20、粮店里有大米、面粉和玉米共900吨,大米重量的1/4 等于面粉重量的1/3,玉米重200吨。大米和面粉的重量各是多少吨?

21、已知甲校学生数是乙校学生数的2/5,甲校女生数是甲校学生数的3/10,乙校男生数是乙校学生数的21/50。那么两校女生总数占两校学生总数的几分之几?

22、在一城市中,中学生数是居民的1/5,大学生数是中学生数的1/4,那么占大学生总数的2/5的理工科大学生是居民数的几分之几?

23、某人在一次选举中,需3/4的选票才能当选,计算2/3的选票后,他得到的选票已达到当选票数的5/6,他还要得剩下选票的几分之几才能当选?

24、某校有3/5的学生是男生,男生的1/20想当医生,全校想当医生的学生的3/4是男生,那么全校女生的几分之几想当医生?

25、某厂男职工比全厂职工人数的3/5多60人,女职工人数是国职工的1/3,这个厂共有职工多少人?

26、一筐苹果卖掉1/5后,又卖掉6千克,这时卖出的重量正好是剩下的1/2,这筐苹果原来有多少千克?

27、甲乙两车共运一堆煤,运完时,甲车运了总数的7/15多12吨,比乙车多运1/2,甲车运了多少吨?

28、纺织厂女工人数比全厂人数的75%还多100人,男工人数是女工人数1/5,这个纺织厂有男工人多少人?

29、有两筐梨,乙筐是甲筐的3/5,从甲筐取出5千克梨放入乙筐后,乙筐的梨是甲筐7/9,甲乙两筐梨共有多少千克? 30、某小学低年级原有少先队员是非少先队员的1/3,后来又有39名同学加入了少先队组织。这样少先队员的人数是非少先队员的7/8,低年级有学生多少人?

31、王师傅生产一批零件,不合格产品是合格产品的1/19,后来从合格产品中又发现2个不合格产品,这时算出产品合格率是94%,合格产品有多少个?

32、某校六年级上学期男生占总人数的54%,本学期初转进3名女生,转走3名男生,这时女生占总人数的48%,现有男生多少人?

33、某学校原有长跳绳的根数占长、短跳绳总数的3/8,后来又买进20根长跳绳,这时长跳绳根数占长,短跳绳总数的7/12。这个学校现有长、短跳绳的总数是多少根?

34、阅览室看书的同学中,女同学占3/5,从阅览室走出5位女同学,看书的同学中,女同学占4/7,原来阅览室里一共有多少名同学在看书?

35、一堆什锦糖,其中奶糖占45%,再放入16千克其他糖后,奶糖只占25%,这堆糖中奶糖多少千克?

36、数学课外小兴趣小组,上学期男生占5/9,这学期增加21名女生后,男生只占2/5了,这个小组现有女生多少人?

37、有两段布,一段布长40米,另一段布长30米,把两段布都用去同样长的一部分后,发现短的一段布剩下的长度是长的一段布所剩下长度的3/5,每段布用去多少米?

38、有两根绳子,一根长80米,另一根长40米,如果从两根绳上各剪去同样长一段后,短绳剩下的长度是长绳剩下的2/7,两根绳各剪去多少米?

39、今年父亲40岁,儿子12岁,当儿子的岁数是父亲的5/12时,儿子多少岁?

40、仓库里原来存大米和面粉袋数相等,运出800袋大米和500袋面粉后,仓库里所剩的大米袋数是面粉的3/4,仓库里原有大米和面粉各多少袋?

41、甲乙丙丁四个筑路队共筑1200米长的一段公路,甲队筑的路是其他三队的1/2,乙队筑的路是其他三队的1/3,丙队筑的路是其他三队的1/4,丁队筑了多少米?

42、某商店有黑白、彩色电视机630,其中黑白电视机占1/5,后来又运进一些黑白电视机。这时黑白电视机占两种电视机总台数的30%,问。又运进黑白电视机多少台?

43、书店运来科技书和文艺书共240,科技书占1/6,后来又运来一批科技书,这时科技书占两种书总和的3/11,现在两种书各有多少包?

44、某市派出60名选 手参加田径比赛,其中女选手占1/4,正式比赛时,有几名女选手因故缺席,这样女选手人数占参赛选手总数的2/11,总:正式参赛女选手有多少人?

45、把12克盐溶解于120克水中,得到132盐水,如果要使盐水中含盐8%,要往盐水中加盐还是加水?加多少克?

46、东风水果店上午运进梨和苹果共1020千克,其中梨占水果总数的1/5,下午又运进梨若干千克,这时梨占这两种水果总数的2/5,下午运进梨多少千克?

47、甲数是乙数、丙数、丁数之和的1/2, 乙数是甲数、丙数、丁数之和的1/3, 丙数是乙数、甲数、丁数之和的1/4,已知丁数是260,求甲、乙、丙、丁四数之和?

48、甲、乙、丙、丁四个筑路队共筑1200米长的一条公路,甲队筑的路是其他三个队的1/2, 乙队筑的路是其他三个队的1/3,丙队筑的路是其他三个队的1/4,丁队筑路多少米?

49、甲乙丙三人共同购买一艘游艇,甲支付的钱是其余两人的1/2, 乙支付的钱是其余两人的1/3,丙支付的钱恰好是5000元.这艘游艇的单价是多少元? 50、学校里买回四种图书,科技书是文艺书的3/4,连环画是其余三种书的1/3,史地书是其余三种书的1/4, 史地书比文艺书少80本,买回的四种书共多少本?

51、有一块合金,是由银和铜组成,其中银的重量比总重量的5/12多30克,铜的重量比总重量的7/16多5克,这块合金的总重量是多少克?

52、甲乙两个仓库存放一批化肥.甲仓库比乙仓库多120袋,如果从乙仓库运出25袋放入甲仓库,乙仓库化肥的袋数就是甲仓库的3/5,甲乙仓库原来各有化肥多少袋?

53、某校五年级共有学生152人,选出男同学的1/11和5 个女同学参加科技小组,剩下的男女同学人数刚好相等,这个年级男女同学各有多少人?

54、一筐苹果分给甲乙丙三人,甲分得全部苹果的1/5加5个苹果, 乙分得全部苹果的1/4加7个苹果, 丙分得其余苹果的1/2,最后剩下的苹果正好等于一筐苹果的1/8.这筐苹果有多少个?

55、图书室有文艺书.科技书.连环画共1880本,文艺书借出2/5,科技书借出50本,又买来40本连环画,这时三类书的本数相等.原来三种书各有多少本?

56、苹果和梨共77个,若拿出苹果的5/11和12个梨,则剩下的苹果是剩下的梨的3倍,问原来苹果和梨各有多少个?

57、某小学五年级有三个班,一班和二班人数相等,三班人数占全年级的7/20,并且比一班多3人,问五年级共有多少人?

58、有两只桶,共装44千克油.若从第一桶里倒出1/5,第二桶里倒进2.5千克,则两只桶内油相等,原来每只桶各装油多少千克?

59、足球比赛门票15元一张,降价后观众增加一倍,收入增加1/5,问一张门票降价多少元?

60、某班一次考试,平均分为70分,其中3/4及格,及格的同学平均分为80分,那么不及格同学的平均分是多少分? 61、游泳池里参加游泳的学生中,小学生占30%,又来了一批学生后,学生总数增加20%,小学生占学生总数的40%,小学生增加几分之几?

62、五年级三个班人数相等,一班的男生人数和二班女生人数相等,三班的男生人数是全部男生人数的2/5,全部女生人数占全年级人数的几分之几?

63、小王在一个小山坡来回运动,先从山下跑上山,每分钟跑200米,再从原路下山,每分钟跑240米,求小王的平均速度.64、小华上山的速度是每小时3千米,下山速度是每小时6千米,求上山后又沿原路下山的平均速度?

65、张师傅骑自行车往返A、B两地,去时每小时行15千米,返回时因逆风,每小时只行10千米,张师傅往返途中的平均速度是每小时多少千米?

66、小王骑摩托车往返A、B两地,平均速度为每小时48千米,如果他去时每小时行42千米,那么他返回时的平均速度是每小时多少千米?

67、某幼儿园中班的小朋友平均身高115米,其中男孩比女孩多1/5,女孩平均身高比男孩高16%,这个班男孩平均身高是多少?

68、某班男生人数是女生的2/3,男生平均身高138厘米.全班平均身高132厘米,问女生平均身高是多少厘米?

69、某班男生人数是女生的4/5,女生的平均身高比男生高15%,全班平均身高是130厘米,问男、女生的平均身高各是多少?

70、一长方形边长增加10%,那么,它的周长增加百分之几?它的面积增加百分之几?

71、一批零件,甲独做8天完成,乙独做10天完成,现在由两人合做这批零件,中途甲因事请假一天,完成这批零件共用多少天? 72、一件工作,甲独做15天完成,乙独做10天完成,两队合做若干天后甲休息了几天,结果共用8天才完成了任务,甲休息几天?

73、一项工作,甲乙合做12天可以完成,中途甲因事停工5天,因此用15天完成,甲独做这项工作要用多少天?

74、一项工程,甲乙合做4天后,再由乙单独做5天完成,已知甲比乙每天多完成这项工程的1/30,甲乙单独做这项工程各需多少天?

75、彩色电视机和黑白电视机共250台,如果彩色电视机卖出1/9,则比黑白电视机多5台,问两种电视机原来各有多少台?

76、姐妹俩养兔120只,如果姐姐卖掉1/7,还比妹妹多10只,姐姐和妹妹各养了多少只兔? 77、学校有篮球和足球共21个,篮球借出1/3后,比足球少1个,原来足球和篮球各有多少个?

78、小明家养的鸡和鸭共100只,如果将鸡卖掉1/20,还比鸭多17只,小明家原来养的鸡和鸭各有多少只?

79、甲乙两数和是300,甲数的2/5比乙数的1/4多55,甲乙两数各是多少?

80、畜牧场有绵羊山羊共800只,山羊的2/3比绵羊的1/2多50只,这个畜牧场有绵羊山羊各多少只?

81、师傅和徒弟共加工零件840个,师傅加工零件个数的5/8比徒弟加工零件的2/3多60个, 师傅和徒弟各加工零件多少个?

82、某校六年级甲乙两个班共种 100棵树,乙班种的1/10比甲班种的1/3少16棵,现两个班各种多少棵?

83、育红小学上学期共有学生750人,本学期男生增加1/6,女学生减少1/3,共有710人,本学期男、女学生各有多少人?

84、袋子里原有红球和黄球共119个,将红球增加3/8,黄球减少2/5后, 红球和黄球的总数变为121个,原来袋子里有红球和黄球各有多少个? 85、金放在水里称,重量减轻1/19.银放在水里称,重量减少1/10,一块重770克金银合金,放在水里称是720克,这块合金含金、银各多少克?

86、某中学去年共招新生475人,今年共招新生640人,其中初中招的拳生比去年增加48%,高中招的新生比去年增加20%,今年初、高中生各招收新生多少人? 87、水果店里西瓜个数与白兰瓜个数比是7:5.如果每天卖白兰瓜40个,西瓜50个,若干天后,白兰瓜正好卖完,西瓜还剩36个。水果店里原有西瓜多少个?

88、红星幼儿园里白皮球个数与红皮球个数比是3:5,给每个班发4个白皮球和10个红皮球,结果发现红皮球刚好发完,还多18个白皮球。红星幼儿园有多少个班?

89、食堂里面粉的重量是大米的1/2,每天吃去30千克面粉,45千克大米。若干天后,面粉正好吃完,大米还有15千克,食堂里原有面粉多少千克?

90、师徒两人加工一批零件,师傅的任务比徒弟多1/5,徒弟每天做7个,师傅每天做12个,若干天后,师傅正好完成任务,徒弟还有30个没做,这批零件共有多少个?

下载六年级奥数的测试题word格式文档
下载六年级奥数的测试题.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    六年级奥数教学计划

    六年级奥数教学计划 六年级奥数教学计划1 一、指导思想:当学生接受一定的课本数学知识后已不满足课内的学习,希望通过丰富的课外活动来扩大自己的视野、拓宽知识、发展特长。......

    六年级奥数5篇

    六年级奥数专题 时钟问题 专题介绍]钟面上有时针与分针,每针转动的速度是确定的。分针每分钟旋转的速度:360°÷60=6°时针每分钟旋转的速度:360°÷(12×60)=0.5° 在钟面上总是......

    小升初毕业奥数竞赛测试题

    最新推荐小升初毕业奥数竞赛测试题_____年级_____班姓名_____得分_____一、填空题1.计算:211×555+445×789+555×789+211×445=______.2.纽约时间是香港时间减13小时,你与......

    倍数与因数奥数测试题

    一、教学方针: (1)认识自然数、整数、倍数、因数; (2)认识奇数和双数,掌握2,3,5的倍数的特征。 (3)在1-100中,能找出10以内某个自然数的所有倍数;能找出10以内两个自然数的公倍数......

    六年级奥数小组工作总结

    六年级奥数小组工作总结 本学期,我又一次担任了六年级奥数的教学任务,从接任伊始,我就从各方面严格要求自己,结合本班(奥术兴趣小组)特点和实际情况,勤勤恳恳,兢兢业业,使教学工作有......

    六年级小升初奥数(汇编)

    奥林匹克数学竞赛或数学奥林匹克竞赛,简称奥数。奥数体现了数学与奥林匹克体育运动精神的共通性:更快、更高、更强。小升初可以通过奥数这门竞赛来为自己争取到更好的机会。下......

    六年级奥数计数综合

    计数综合教学目标 1.使学生正确理解排列、组合的意义;正确区分排列、组合问题; 2.了解排列、排列数和组合数的意义,能根据具体的问题,写出符合要求的排列或组合; 3.掌握排列组合......

    六年级奥数教案3

    第二课堂牛吃草问题(2)练习课 一、课堂例题: 5. 快、中、慢三车同时从A地出发,追赶一辆正在行驶的自行车。三车的速度分别是每小时24千米、20千米、19千米。快车追上自行车用了6......