干法、半干法与湿法脱硫技术的综合比较

时间:2019-05-14 09:19:38下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《干法、半干法与湿法脱硫技术的综合比较》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《干法、半干法与湿法脱硫技术的综合比较》。

第一篇:干法、半干法与湿法脱硫技术的综合比较

干法、半干法与湿法脱硫技术的综合比较

摘要:大气SO2污染状况日益严重,治理技术亟待解决,其中烟气脱硫技术是目前世界上唯一大规模商业化应用的脱硫方式。比较成熟的烟气脱硫技术主要有湿法、干法、半干法烟气脱硫技术。本文主要综述了脱除烟气中SO2的一些主要技术,包括干法、半干法、湿法烟气脱硫的原理、反应系统、技术比较以及它们的优缺点,其中湿法烟气脱硫应用最为广泛,干法、半干法烟气脱硫技术也有了较多的应用。

关键字:烟气脱硫,湿法,干法,半干法

引言

煤炭在我国的能源结构占主导地位的状况已持续了几十年,近年来随着石油天然气和水能开发量的增加,煤炭在能源结构中的比例有所减少,但其主导地位仍未改变,其消费量占一次能源总消费量的70%左右,这种局面在今后相当长时间内不会改变,目前燃煤SO2排放量占SO2总排放量的90%以上,我国超过美国成为世界SO2排放第一大国。烟气中的SO2是大气污染的主要成份,也是形成酸雨的主要物质。酸雨不仅严重腐蚀建筑物和公共设施,而且毁坏大面积的森林和农作物。如何经济有效地控制燃煤中SO2的排放是我国乃至世界能源和环保领域亟待解决的关键性问题。

从世界上烟气脱硫技术的发展来看主要经历了以下3个阶段: a)20世纪70年代,以石灰石湿法为代表第一代烟气脱硫。

b)20世纪80年代,以干法、半干法为代表的第二代烟气脱硫。主要有喷雾干燥法、炉内喷钙加炉后增湿活化(LIFAC)、烟气循环流化床(CFB)、循环半干法脱硫工艺(NID)等。这些脱硫技术基本上都采用钙基吸收剂,如石灰或消石灰等。随着对工艺的不断改良和发展,设备可靠性提高,系统可用率达到97%,脱硫率一般为70%~95%,适合燃用中低硫煤的中小型锅炉。c)20世纪90年代,以湿法、半干法和干法脱硫工艺同步发展的第三代烟气脱硫。

2.1 湿法脱硫技术

湿法烟气脱硫(WFGD)技术是使用液体碱性吸收剂洗涤烟气以除去二氧化硫。该技术的特点是整个脱硫系统位于燃煤锅炉的除尘系统之后、烟囱之前,脱硫过程在溶液中进行,脱硫剂和脱硫生成物均为湿态,其脱硫过程的反应温度低于露点,反应速度快,脱硫效率高,技术比较成熟,生产运行安全可靠,因此在众多的脱硫技术中,始终占据主导地位。但该工艺系统复杂、设备庞大、耗水量大、一次性投资高,一般适用于大型电厂。运用比较广泛的工艺有:石灰石—石膏法、氧化镁法、氨法、海水法、钠碱法、双碱法等。

以石灰石-石膏法来说明其技术原理:

湿法石灰石一烟气脱硫技术采用石灰石浆液作脱硫吸收剂,将石灰石破碎后与水混合,磨细成粉状制成吸收浆液。在吸收塔内烟气中的SO2与浆液中的CaCO3以及鼓入的氧化空气进行化学反应生成二水石膏,从而除去烟气中的SO2。主要工艺流程为:烟气经除尘器除去粉尘后进入吸收塔,从塔底向上流动,石灰石或石灰浆液从塔顶向下喷淋,烟气中SO2与吸收剂充分接触反应,生成亚硫酸钙和硫酸钙沉淀物,落入沉淀池。干净烟气通过换热器加热后经烟囱向排入大气。主耍的化反应机理为:

SO2+CaCO3+1/2H2O→CaSO3·1/2H2O+CO2

这种半水亚硫酸钙含水率40%-50%,不易脱水且难济于水,但易引起板结。其中部分亚硫酸钙与烟气中的氧反应生成石膏。这种亚硫酸钙与硫酸钙组成的副产物无法利用,只有抛弃。为使脱硫副产品能够回收利川,大多采用强制氧化方式,即向吸收塔下部循环氧化槽内鼓入空气,使亚硫酸钙充分氧化生成石膏,氧化率高达99%。这样得到的脱硫副产品是石膏,可以回收利用。这种脱硫工艺的优点是:技术成熟、脱硫效率高可以应用于大容量机组,对煤种的适应性强,设备性能可靠,脱硫吸收剂资源丰富、价格低廉,副产品容易回收利用。但这种脱硫工艺也有明显的缺点:初始投资大,运行费用较高,耗水量大,占地面积比其它工艺大,需要较大的脱硫场地,如果电厂没有预留脱硫场地,釆用这种工艺有一定的困难。2.2 半干法脱硫技术

半干法脱硫技术是把石灰浆液直接喷入烟气,或把石灰粉和烟尘增湿混合后喷入烟道,生成亚硫酸钙、硫酸钙干粉和烟尘的混合物。该技术运用较广泛的工艺有:旋转喷雾干燥法(SDA)、循环流化床烟气脱硫技术(CFB、RCFB)、增湿灰循环脱硫技术(NID)等。半干法脱硫技术是介于湿法和干法之间的一种脱硫方法,其脱硫效率和脱硫剂利用率等参数也介于两者之间,该方法主要适用于中小锅炉的烟气治理。这种技术的特点是:投资少、运行费用低,脱硫率虽低于湿法脱硫技术,但仍可达到70%,并且腐蚀性小、占地面积少,工艺可靠,具有很好的发展前景。

半干法烟气脱硫机理:

固定和脱除烟气中SO2的基本原理是最简单的酸碱反应。采用在湿状态下脱硫,是因为干燥条件下碱性吸收剂几乎不与SO2发生反应,必须有水的存在脱硫反应才能进行。而干状态下处理脱硫产物主要是在酸碱反应进行的同时利用烟气自身的热量蒸发吸收液的水分,使最终产物呈现为“干态”。半干法烟气脱硫的过程是一个包括了传质、传热以及化学反应的综合过程,主要由以下几步组成:

(1)SO2由气相向吸收剂颗粒表面的扩散;

(2)SO2在吸收剂颗粒表面的吸附、溶解及离解反应;

SO2(g)→SO2(aq)SO2(aq)+ H2O→H2SO3 H2SO3→HSO3-+H+→SO32-+2 H+

(3)碱性吸收剂颗粒在液相中溶解:

Ca(OH)2→Ca2++2OH-(4)酸碱反应中以固定和脱除硫离子: Ca2++ SO32-+1/2H2O→CaSO3·1/2H2O(5)脱硫产物水分蒸发,最终以“干态”形式排出。一般说来脱硫反应总的化学表达式可表示为:

SO2+ Ca(OH)2→CaSO3·1/2H2O+ 1/2H2O 产物CaSO3·1/2H2O又有可能被水汽中的O氧化,生成CaSO4·2H2O反应式为

CaSO3·1/2H2O+1/2O2+3/2H2O→CaSO4·2H2O 出现较早(20世纪70年代)且有代表性的半干法脱硫工艺是喷雾干燥法。该工艺将石灰浆液通过高速旋转的喷雾装置雾化成很细的液滴,在吸收塔内与烟气进行混合与反应,同时雾化后的石灰浆液受热蒸发,形成干粉状脱硫产物与气体一起排出该方法的优点是脱硫剂液滴细小均匀、雾化增湿效果均匀,脱硫动力学条件好,但由于脱硫剂在反应器内的停留时间短,脱硫效率和脱硫剂的利用率均难以提高。为了提高脱硫率和脱硫剂的利用率,后来出现了基于循环技术的CFB工艺。二者的共同特点是在反应器的喉部安装一个固体物料的内循环系统,可将部分脱硫产物与新添加的脱硫剂一起循环返回到反应器内,使产物中未充分反应的脱硫剂再次与烟气接触,大大延长了烟气与脱硫剂的反应时间,提高了脱硫剂的利用率。2.3 干法脱硫技术

干法脱硫技术是将脱硫剂(如石灰石、白云石或消石灰)直接喷入炉内。无论加入的脱硫剂是干态的还是湿态的,脱硫的最终反应物都是干态的。比较成熟的干法脱硫工艺有:炉内喷钙尾部增湿法(LIFAC)、电子束法(EBA)、脉冲电晕法等。这些技术具有系统简单、投资省、占地面积小、运行费用低等优点。但干法脱硫工艺吸收剂的利用率低,脱硫效率较低,飞灰与脱硫产物相混,严重影响着副产物的综合利用,并且对干燥过程自动控制要求很高。

以CFB干法脱硫工艺来说明:

含尘烟气从锅炉尾部空气预热器出来后先通过一级电除尘器除去95%左右的飞灰,然后从底部进入脱硫塔。在脱硫塔内高温烟气与加入的吸收剂、循环灰充分混合进行脱硫反应,去除烟气中SO2。脱硫后的含尘烟气从脱硫塔顶部侧向排出,进入脱硫后除尘器进行气固分离,其中净烟气通过引风机排入烟囱。经除尘器捕集下来的含有吸收剂的固体颗粒,通过除尘器下的脱硫灰再循环系统,返回脱硫塔继续参加反应。多余的脱硫灰渣通过气力输送至脱硫灰库内,再通过罐车或二级输送设备外排。

工艺原理是:在CFB脱硫塔中,高温烟气在底部先与吸收剂、循环脱硫灰充分预混合,进行初步的脱硫反应,主要完成吸收剂与HCl、HF的反应。随后通过脱硫塔下部的文丘里管向上加速,进入CFB床体。在CFB内气、固两相由于气流的作用产生激烈的湍动与混合充分接触。脱硫剂颗粒在烟气携带上升的过程中由气、固二相物形成的絮状物在床内气流激烈湍动中不断形成,又不断解体固体颗粒在床内下落、提升过程随时发生使得气、固间的滑移速度大大提高。脱硫塔顶部结构进一步强化了絮状物的返回,从而提高了塔内床层颗粒的密度和延长吸收剂的反应时间。在床内的钙硫比高达50以上,使SO2充分反应。这种CFB内气、固两相流机制,极大地强化了气、固间的传质与传热,为实现高脱硫率提供了根本的保证。其主要化学反应方程式如下:

Ca(OH)2+SO2→CaSO3·1/2 H2O+1/2 H2O Ca(OH)2+SO3→CaSO4·1/2 H2O+1/2 H2O CaSO3·1/2 H2O+1/2O2→CaSO4·1/2 H2O Ca(OH)2+CO2→CaCO3+H2O Ca(OH)2+2HCl →CaCl2·2H2O 2Ca(OH)2+2HCl →CaCl2·Ca(OH)2·2H2O(>120℃)Ca(OH)2+2HF→ CaF2+2H2O SO2与Ca(OH)2的颗粒在CFB中的反应过程是一个外扩散控制的反应过程。其反应速度主要取决于SO2在Ca(OH)2颗粒表面的扩散阻力,或者说是Ca(OH)2表面气膜厚度。当脱硫剂颗粒与含SO2烟气之间的滑移速度或颗粒的雷诺数增加时,Ca(OH)2颗粒表面的气膜厚度减小,SO2进入Ca(OH)2的传质阻力减小,传质速率加快从而加快SO2与Ca(OH)2颗粒的反应。

系统组成:

典型的干法脱硫除尘系统主要是由预静电除尘器、脱硫塔系统、脱硫后除尘器、脱硫灰循环系统、吸收剂制备及供应系统、烟气系统、工艺水系统、流化风系统等组成。脱硫塔是脱硫系统的核心设备,主要由进口段、下部方圆节、文丘里段、锥形段、直管段、上部方圆节、顶部方形段和出口扩大段组成,塔内没有任何运动部件和支撑杆件。由于流化床中气、固间良好的传热、传质效果,SO3全部得以去除。加上排烟温度通过设置在文丘里段上部的喷水装置始终控制在高于露点温度20℃以上,因此不需烟气加热,更无须任何的防腐处理。脱硫后除尘器不仅需要除去烟气中的飞灰,而且还需要实现脱硫粉尘的收集分类及脱硫灰的循环,因此除尘器对脱硫最终效率有着重要的影响。灰循环的目的是建立稳定的流化床、床料层,反复利用未能充分进行反应而被烟气带出流化床的脱硫剂颗粒,降低吸收剂消耗量。结论:

湿式石灰石石膏法脱硫技术在工业上应用较早,具有技术成熟,运行可靠,脱硫效率高,适用煤种广等优点,特别适用于大型机组和脱硫效率要求高的脱硫,是我国目前应用最多的脱硫技术。但该法多为重复引进的国外技术,设备国产化低。产生的副产物石膏销路不畅、系统复杂、投资多、占地面积大、运行费用高等问题日益显现。

干法烟气脱硫技术具有工艺流程简单,占地面积小,投资和运行费用较低等优点,在脱硫市场上占有一定份额。缺点是脱硫效率较低,钙硫比高,副产物不能商品化,且需增加除尘负荷等,在某些场合限制了其应用。

半干法工艺脱硫效率较高,建设投资较省,占地面积较少,在能满足高品位石灰供应并妥善处理脱硫灰的条件下,具有较好的发展前景,主要适用于中小机组和老机组的脱硫改造。

第二篇:干法脱硫技术(推荐)

干法脱硫技术

摘要:本文主要论述了干法脱除烟气中SO2的各种技术应用及其进展情况,对烟气脱硫技术的发展进行展望,即研究开发出优质高效、经济配套、性能可靠、不造成二次污染、适合国情的全新的烟气污染控制技术势在必行。

关键词:烟气脱硫 二氧化硫 干法

前言:我国的能源以燃煤为主,占煤炭产量75%的原煤用于直接燃烧,煤燃烧过程中产生严重污染,如烟气中CO2是温室气体,SOx可导致酸雨形成,NOX也是引起酸雨元凶之一,同时在一定条件下还可破坏臭氧层以及产生光化学烟雾等。总之燃煤产生的烟气是造成中国生态环境破坏的最大污染源之一。中国的能源消费占世界的8%~9%,SO2的排放量占到世界的15.1%,燃煤所排放的SO2又占全国总排放量的87%。中国煤炭一年的产量和消费高达12亿吨,SO2的年排放量为2000多吨,预计到2010年中国煤炭量将达18亿吨,如果不采用控制措施,SO2的排放量将达到3300万吨。据估算,每削减1万吨SO2的费用大约在1亿元左右,到2010年,要保持中国目前的SO2排放量,投资接近1千亿元,如果想进一步降低排放量,投资将更大[1]。为此1995年国家颁布了新的《大气污染防治法》,并划定了SO2污染控制区及酸雨控制区。各地对SO2的排放控制越来越严格,并且开始实行SO2排放收费制度。随着人们环境意识的不断增强,减少污染源、净化大气、保护人类生存环境的问题正在被亿万人们所关心和重视,寻求解决这一污染措施,已成为当代科技研究的重要课题之一。因此控制SO2的排放量,既需要国家的合理规划,更需要适合中国国情的 低费用、低耗本的脱硫技术。

烟气脱硫技术是控制SO2和酸雨危害最有效的手段之一,按工艺特点主要分为湿法烟气脱硫、干法烟气脱硫和半干法烟气脱硫。

湿法脱硫是采用液体吸收剂洗涤SO2烟气以脱除SO2。常用方法为石灰/石灰石吸收法、钠碱法、铝法、催化氧化还原法等,湿法烟气脱硫技术以其脱硫效率高、适应范围广、钙硫比低、技术成熟、副产物石膏可做商品出售等优点成为世界上占统治地位的烟气脱硫方法。但由于湿法烟气脱硫技术具有投资大、动力消耗大、占地面积大、设备复杂、运行费用和技术要求高等缺点,所以限制了它的发展速度。

干法脱硫技术与湿法相比具有投资少、占地面积小、运行费用低、设备简单、维修方便、烟气无需再热等优点,但存在着钙硫比高、脱硫效率低、副产物不能商品化等缺点。

自20世纪80年代末,经过对干法脱硫技术中存在的主要问题的大量研究和不断的改进,现在已取得突破性进展。有代表性的喷雾干燥法、活性炭法、电子射线辐射法、填充电晕法、荷电干式吸收剂喷射脱硫技术、炉内喷钙尾部增湿法、烟气循环流化床技术、炉内喷钙循环流化床技术等一批新的烟气脱硫技术已成功地开始了商业化运行,其脱硫副产物脱硫灰已成功地用在铺路和制水泥混合材料方面。这一些技术的进步,迎来了干法、半干法烟气脱硫技术的新的快速发展时期。

传统的石灰石/石膏法脱硫与新的干法、半干法烟气脱硫技术经济指标的比较见表1。表1说明在脱硫效率相同的条件下,干法、半干法脱硫技术与湿法相比,在单位投资、运行费用和占地面积的方面具有明显优势,将成为具有产业化前景的烟气脱硫技术。

3、电子射线辐射法烟气脱硫技术

电子射线辐射法是日本荏原制作所于1970年着手研究,1972年又与日本原子能研究所合作,确立的该技术作为连续处理的基础。1974年荏原制作所处理重油燃烧废气,进行了1000Nm3/h规模的试验,探明了添加氨的辐射效果,稳定了脱硫脱硝的条件,成功地捕集了副产品和硝铵。80年代由美国政府和日本荏原制作所等单位分担出资在美国印第安纳州普列斯燃煤发电厂建立了一套最大处理高硫煤烟气量为24000Nm3/h地电子束装置,1987年7月完成,取得了较好效果,脱硫率可达90%以上,脱硝率可达80%以上。现日本荏原制作所与中国电力工业部共同实施的“中国EBA工程”已在成都电厂建成一套完整的烟气处理能力为300000Nm3/h的电子束脱硫装置,设计入口SO2浓度为1800ppm,在吸收剂化学计量比为0.8的情况下脱硫率达80%,脱硝率达10%[6]。

该法工艺由烟气冷却、加氨、电子束照射、粉体捕集四道工序组成,其工艺流程图如图2所示。温度约为150℃左右的烟气经预除尘后再经冷却塔喷水冷却道60~ 70℃左右,在反应室前端根据烟气中SO2及NOX的浓度调整加入氨的量,然后混合气体在反应器中经电子束照射,排气中的SO2和NOX受电子束强烈作用,在很短时间内被氧化成硫酸和硝酸分子,被与周围的氨反应生成微细的粉粒(硫酸铵和硝酸铵的混合物),粉粒经集尘装置收集后,洁净的气体排入大气[7]。

6、炉内喷钙尾部增湿烟气脱硫技术

炉内喷钙尾部增湿也作为一种常见的干法脱硫工艺而被广泛应用。虽然喷钙尾部增湿脱硫的基本工艺都是将CaCO3粉末喷入炉内,脱硫剂在高温下迅速分解产生CaO,同时与烟气中的SO2反应生成CaSO3。由于单纯炉内喷钙脱硫效率往往不高(低于20%~50%),脱硫剂利用率也较低,因此炉内喷钙还需与尾部增湿配合以提高脱硫效率。该技术已在美国、日本、加拿大和欧洲国家得到工业应用,是一种具有广阔发展前景的脱硫技术。目前,典型的炉内喷钙尾部增湿脱硫技术有美国的炉内喷钙多级燃烧器(LIMB)技术、芬兰的炉内喷石灰石及氧化钙活化反应(LIFAC)技术、奥地利的灰循环活化(ARA)技术等,下面介绍一下LIFAC技术[11]。

LIFAC脱硫技术是由芬兰的Tampella公司和IVO公司首先开发成功并投入商业应用的该技术是将石灰石于锅炉的800℃~1150℃部位喷入,起到部分固硫作用,在尾部烟道的适当部位(一般在空气预热器与除尘器之间)装设增湿活化反应器,使炉内未反应的CaO和水反应生成Ca(OH)2,进一步吸收SO2,提高脱硫率。

LIFAC技术是将循环流化床技术引入到烟气脱硫中来,是其开创性工作,目前该技术脱硫率可达90%以上,这已在德国和奥地利电厂的商业运行中得到实现。

LIFAC技术具有占地小、系统简单、投资和运行费用相对较、无废水排放等优点,脱硫率为60%~80%;但该技术需要改动锅炉,会对锅炉的运行产生一定影响。我国南京下关电厂和绍兴钱清电厂从芬兰引进的LIFAC脱硫技术和设备目前已投入运行。

7、炉内喷钙循环流化床反应器烟气脱硫技术

炉内喷钙循环流化床反应器脱硫技术是由德国Sim-mering Graz Pauker/Lurgi GmbH公司开发的。该技术的基本原理是:在锅炉炉膛适当部位喷入石灰石,起到部分固硫作用,在尾部烟道电除尘器前装设循环流化床反应器,炉内未反应的CaO随着飞灰输送到循环流化床反应器内,在循环硫化床反应器中大颗粒CaO被其中湍流破碎,为SO2反应提供更大的表面积,从而提高了整个系统的脱硫率[12]。

该技术将循环流化床技术引入到烟气脱硫中来,是其开创性工作,目前该技术脱硫率可达90%以上,这已在德国和奥地利电厂的商业运行中得到证实。在此基础上,美国EEC(Enviromental Elements Corporation)和德国Lurgi公司进一步合作开发了一种新型烟气的脱硫装置。在该工艺中粉状的Ca(OH)2和水分别被喷入循环流化床反应器内,以此代替了炉内喷钙。在循环流化床反应器内,吸收剂被增湿活化,并且能充分的循环利用,而大颗粒吸收剂被其余粒子碰撞破碎,为脱硫反应提供更大反应表面积。

本工艺流程的脱硫效率可达95%以上,造价较低,运行费用相对不高,是一种较有前途的脱硫工艺。

8、干式循环流化床烟气脱硫技术

干式循环流化床烟气脱硫技术是20世纪80年代后期发展起来的一种新的干法烟气脱硫技术,该技术具有投资少、占地小、结构简单、易于操作,兼有高效除尘和烟气净化功能,运行费用低等优点。因而,国家电站燃烧工程技术研究中心和清华大学煤的清洁燃烧技术国家重点实验室分别对该技术的反应机理、反应过程的数学模型等进行了理论和实验研究。其工艺流程如图3示,从煤粉燃烧装置产生的实际烟气通过引风机进入反应器,再经过旋风除尘器,最后通过引风机从烟囱排出。脱硫剂为从回转窑生产的高品质石灰粉,用螺旋给粉机按给定的钙硫比连续加入。旋风除尘器除下的一部分脱硫灰经循环灰斗和螺旋给灰机进入反应器中再循环。在文丘里管中有喷水雾化装置,通过调节水量来控制反应器内温度[13]。

摘 要 本文针对工业烟气的脱硫技术的研究现状及研究方向进行综合性分析。关键词 烟气 脱硫 技术 研究

前言

SO2是造成大气污染的主要污染物之一,有效控制工业烟气中SO2是当前刻不容缓的环保课题。

据国家环保统计,每年各种煤及各种资源冶炼产生二氧化硫(SO2)达2158.7万t,高居世界第一位,其中工业来源排放量1800万t,占总排放量的83%。其中我国目前的一次能源消耗中,煤炭占76%,在今后若干年内还有上升的趋势。我国每年排入大气的87%的SO2来源于煤的直接燃烧。随着我国工业化进程的不断加快,SO2的排放量也日渐增多。

2、烟气脱硫技术进展

目前,烟气脱硫技术根据不同的划分方法可以分为多种方法;其中最常用的是根据操作过程的物相不同,脱硫方法可分为湿法、干法和半干法[1]。

2.1 湿法烟气脱硫技术

优点:湿法烟气脱硫技术为气液反应,反应速度快,脱硫效率高,一般均高于90%,技术成熟,适用面广。湿法脱硫技术比较成熟,生产运行安全可靠,在众多的脱硫技术中,始终占据主导地位,占脱硫总装机容量的80%以上[2]。

缺点:生成物是液体或淤渣,较难处理,设备腐蚀性严重,洗涤后烟气需再热,能耗高,占地面积大,投资和运行费用高。系统复杂、设备庞大、耗水量大、一次性投资高,一般适用于大型电厂。

分类:常用的湿法烟气脱硫技术有石灰石-石膏法、间接的石灰石-石膏法、柠檬吸收法等。

A 石灰石/石灰-石膏法:

原理:是利用石灰石或石灰浆液吸收烟气中的SO2,生成亚硫酸钙,经分离的亚硫酸钙(CaO3S)可以抛弃,也可以氧化为硫酸钙(CaSO4),以石膏形式回收。是目前世界上技术最成熟、运行状况最稳定的脱硫工艺,脱硫效率达到90%以上。

B 间接石灰石-石膏法: 常见的间接石灰石-石膏法有:钠碱双碱法、碱性硫酸铝法和稀硫酸吸收法等。原理:钠碱、碱性氧化铝(Al2O3·nH2O)或稀硫酸(H2SO4)吸收SO2,生成的吸收液与石灰石反应而得以再生,并生成石膏。该法操作简单,二次污染少,无结垢和堵塞问题,脱硫效率高,但是生成的石膏产品质量较差。

C 柠檬吸收法:

原理:柠檬酸(H3C6H5O7·H2O)溶液具有较好的缓冲性能,当SO2气体通过柠檬酸盐液体时,烟气中的SO2与水中H发生反应生成H2SO3络合物,SO2吸收率在99%以上。这种方法仅适于低浓度SO2烟气,而不适于高浓度SO2气体吸收,应用范围比较窄[3]。

另外,还有海水脱硫法、磷铵复肥法、液相催化法等湿法烟气脱硫技术。

2.2 干法烟气脱硫技术

优点:干法烟气脱硫技术为气同反应,相对于湿法脱硫系统来说,设备简单,占地面积小、投资和运行费用较低、操作方便、能耗低、生成物便于处置、无污水处理系统等。

缺点:但反应速度慢,脱硫率低,先进的可达60-80%。但目前此种方法脱硫效率较低,吸收剂利用率低,磨损、结垢现象比较严重,在设备维护方面难度较大,设备运行的稳定性、可靠性不高,且寿命较短,限制了此种方法的应用。

分类:常用的干法烟气脱硫技术有活性碳吸附法、电子束辐射法、荷电干式吸收剂喷射法、金属氧化物脱硫法等。

典型的干法脱硫系统是将脱硫剂(如石灰石、白云石或消石灰)直接喷入炉内。以石灰石为例,在高温下煅烧时,脱硫剂煅烧后形成多孔的氧化钙颗粒,它和烟气中的SO2反应生成硫酸钙,达到脱硫的目的。

A 活性碳吸附法:

原理:SO2被活性碳吸附并被催化氧化为三氧化硫(SO3),再与水反应生成H2SO4,饱和后的活性碳可通过水洗或加热再生,同时生成稀H2SO4或高浓度SO2。可获得副产品H2SO4,液态SO2和单质硫,即可以有效地控制SO2的排放,又可以回收硫资源。该技术经西安交通大学对活性炭进行了改进,开发出成本低、选择吸附性能强的ZL30,ZIA0,进一步完善了活性炭的工艺,使烟气中SO2吸附率达到95.8%,达到国家排放标准[4]。

B 电子束辐射法:

原理:用高能电子束照射烟气,生成大量的活性物质,将烟气中的SO2和氮氧化物氧化为SO3和二氧化氮(NO2),进一步生成H2SO4和硝酸(NaNO3),并被氨(NH3)或石灰石(CaCO3)吸收剂吸收

C 荷电干式吸收剂喷射脱硫法(CD.SI):

原理:吸收剂以高速流过喷射单元产生的高压静电电晕充电区,使吸收剂带有静电荷,当吸收剂被喷射到烟气流中,吸收剂因带同种电荷而互相排斥,表面充分暴露,使脱硫效率大幅度提高。此方法为干法处理,无设备污染及结垢现象,不产生废水废渣,副产品还可以作为肥料使用,无二次污染物产生,脱硫率大于90%[7],而且设备简单,适应性比较广泛。但是此方法脱硫靠电子束加速器产生高能电子;对于一般的大型企业来说,需大功率的电子枪,对人体有害,故还需要防辐射屏蔽,所以运行和维护要求高。四川成都热电厂建成一套电子脱硫装置,烟气中SO2的脱硫达到国家排放标准。

D 金属氧化物脱硫法:

原理:根据SO2是一种比较活泼的气体的特性,氧化锰(MnO)、氧化锌(ZnO)、氧化铁(Fe3O4)、氧化铜(CuO)等氧化物对SO2具有较强的吸附性,在常温或低温下,金属氧化物对SO2起吸附作用,高温情况下,金属氧化物与SO2发生化学反应,生成金属盐。然后对吸附物和金属盐通过热分解法、洗涤法等使氧化物再生。这是一种干法脱硫方法,虽然没有污水、废酸,不造成污染,但是此方法也没有得到推广,主要是因为脱硫效率比较低,设备庞大,投资比较大,操作要求较高,成本高。该技术的关键是开发新的吸附剂。

以上几种SO2烟气治理技术目前应用比较广泛的,虽然脱硫率比较高,但是工艺复杂,运行费用高,防污不彻底,造成二次污染等不足,与我国实现经济和环境和谐发展的大方针不相适应,故有必要对新的脱硫技术进行探索和研究。

2.3 半干法烟气脱硫技术

半干法脱硫包括喷雾干燥法脱硫、半干半湿法脱硫、粉末一颗粒喷动床脱硫、烟道喷射脱硫等。

A 喷雾干燥法[5]:

喷雾干燥脱硫方法是利用机械或气流的力量将吸收剂分散成极细小的雾状液滴,雾状液滴与烟气形成比较大的接触表面积,在气液两相之间发生的一种热量交换、质量传递和化学反应的脱硫方法。一般用的吸收剂是碱液、石灰乳、石灰石浆液等,目前绝大多数装置都使用石灰乳作为吸收剂。一般情况下,此种方法的脱硫率65%~85%。其优点:脱硫是在气、液、固三相状态下进行,工艺设备简单,生成物为干态的CaSO、CaSO,易处理,没有严重的设备腐蚀和堵塞情况,耗水也比较少。缺点:自动化要求比较高,吸收剂的用量难以控制,吸收效率不是很高。所以,选择开发合理的吸收剂是解决此方法面临的新难题。B 半干半湿法:

半干半湿法是介于湿法和干法之间的一种脱硫方法,其脱硫效率和脱硫剂利用率等参数也介于两者之间,该方法主要适用于中小锅炉的烟气治理。这种技术的特点是:投资少、运行费用低,脱硫率虽低于湿法脱硫技术,但仍可达到70%tn,并且腐蚀性小、占地面积少,工艺可靠。工业中常用的半干半湿法脱硫系统与湿法脱硫系统相比,省去了制浆系统,将湿法脱硫系统中的喷入Ca(OH):水溶液改为喷入CaO或Ca(OH):粉末和水雾。与干法脱硫系统相比,克服了炉内喷钙法SO2和CaO反应效率低、反应时间长的缺点,提高了脱硫剂的利用率,且工艺简单,有很好的发展前景。

C 粉末一颗粒喷动床半千法烟气脱硫法:

技术原理:含SO2的烟气经过预热器进入粉粒喷动床,脱硫剂制成粉末状预先与水混合,以浆料形式从喷动床的顶部连续喷人床内,与喷动粒子充分混合,借助于和热烟气的接触,脱硫与干燥同时进行。脱硫反应后的产物以干态粉末形式从分离器中吹出。这种脱硫技术应用石灰石或消石灰做脱硫剂。具有很高的脱硫率及脱硫剂利用率,而且对环境的影响很小。但进气温度、床内相对湿度、反应温度之间有严格的要求,在浆料的含湿量和反应温度控制不当时,会有脱硫剂粘壁现象发生。

D 烟道喷射半干法烟气脱硫:

该方法利用锅炉与除尘器之间的烟道作为反应器进行脱硫,不需要另外加吸收容器,使工艺投资大大降低,操作简单,需场地较小,适合于在我国开发应用。半干法烟道喷射烟气脱硫即往烟道中喷人吸收剂浆液,浆滴边蒸发边反应,反应产物以干态粉末出烟道。新兴的烟气脱硫方法以及当前研究的热点

最近几年,科技突飞猛进,环境问题已提升到法律高度。我国的科技工作者研制出了一些新的脱硫技术,但大多还处于试验阶段,有待于进一步的工业应用验证。

3.1 硫化碱脱硫法

由Outokumpu公司开发研制的硫化碱脱硫法主要利用工业级硫化纳作为原料来吸收SO2工业烟气,产品以生成硫磺为目的。反应过程相当复杂,有Na2SO4、Na2SO3、Na2S203、S、Na2Sx等物质生成,由生成物可以看出过程耗能较高,而且副产品价值低,华南理工大学的石林经过研究表明过程中的各种硫的化合物含量随反应条件的改变而改变,将溶液pH值控制在5.5—6.5之间,加入少量起氧化作用的添加剂TFS,则产品主要生成Na2S203,过滤、蒸发可得到附加值高的5H 0·Na2S203,而且脱硫率高达97%,反应过程为:SO2+Na2S=Na2S203+S。此种脱硫新技术已通过中试,正在推广应用。

3.2 膜吸收法

以有机高分子膜为代表的膜分离技术是近几年研究出的一种气体分离新技术,已得到广泛的应用,尤其在水的净化和处理方面。中科院大连物化所的金美等研究员创造性地利用膜来吸收脱出SO2气体,效果比较显著,脱硫率达90%。过程是:他们利用聚丙烯中空纤维膜吸收器,以NaOH溶液为吸收液,脱除SO2气体,其特点是利用多孔膜将气体SO2气体和NaOH吸收液分开,SO2气体通过多孔膜中的孔道到达气液相界面处,SO2与NaOH迅速反应,达到脱硫的目的。此法是膜分离技术与吸收技术相结合的一种新技术,能耗低,操作简单,投资少。

3.3 微生物脱硫技术

根据微生物参与硫循环的各个过程,并获得能量这一特点,利用微生物进行烟气脱硫,其机理为:在有氧条件下,通过脱硫细菌的间接氧化作用,将烟气中的SO2氧化成硫酸,细菌从中获取能量。

生物法脱硫与传统的化学和物理脱硫相比,基本没有高温、高压、催化剂等外在条件,均为常温常压下操作,而且工艺流程简单,无二次污染。国外曾以地热发电站每天脱除5t量的H:S为基础;计算微生物脱硫的总费用是常规湿法50%[6]。无论对于有机硫还是无机硫,一经燃烧均可生成被微生物间接利用的无机硫SO2,因此,发展微生物烟气脱硫技术,很具有潜力。四川大学的王安等人在实验室条件下,选用氧化亚铁杆菌进行脱硫研究,在较低的液气比下,脱硫率达98%。

4、烟气脱硫技术发展趋势

目前已有的各种技术都有自己的优势和缺陷,具体应用时要具体分析,从投资、运行、环保等各方面综合考虑来选择一种适合的脱硫技术。随着科技的发展,某一项新技术韵产生都会涉及到很多不同的学科,因此,留意其他学科的最新进展与研究成果,并把它们应用到烟气脱硫技术中是开发新型烟气脱硫技术的重要途径,例如微生物脱硫、电子束法脱硫等脱硫新技术,由于他们各自独特的特点都将会有很大的发展空间。随着人们对环境治理的日益重视和工业烟气排放量的不断增加,投资和运行费用少、脱硫效率高、脱硫剂利用率高、污染少、无二次污染的脱硫技术必将成为今后烟气脱硫技术发展的主要趋势。

各种各样的烟气脱硫技术在脱除SO2的过程中取得了一定的经济、社会和环保效益,但是还存在一些不足,随着生物技术及高新技术的不断发展,电子束脱硫技术和生物脱硫等一系列高新、适用性强的脱硫技术将会代替传统的脱硫方法。

参考文献:

[1] 陈兵,张学学.烟气脱硫技术研究与进展[J].工业锅炉,2002,74(4):6-10.

[2] 林永明,韦志高.湿法石灰石/石灰一石膏脱硫技术应用综述[J].广西电力工程,2000.4:92-98.

[3] 郭小宏,等.利用活性炭治理华光实业社会福利冶炼厂可行研究报告[R].2002,6.

[4] 石林,等.硫化碱溶液脱除工业烟气中的二氧化硫[J],中山大学学报论丛,1997,5.

[5] 孙胜奇,陈荣永等.我国二氧化硫烟气脱硫技术现状及进展[J].2005,29(1):44-47 干法烟气脱硫是反应在无液相介入的完全干燥的状态下进行,反应产物也为干粉状,不存在腐蚀、结露等问题。干法主要有炉内喷钙烟气脱硫、炉内喷钙尾部烟气增湿活化脱硫、活性炭吸附—再生烟气脱硫等技术。

(1)炉内喷钙烟气脱硫技术

炉内喷钙烟气脱硫是把钙基吸收剂如石灰石、白云石等喷到炉膛燃烧室上部温度低于1200℃的区域,随后石灰石瞬时煅烧生成CaO,新生的CaO与SO2进行硫酸盐化反应生成CaSO4,并随飞灰在除尘器中收集。该反应过程是非常复杂的,主要由石灰石的煅烧、CaO/SO2硫酸盐化反应和CaCO3/SO2直接硫酸化反应等组成。曾经认为是简单反应的CaO/SO2硫酸盐化反应,现在被认为是复杂的高温、瞬时的多相反应。吸收剂的类型、新生CaO的微孔结构、温度、时间等诸多参数影响着硫酸盐化反应过程。因此,炉内喷钙烟气脱硫仍是一个值得研究的课题。炉内喷钙烟气脱硫技术的特点是投资省、占地面积小、易于在老锅炉上改造,不足之处是脱硫效率低,钙利用率低。为此,可以通过加装一些设备提高炉内喷钙的SO2脱除率。最简单的方法是在除尘器之前向烟道内喷水,这能使脱硫率提高10%。反应产物再循环也是提高脱硫率和石灰石利用率的有效方法。被除尘设备(ESP或布袋除尘器)收集下来的反应产物经过一些调整后,喷入炉膛或管道并循环数次,使脱硫率达到70%以上。

(2)炉内喷钙尾部烟气增湿活化脱硫技术

炉内喷钙在除尘装置如ESP之前喷水增湿,使未反应的CaO活化,提高烟气中SO2的脱除效率。芬兰IVO公司把烟气增湿这一概念进行了扩展,开发出炉内喷钙尾部烟气增湿活化脱硫工艺(LIFAC)。该工艺除了保留炉内喷射石灰石粉脱硫系统,在炉后烟道上增设了一个独立的活化反应器,将炉内未反应完的CaO通过雾化水进行活化后再次脱除烟气中的SO2。LIFAC工艺可以分步实施,以满足用户在不同阶段对脱硫效率的要求。可分三步实施:石灰石炉内喷射→烟气增湿及干灰再循环→加湿灰浆再循环。第一步通过石灰石粉喷入炉膛可得到25%~35%的脱硫率,该步的投资需要量很小,一般为整个脱硫系统费用的10%。在第二步中活化塔是核心,烟气要进行增湿和脱硫灰再循环,可使脱硫效率达到75%,该步的投资大约是脱硫系统总费用的85%。增加第三步灰浆再循环后脱硫效率可增至85%,而投资费用仅为总费用的5%。分步实施可以在原有锅炉上进行。这样非常独特的优点使得用户在计划自己的投资和满足排放标准方面有更大的灵活性。该工艺1985年在芬兰建成了第1套工业化装置后短短几年,就在多个国家应用。南京下关电厂引进芬兰IVO公司全套LIFAC技术,配套125MW机组,燃煤含硫0.92%时,脱硫率为75%左右,该脱硫工程已于1998年投入运行。

(3)活性炭吸附-再生烟气脱硫技术

活性炭吸附-再生烟气脱硫技术最早出现在19世纪70年代后期,已有数种工艺在日本、德国、美国等得到工业应用,其代表方法有日立法、住友法、鲁奇法、BF法及Reidluft法等。目前已由火电厂扩展到石油化工、硫酸及肥料工业等领域。

活性炭脱硫的主要特点:过程比较简单,再生过程中副产物很少;吸附容量有限,须在低气速(0.3~1.2m/s)下运行,因而吸附器体积较大;活性炭易被废气中的O2氧化而导致损耗;长期使用后,活性炭会产生磨损,并因微孔堵塞丧失活性。

一般认为当烟气中没有氧和水蒸气存在时,用活性炭吸附SO2仅为物理吸附,吸附量较小,而当烟气中有氧和水蒸气存在时,在物理吸附过程中,还会发生化学吸附。这是由于活性炭表面具有催化作用,使吸附的SO2被烟气中的O2氧化为SO3,SO3再与水蒸气反应生成硫酸,使其吸附量大为增加,该过程可表示为:SO2→SO2*(物理吸附),O2→O2*(物理吸附),H2O→H2O*(物理吸附),2SO2*+ O2*→2SO3*(化学吸附),SO3*+ H2O*→H2SO4*(化学吸附),H2SO4*+ nH2O*→H2SO4•H2O*(化学吸附)。

活性炭吸附SO2后,在其表面形成的硫酸存在于活性炭的微孔中,降低其吸附能力,因此需把存在于微孔中的硫酸取出,使活性炭再生。再生方法包括洗涤再生和加热再生两种。两种方法中,以洗涤再生较为简单、经济。洗涤再生法是通过洗涤活性炭床层使炭孔内的酸液不断排出炭层,从而恢复炭的催化活性。因为脱硫过程在炭内形成的稀硫酸几乎全部以离子形态形式存在,而活性炭有吸附选择性能,对这些离子化物质的吸着力非常薄弱,可以通过洗涤造成浓度差扩散使炭得到再生,该再生法常常用于固定床吸附流程中。对于固定床,其流程为烟气经除尘后,送入吸附塔。吸附塔可以并联或串联运行。并联时的脱硫效率为80%左右,串联可达到90%。各塔吸附SO2达饱和后,轮流进行水洗,用水量为活性炭重量的4倍,水洗时间为10h,可得到浓度为10%~20%的硫酸,稀硫酸可用浸没燃烧装置浓缩至70%。

活性炭加热再生常采用移动床吸附脱硫流程。该流程为烟气送入吸附塔与活性炭错流接触,SO2被活性炭吸附而脱除,净化烟气经烟囱排入大气。吸附了SO2的活性炭被送入脱附塔,先在换热器内预热至300℃,再与300℃的过热水蒸气接触,活性炭上的硫酸被还原成SO2放出。脱硫后的活性炭与冷空气进行热交换而被冷却至150℃后,送至空气处理槽,与预热过的空气接触,进一步脱除SO2,然后送入吸附塔循环使用。从脱附塔产生的SO2、CO2和水蒸气经过换热器除去水汽后,送入硫酸厂,此工艺脱硫率可达90%以上。吸附法常用的吸附剂除活性炭外,还有用活性焦、分子筛、硅胶等吸附介质。活性焦比活性炭的经济性要好,表现出较大的应用潜力。活性炭或活性焦吸附法烟气脱硫能否得到应用的关键是解决副产物稀硫酸的应用市场及提高它们吸附性能。

随着循环经济理念不断地扩展,国内外对活性炭或活性焦吸附-再生烟气脱硫技术表现出浓厚的兴趣,该技术特别适合于缺水、脱硫石膏无法综合利用的区域。因此,国内已有多家单位正在开展该技术的工业试验,有望今后能在大型机组上应用。

第三篇:第三节 干法和半干法脱硫工艺

第三节 干法和半干法脱硫工艺 喷雾干燥法脱硫工艺

喷雾干燥法脱硫工艺以石灰为脱硫吸收剂,石灰经消化并加水制成消石灰乳,由泵打入位于吸收塔内的雾化装置,在吸收塔内,被雾化成细小液滴的吸收剂与烟气混合接触,与烟气中的SO2发生化学反应生成CaS03,烟气中的SO2被脱除。与此同时,吸收剂带入的水分迅速被蒸发而干燥,烟气温度随之降低。脱硫反应产物及未被利用的吸收剂呈干燥颗粒状,随烟气带出吸收塔,进入除尘器被收集。脱硫后的烟气经除尘器除尘后排放。为了提高脱硫吸收剂的利用率,一般将部分除尘器收集物加入制浆系统进行循环利用。该工艺有两种不同的雾化形式可供选择,一种为旋转喷雾轮雾化,另一种为气液两相流。

喷雾干燥法脱硫工艺具有技术成熟、工艺流程较为简单、系统可靠性高等特点,脱硫率可达到85%以上。该工艺在美国及西欧一些国家有一定应用范围(8%)。脱硫灰渣可用作制砖、筑路,但多为抛弃至灰场或回填废旧矿坑[9]。烟气循环流化床脱硫工艺

该工艺由吸收剂制备、吸收塔、脱硫灰再循环、除尘器及控制系统等部分组成。一般采用干态的消石灰粉作为吸收剂,也可采用其它对SO2有吸收反应能力的干粉或浆液作为吸收剂。

未经处理的烟气从吸收塔(即流化床)底部进入。吸收塔底部为一个文丘里装置,烟气流经文丘里管后速度加快,并在此与很细的的吸收剂粉末互相混合,颗粒之间、气体与颗粒之间剧烈摩擦,形成流化床,在喷人均匀水雾降低烟温的条件下,吸收剂与烟气中的SO2反应生成CaSO3和CaSO4。

脱硫后携带大量固体颗粒的烟气从吸收塔顶部排出,进人再循环除尘器,被分离出来的颗粒经中间灰仓返回吸收塔,由于固体颗粒反复循环达百次之多,故吸收剂利用率较高。

此工艺的副产物呈干粉状,其化学成分与喷雾干燥法脱硫工艺类似,主要由飞灰、CaS03、CaSO4和未反应完的吸收剂Ca(OH)2等组成,适合作废矿井回填、道路基础等。典型的烟气循环流化床脱硫工艺,当燃煤含硫量为2%左右,钙硫比不大于1.3时,脱硫率可达90%以上,排烟温度约70℃。此工艺在国外目前应用在100-200 MW等级机组。由于其占地面积少,投资省,尤其适合于老机组烟气脱硫。

炉内喷钙脱硫技术

炉内喷钙、尾部增湿脱硫工艺主要有LIFAC、LIMB和LIDS三种。

LIFAC脱硫技术(炉内喷钙尾部增湿脱硫技术)是由芬兰的Tempella公司和IVO公司首先开发成功并投人商业应用的,该技术是将石灰石于锅炉的850-1150℃部位喷入起到部分固硫作用[10]。在尾部烟道的适当部位(一般在空气预热器和除尘器之间)装设增湿活化反应器,使炉内未反应的CaO和水反应生成Ca(OH)2,进一步吸收二氧化硫,提高脱硫率。

LIFAC工艺主要包括以下三步:(1)炉内喷钙系统

将磨细到325目左右的石灰石粉用气流输送方法喷射到炉膛上部温度为900-1150℃的区域,CaC03立即分解并与烟气中SO2和少量S03反应生成CaSO3和CaS04。可使炉内喷钙的脱硫率达到75 %,投资占整个脱硫系统投资的10%左右。

(2)炉后增湿活化

在安装于锅炉与电除尘器之间的增湿活化器中完成,在活化器内,炉膛中未反应的Ca0与喷人的水反应生成Ca(OH)2, SO2与生成的新鲜Ca(OH)2快速反应生成CaS03,接着又部分被氧化为CaS04。烟气经过加水增湿活化,可使系统的总脱硫率达到75%以上,而其投资约占整个系统投资的85 %。

(3)灰浆或干灰再循环

将电除尘器捕集的部分物料加水制成灰浆喷入活化器增湿活化,可使系统总脱硫率提高到85 %,占整个系统投资的5%[11]。

电子束法脱硫工艺

该工艺流程有排烟预除尘、烟气冷却、氨的喷入、电子束照射和辐产品捕集等工序所组成。锅炉所排出的烟气,经过除尘器的粗滤处理后进人冷却塔,在冷却塔内喷射冷却水,将烟气冷却到适合于脱硫、脱硝处理的温度(约70 ℃)。烟气的露点通常约为50℃,被喷射呈雾状的冷却水在冷却塔内完全得到蒸发,因此,不产生废水。通过冷却塔后的烟气流进反应器,在反应器进口处将氨水、压缩空气和软水混合喷人,加氨量取决于SOX和NOX浓度,经过电子束照射后,SOX和NOX在自由基作用下生成中间生成物硫酸(H2SO4)和硝酸(HNO3)。然后硫酸和硝酸与共存的氨进行中和反应,生成粉状微粒(硫酸氨与硝酸氨的混合粉体)。这些粉状微粒一部分沉淀到反应器底部,通过输送机排出,其余被副产品除尘器所分离和捕集,经过造粒处理被送到副产品仓库储藏。净化后的烟气经脱硫风机由烟囱向大气排放。

活性炭吸附法

活性炭具有较大的表面积、良好的孔结构、丰富的表面基团、高效的原位脱氧能力,同时有负载性能和还原性能,所以既可作载体制得高分散的催化体系,又可作还原剂参与反应提供一个还原环境,降低反应温度。SO2、O2与H2O被吸附剂吸附,发生下述总反应:

2SO2+2O2+2H2O→2H2SO4

活性炭吸收SO2和NOX后生成的物质存在于活性炭表面的微孔中,降低了活性炭的吸附能力,因此对吸附SO2后表面上生成硫酸的活性炭要定期再生,先用水洗,得到稀硫酸溶液,然后对活性炭进行十燥。对吸附SO2的活性炭加热,硫酸在炭的作用下还原为SO2得到富集,可用于生产硫酸或硫磺,但要消耗一部分活性炭[12]。气相催化氧化法

气相催化氧化法烟气脱硫是在催化剂接触表面上,烟气中的SO2直接氧化为SO3的干式烟气脱硫方法。常用的催化剂为V2O5,广泛用于处理硫酸尾气,处理电厂锅炉气及炼油厂尾气技术尚未成熟。反应机理简单,在钒催化剂表面上,SO2氧化为SO3,须根据既要有较高的转化率,又要有较快的反应速度的原则来选择适宜的反应温度,美国孟山都等公司联合研究发展的孟山都催化氧化法(Monsanto Cat-OX)是气相催化氧化法的典型工艺。经高温电除尘器净化的烟气进入置有若干层钒催化剂的转化器,使烟气中80~90%的SO2氧化为SO3,经转化器的烟气再经省煤器、空气预热器冷却后,在一台填充塔内用冷硫酸洗涤除去SO3,可得浓度为80%的硫酸。烟气中残余的飞灰沉积在催化剂表面,使转化器阻力增加,需定期取出催化剂清理。

第四篇:关于燃煤机组湿法和干法脱硫工艺比较分析

关于燃煤机组湿法和干法脱硫工艺比较分析

[摘 要]目前在国内外300MW机组有运行实例,且脱硫效率达到90%及以上的脱硫工艺有石灰石-石膏湿法、循环流化床干法脱硫(CFB-FGD)工艺、海水脱硫、氨法四种。而其中,只有石灰石-石膏湿法脱硫和循环流化床干法脱硫两种脱硫工艺对厂址条件、反应剂和产物等条件要求较低,适用于各种情况下的燃煤电厂烟气脱硫。因此,本文主要针对循环流化床干法脱硫和石灰石-石膏湿法脱硫这两种工艺进行比较。

[关键词]燃煤机组;循环流化床干法脱硫;石灰石-石膏湿法脱硫;

中图分类号:S336 文献标识码:A 文章编号:1009-914X(2018)26-0359-01

循环流化床干法脱硫和石灰石-石膏湿法脱硫是当前300MW级火力发电机组常用的两种脱硫工艺,本文简单介绍了两种脱硫方法的工艺原理和流程,并以新建2×300MW机组为例,对两种脱硫工艺的技术特点和投资运行费用进行比较。

一、石灰石-石膏湿法脱硫工艺

石灰石-石膏湿法脱硫技术特点石灰石-石膏脱硫工艺采用Ca(OH)2或者CaCO3粉末的料浆来除去SO2,因为这种方法脱硫效率高、稳定性好、投资也比较低。为了改进其工艺对SO2的吸附效果,许多学者对钙基吸附剂进行改性,从而对其吸附效果进行了改进。Lee等把硫酸钙、氧化钙和粉煤灰通过水合作用合成活性比较高的烟气脱硫吸附剂。通过两种人工智能算法(神经网络和遗传运算法则),给出了吸附剂合成的完整模型和最优化方法,使其吸附剂的吸附容量达到62.2m2/g。Lee等采用钙基的吸附剂,使其在不同实验条件下进行烟气脱硫实验,并说明了烟气中氮氧化物和氧气在烟气脱硫过程中所产生的协同作用。Dahlan等采用RHA将CaO改性,并研究了采用RHA改性后的吸附剂对脱硫活性的影响因素。研究结果表明,在吸附剂的制备过程中,RHA的量、CaO的量、两者量的比及水合阶段是影响吸附剂脱硫活性的关键因素。除此之外,吸附剂的物理性质如孔径分布和表面形态也是影响脱硫活性的重要因素。IrvanDahlan等分别采用NaOH、CaCl2、LiCl、NaHCO3、NaBr、BaCl2、KOH、K2HPO4、FeCl3和MgCl2作为RHA/CaO吸附剂的填加剂,来提高RHA/CaO对SO2的吸附量,实验结果表明,大多数的填加剂都可以提高RHA/CaO吸附剂的吸附效率,其中以NaOH处理后的吸附剂的吸附容量最大。石灰石-石膏湿法的原理脱硫系统中发生的主要化学反应是:

吸附剂:SO2+H2O→H2SO3

CaCO3+2H2SO3→Ca(HSO3)2+CO2(g)+H2O

反应器:Ca(HCO3)2+O2+2H2O→CaSO4?2H2O(s)+H2SO4

CaCO3+H2SO4+H2O→CaSO4+2H2O+CO2(g)

脱硫后的烟气依次经过除雾器除去雾滴,加热器加热后排放。脱硫石膏浆经脱水装置脱水后回收。由于吸收浆的循环利用,脱硫吸收剂的利用率高。此法Ca/S低(一般不超过1.03),脱硫效率高(可达到95%以上),适用于任何煤种的烟气脱硫。脱硫产生的副产品为二水硫酸钙(石膏),能作为水泥缓凝剂,亦可用于生产纸面石膏板,粉刷石膏,石膏砌块等。根据300MW级机组特点及目前湿法脱硫发展趋势,湿法脱硫系统按取消增压风机和GGH考虑,其工艺系统主要由烟气系统、吸收塔系统、制浆系统、工艺水系统及脱水系统等组成。

二、循环流化床干法脱硫(CFB-FGD)工艺

循环流化床脱硫工艺采用干态的消石灰作为吸收剂,通过二氧化硫与粉状消石灰氢氧化钙在Turbosorp反应器内发生反应,去除烟气中的SO2,通过吸收剂的多次再循环,延长吸收剂与烟气的接触时间,提高烟气脱硫效率。锅炉炉膛燃烧后的烟气通过空气预热器出口,进入静电除尘器ESP预除尘。经过静电除尘预除尘之后,烟气从锅炉引风机后的主烟道上引出从底部进入Turbo反应器并从上部离开。烟气和氢氧化钙以及返回产品气流,在通过反应器下部文丘里管时,受到气流的加速而悬浮起来,形成流化床,烟气和颗粒之间不断摩擦、碰撞,强化了气固之间的传热、传质反应。通过向反应器内喷水,使烟气温度冷却并控制在70℃左右,达到最佳的反应温度与脱硫效率。与烟气接触发生化学反应剩下的烟尘和烟气一起离开反应器并进入下游的布袋除尘器。经过布袋除尘器净化后的烟气经增压风机和出口挡板门后排入210m高度烟囱。国内干法脱硫工艺多运用在脱硫效率不超过95%的300MW及以下容量机组上。

三、投资及运行费用比较

近几年来,湿法脱硫工艺得到快速发展,工艺流程简化,设备不断国产化,价格大大降低。目前湿法脱硫设备投资费用与干法脱硫已基本持平,甚至还略低于干法脱硫。有关资料显示,循环流化床干法脱硫,投资总额约为13020万元;石灰石-石膏湿法脱硫,投资总额约为13480万元。运行费用比较:循环流化床干法脱硫,年运行成本为1058.2万元;石灰石-石膏湿法脱硫,投资总额1358.3万元。但若将与脱硫工艺相关的设备(引风机和烟囱)费用计入,干法脱硫可比湿法脱硫节省投资约为460万元,运行费用干法脱硫比湿法脱硫每年可节省约300万元。

四、工艺参数和技术特点比较

以某电厂新建2×300MW级机组为例,方案一采用循环流化床干法脱硫,吸收剂采用生石灰消化制得;方案二采用石灰石-石膏湿法脱硫,吸收剂采用石灰石粉,不设增加风机和GGH。脱硫效率均为90%,脱硫装置的烟气处理能力为相应锅炉BMCR工况时的100%烟气量,采用一炉一塔。除尘器入口主要烟气参数如下:(1)烟气温度:123.7℃;(2)烟气量:1205927Nm3/h(标态,干基,α=1.403);(3)烟气SO2浓度:1110mg/Nm3。湿法脱硫约占电厂脱硫装机总容量的80%以上,由于其工艺成熟,脱硫效率高,运行可靠,吸收剂易获得,副?a品石膏综合利用好,对电厂燃煤含硫量变化具有良好的适应性。干法脱硫系统简单,无脱硫废水产生,适用于缺水或取水受限制地区,但吸收剂要求较高,较难获得,副产品脱硫灰难以得到综合利用。

五、结论

第一,新建2×300MW机组,干法脱硫可比湿法脱硫节省投资约460万元,干法脱硫比湿法脱硫每年可节省运行费用约300万元。

第二,湿法脱硫工艺技术成熟,脱硫效率高,运行可靠,吸收剂易获得,副产品石膏综合利用好,对电厂燃煤含硫量变化具有良好的适应性,适合大、中、小各类机组的烟气脱硫治理,尤其适合大容量、大机组的烟气脱硫治理。

第三,干法脱硫系统简单,无脱硫废水产生,适用于缺水或取水受限制地区,但吸收剂要求较高,较难获得,副产品脱硫灰难以得到综合利用,适合中低硫煤、300MW及以下机组、老机组脱硫改造。

第四,在满足环保要求的前提下,湿法脱硫和干法脱硫均为可行的300MW级燃煤机组烟气脱硫方案,各电厂可根据自身的实际状况和条件,从实际出发,因地制宜地进行治理,将总投资、运行费用、占地面积、脱硫率、副产物的处置和可利用性等方面进行综合和全面考虑。

参考文献

[1] 宋海民.对于循环流化床锅炉技术的应用推广的探讨[J].科技创业家,2014(04).[2] 彭皓等,《循环流化床干法烟气脱硫技术在临沂电厂的应用》,能源工程,2008(1).

第五篇:湿法除尘与干法除尘优缺点

湿法除尘与干法除尘区别

在转炉锤炼过程中产生约1400-1500度高温废气,主要成分是CO、CO2、O2、N2和SO2,CO含量达70%以上,含大量粉尘,粉尘浓度度可达150-200mg/m3,吨钢可产生10-30kg的粉尘,所以转炉烟气具有高温,有毒,易燃易爆,粉尘量高的特点,同时转炉煤气具有较高的利用价值。烟气粉尘含有50%以上的全铁,可循环利用。转炉生产是一种间歇性生产,所以转炉煤气也是间断产生的,使得烟气处理控制系统也变的更加复杂。

水除尘存在问题:

1. 一文,二文需要的除尘水量很大

2. 蒸汽和湿粉尘粘到引凤风机叶片造成转子不平衡,风机震动大二损坏,故障率高影响系

统正常运行

3. 系统结垢导致除尘能力下降,集尘效果和净化效果变差,炉口烟尘外溢,放散烟筒冒黄

4. 系统阻力大,能耗高

5. 污泥处理工序复杂,造价高,而且容易造成二次污染

干法除尘存在一些问题

1.干法除尘设备造价较高,但自动化程度较高

2.采用机构、设备较多,结构复杂,故障率高,维修时间长

3.由于蒸发冷喷淋水造成烟气含有较高水分,已结霜,影响在蒸发冷却器内部结构堵塞管

道,影响极板间带电压稳定,还用一影响赎回系统设备的使用寿命,为此蒸发冷谁压控制有严格要求

4.蒸发冷却器器壁结垢问题还没有很好的解决

5.鞋包频繁,影响电除尘内部部件的寿命和除尘效果

6.除尘煤气温度较高,还需要专门的煤气冷却系统进行冷却才能被回收

两者相比较:干法除尘排放的烟气粉尘量小于10mg/n·m3,达到国家目前排放标准水平,具有显著的环保效益,且回收煤气含尘量少,可以直接使用,转炉除尘风机的维修周期可以延长,降低工人劳动强度和备件损耗,从而节约维修成本。冷却水消耗量叫湿法除尘减少50%,从而减少水消耗。由于干法除尘系统阻力只有湿法的30%,因此在处理相同烟气量的情况下,鞥及所需额定功率只有湿法的50%,价值采用变频调速,除尘的电耗可降低50%,具有显著的节能效益。

炼钢厂

张艳

下载干法、半干法与湿法脱硫技术的综合比较word格式文档
下载干法、半干法与湿法脱硫技术的综合比较.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    干法脱硫交流

    脱硫工艺方案 工艺流程描述:循环流化床干法脱硫工艺系统主要由生石灰消化输送系统、循环流化床吸收塔、喷水增湿系统、返料系统、气力输送系统、灰库、脱硫除尘器以及仪表控......

    干法脱硫5则范文

    干法脱硫技术及应用 我国是燃煤大国,连续多年SO2排放总量超过2000万t,已成为世界上最大的排放国。烟气脱硫是控制SO2排放最有效、最经济的手段。目前,我国大型火电厂烟气脱硫......

    干法脱硫工艺技术分析

    干法脱硫工艺技术分析 摘 要:火电厂排放的二氧化硫形成的酸雨已严重危害人类的生存环境,国家强制要求火电厂必须安装烟气脱硫装置。但是,受技术和经济等条件的限制,必须发展脱硫......

    半干法脱硫在大型化工厂的应用

    半干法脱硫在化工系统中的应用与研究河南龙宇煤化工有限公司陈 磊内容摘要:主要介绍半干法脱硫系统的工作原理及在化工系统中的应用,选用依据和工艺流程,使用后的优良效果。 关......

    层析柱的干法湿法填充和相关知识

    月的。否则有可能产 生高额流量费。 慢慢 演唱者:张学友 所属专辑:黑与白新歌+精选1985-2004 心慢慢疼慢慢冷 慢慢等不到爱人 付出一生收回几成 情不能分不能恨 不能太轻......

    干法脱硫工艺技术分析(xiexiebang推荐)

    干法脱硫工艺技术分析 摘要:现代社会的发展,社会各界对于能源的需求十分巨大,天然气作为优质的清洁能源,其产业在良好的社会形势下,得到了快速稳定的发展。科学技术的提升,促进了......

    干法选煤技术与工艺

    河津市瑞泰选煤有限公司干法选煤技术与工艺 一 项目背景 我国是世界上以燃煤为主的国家之一,煤炭在我国一次性能源消费结构中占70%,以煤炭作为主要能源直接燃烧,造成了严重的......

    干法脱硫塔的工作原理

    干法脱硫塔的工作原理 说到干法脱硫塔坑大家都不太了解,一般工厂企业采用湿法脱硫塔的比较多一些,所以大家对干法脱硫塔都不太了解,甚至有些人都不知道什么是干法脱硫塔,下面......