第一篇:光电子课程设计实验心得大全
回顾此次课程设计,两周时间里,从理论到实践,不仅巩固了以前所学的知识,而且学到了很多书本上学不到的东西。通过课程设计使我懂得了理论与实践相结合非常重要,光有理论知识是远远不够的,从理论和实践中得出结论,才能真正为社会服务,从而提高自己的实际动手能力和独立思考的能力。成功完成了此次实习要求,我们不只在乎这一结果,更加在乎的,是这个过程。这个过程中,我们花费了大量的时间和精力,更重要的是,我们在学会创新的基础上,同时还懂得合作精神的重要性,学会了与他人合作。
以前没有接触过焊接,都不知道电烙铁和吸锡器如何使用,通过课设使用到了作为电子信息专业的学生以后会用到的工具,对以后有很多帮助。焊接电路板和安装调试中难免会遇到很多困难,但不应想到放弃,必须坚持做下去,才能最终得到正确的结果。在设计过程中还发现了自己的很多不足之处,应该以积极的心态去改正。
此外,这次课程设计与我们的日常生活是息息相关的,以前只知道学习书本知识,都不知道我们将来毕业会从事什么工作。这次课设使我知道我们将来或许可以做出比楼道声光控制灯更加智能更加灵敏的现代科技产品,我很期待也很兴奋,我觉得学好专业课学好一技之长非常重要。
在这次的学习过程中,让我了解要多思考、多比较和多尝试把所学的书本知识应用于实际,培养自己的动手能力。所以说,坐而言不如立而行,对于这些电路还是应该自己动手实际操作才会有深刻理解。
这次,我们是第二个完成的,虽然没有第一组快。但是我们的板子很漂亮、布线也很整齐。
希望以后的学习中能有更多的这样的机会,来培养自己的动手操作能力。同时,很感谢老师对我们的耐心指导和帮助。
第二篇:光电子课程设计作业
光电子课程设计作业:
1.光敏电阻检测光照亮度
2.基于PSD 的位置测量系统
3.基于PSD位置传感器的杨氏模量测量
4.基于单片机的条纹计数器
要求:
在A4的纸上画满黑白相间的条纹,条纹宽度1CM,实现对黑白条纹的计数。
5.基于光电倍增管的弱光检测
6.基于单片机的热电偶测温系统
7.光电转速计设计
8.智能光电定时器设计
设计要求:
1.封面采用统一格式(研究生学院下载)
2.标题 宋+4号,黑体;正文 宋+小4;参考文献 宋+5号。
3.格式:标题、作者、中文摘要、关键词、英文标题、英文摘要、正文、参考文献。
说明:
1.每位同学任选一题。
2.要求尽量完成硬件
3.作业要求交纸质版、电子版和作品,电子版用姓名作为文件名。
4.作业完成后统一交徐宝兄同学。交作业时间:2014.3.3日。
第三篇:光电子技术实验感想
光电子技术实验感想
光电子技术,是电子和光子结合的一门技术。自从激光器的发明,解决了光频载波的产生问题,从此电子技术的各种基本概念(如放大与振荡、调制与解调、直接探测与外差探测、倍频、和频与差频等)几乎都一直到了光频段。电子学与光学之间鸿沟在概念上消失了,产生了光频段的电子技术,习惯说简称为光电子技术。当然由于波段拨通,电子波段和光波段在相应器件的结构上完全不同了。
经过一学期的学习与训练,使我从概念上理解了光电子技术这门课程的意义以及其广泛的应用。为了更好的熟悉这门课程,学院领导开放了实验室,提供了“电子技术实验”这门实验课程,对于我们这些学子来说,无疑是最美好的事情。有了这门实验课程,可以让我们从繁琐的书籍中解脱,加入到际、加具体、加容易让人感受的实验中去。我们在“电子技术实验”中,我们能将理论知识与实际实验过程相结合,在过程中加深对理论知识的理解与认识,在知识的牵引下体会在科技上的应用。
在“光敏二极管特性实验”与“硅光电池实验”中,了解到了光电实验电路模块的概念,还有ZY13OFSens12SB 主机箱的强大功能。据我了解,它是由湖北众友公司生产的光电传感器试验台。ZY13OFSens12SB 型光电传感器实验台,集中了目前常用的光敏元件和传感器,采用模块式组合构造。
在“光纤位移传感器实验”和“纤温度传感系统特性实验”中,让我认识到光电子技术在光纤传感器上的应用。作为光纤传感器,它让一些以前我们无法直接测量的物理量,通过电光的转换,实现了物理量的代换测量,使得我们对测量技术的发展有了显著的提升。
在CCD光电传感实验系列里,我们先了解到了CCD的组成以及其工作原理。之后,又进行实际操作测量CCD的主要特性参数,了解CCD的一些特征,接着运用CCD,对光电信号的二值化以及其测量上的运用。从这里可以看出,CCD器件除了最主要的光电成像以外,还在测量物理量的领域上也有着显著的作用。
实验的最后,我们又学习使用了电光、磁光调制的原理以及其对信号的处理效果的展示。通过实际操作和实际结果,更容易让我们接受以及理解调制的知识。
总的来说,总过实验,让我们学会了合理的选择传感器的原理和方法,培养了我们的动手能力,对新型光电子仪器有了更深的认识以及理解。
在这里,个人的一观点:
这次实验除了学到的东西外,还有个让人有点不能接受的地方,就是实验仪器的老旧化。由于仪器年代有点久远,导致大部分实验的仪器有损坏而不能使用,从而不能保证每位同学都能亲手操作到,这是我们进行实验时非常遗憾的事。当然,能有机会进入实验室,亲自进行实验,也是非常难得的机会。
在最后,感谢老师以及领导们给予我们的一次次宝贵的体验实验的机会,我很高兴能够从中得到锻炼、学到知识。
第四篇:课程设计实验心得
第五章实验心得
经过一个星期时间,在老师和我们小组的共同努力下,经过我们的讨论、设计和开发,这套田径运动会信息管理系统已基本结束。在本次课程设计中,我们小组在互相讨论的过程中学到了很多东西,详细的了解了开发一套软件的流程,对需求分析,概要设计,详细设计,编码和测试分析都有了更深的认识。在开发过程中我们互相学习,共同进步,充分认识到团队合作的重要性。同时从白娟老师身上也学到了很多东西,白老师认真负责的工作态度、严谨治学的精神和深厚的理论水平都使我受益匪浅。
在本次课程设计中,也认识到自己的局限性:首先需求分析做的不够充分,只能凭借自己的理解,同学间的讨论和在网上搜索资料来进行,需求分析有时候不切合实际而且局限,这方面需要进一步提高;在组成员做详细设计时,由于前期沟通不充分,在做详细设计的同学在画流程图时遇到了一些问题,不知道具体的算法该如何实现等问题;最后我认为测试分析也是软件设计中很重要的一部分,而且更为繁琐,需要较多的成员帮助完成。
我们小组在这次课程设计中共同努力,团结一致,共同设计了一个简易的田径运动会信息管理系统。
第五篇:《光电子应用系统课程设计》详细教案
一.课程设计目的:
1. 学会用振荡电路设计发光管调制电源的方法; 2. 了解微弱信号放大电路的设计思路; 3. 熟悉集成运算放大器的各类性能参数; 4. 了解带通滤波器从噪声中检出弱信号的方法;
5. 学会多重反馈有源带通滤波器的设计步骤和参数计算; 6. 练习如何进行光电信号检测系统的联调试验; 7. 学会利用各种资源查找相关器件的参数特性
二.课程设计内容
1. 发光二极管调制电源设计
A.利用NE555为HG412A砷化镓发光二极管设计一个调制电源。B.要求电源调制频率在最小可调范围为3KHz~7KHz,输出波形占空比50%。且发光二级管的输出功率可以调节。C.画出电路图,简要说明工作原理。
D.实际调试所设计的电路,并总结调试过程中应注意的细节问题。2. 光电微弱信号放大电路设计
A.应用低噪声集成运放LF353的A Part设计一微弱信号放大电路,用于2CU2D型光电二极管输出的微弱电流信号前臵放大。B.放大倍数1000~2000可调,且输出要求除去1/f低频噪声。C.简要说明设计原理。3. 多重反馈有源带通滤波器设计
A.结合前臵放大器,利用运放uA741设计一个二阶有源低通滤波器对放大电路输出的信号进行滤波。
B.滤波器要求品质因素Q为10,中心频率f0为5KHz,中频增益H为5。
C.给出滤波器设计参数的详细计算过程;
D.要求利用其中一个可调电阻调整中心频率f0,其余元件参数固定。4. 光电报警电路设计 A.在已经设计出的HG412A砷化镓发光二极管光源和微弱信号放大器和带通滤波器滤波器的基础上,利用集成运放LF353的B Part和普通红色发光二极管,设计一个光电报警电路。
B.要求当电路未接受到5KHz光脉冲时点亮红色发光二极管,正常接收5KHz光脉冲时发光二极管不点亮。C.简要说明设计原理。
三.基本原理
1.发光二极管调制电源
用555定时器构成多谐振荡器电路如图1所示。电路没有稳态,只有两个暂稳态,也不需要外加触发信号,利用输出端OUT的高电平通过可变电阻R1向电容器C1充电,使UC1逐渐升高,升到2VCC/3时,输出端OUT跳变到低电平,电容器C1通过电阻R1向输出端OUT放电,使UC1下降,降到VCC/3时,输出端OUT跳变到高电平,输出端OUT又通过R1向电容器C1充电。如此循环,振荡不停,电容器C1在VCC/3和2VCC/3之间充电和放电,输出端OUT输出连续的矩形脉冲。由于充放电通道相同,所以输出的波形占空比为50%。
VCC12VVCCR12K_LIN50%Key = A 18VCC47623U1OUT32RSTDISTHRTRICONGNDR2400460%R3752K_LINKey = Space LED1U20.2uF0U30.01uF1LM555CN
图1 发光二极管调制电源原理图
输出信号脉宽周期T的计算公式如下:
vC()vC(0)vC()vC(T1)VCClnVCC1323VCCVCCT1T2lnln20.7R1C 因此输出的矩形脉冲的频率为:
f1T1T211.4R1C
调节R1的大小即可调节输出的频率。此处C1固定为0.2uF,通过计算可知,7KHz 输出频率对应的R1约为0.5K,5KHz输出频率对应的R1约为0.7K,3KHz输出频率对应的R1约为1.2K。因此R1选用2K大小的可调电阻。
用NE555组成振荡器来驱动发光管时,要注意发光管上一定要串联一个限流电阻。使输出电流小于或等于发光管的最大正向电流IF。若振荡器的输出电压为VO,则限流电阻R2取值为:
R1VOVFIFVO1.530mA
设输出VO高电平为5V,则R2应不小于116Ω,如果输出为12V(VCC为12V),则R2应不小于350Ω,因此R2取0.4K,为了调节发光管的输出功率,采用2K的可调电阻R3的来控制发光管输出功率,因此最小输出电流为4.375mA。
课程设计考查点:
1.50%占空比,即电路结构 2.输出频率调节范围 3.二极管限流电阻 4.输出功率可调
2.微弱信号放大电路
由于光敏二极管在工作时近似于一个电流源Is,因此在进行微弱电流信号放大时必须考虑如何进行I-V转换,有两种方法进行转换,一是直接电阻转换,即电流源连接电阻R,然后与取R上的电压进行放大;二是采用跨阻放大的方法进行I-V转换。
采用直接转换的方法时,如果Is不是一个理想的电流源,则R不能获得所有的电流;另外如果R后面接放大器时,放大器的内部电阻是和R并联的,这将使得Is流过的等效电阻变得不确定。因此通常不采用直接电阻转换的方法。
R11.0kVCC12V2CU2D21384R22K_LINKey = A 50%VEE-12VU1AC10.1uFLF353PVCC12VR31.0k
采用跨阻放大的方法,如图所示,Is全部流过反馈电阻Rf,与负载的大小无关,所以就能正确地从电流信号转换为电压信号。在此类应用中,OP放大器的偏流Ib与信号一起流过Rf,再考虑到偏臵电压Vio,输出为:
Vo(IsIb)Rf(1RfRs)Vio
因此Rf不宜过大,否则放大器的偏流将在Rf上行程较大的偏压,当需要更大的转换电阻时,可以考虑采用T型网络的方法来提高放大倍数,同时避免过大的输出偏压。
U3和U2组成高通滤波电路是为了在测量中除去电路中的1/f低频噪声,根据3dB截止频率fc的估算公式1/2лRC,C1取0.1uF,R3取1KΩ,3dB截止频率约为1.6KHz。
50%Rf20K_LINKey = Space Ra1.0kRb100VCC12V22VEE-12V4U4AU31380.1uFLF353PVCC12VU21.0k
参考:
光敏二极管通常温度系数比较大,故很少用于光强的精确测量。光敏二极管的等效电阻室温下比较大,约为1000M,温度升高10度减少一半。等效电容随结面积和二极管偏压变化,零偏压下典型值50pF。
光伏模式:零偏臵,无暗电流,线性度好,低噪声(热噪声,等效电阻引起),精密应用
光导模式:反偏臵,有暗电流,非线性,较高噪声(热噪声+散粒噪声,导电引起),高速应用
对放大器的要求:
高阻应用中,放大器偏流必须很小,精确测量数十pA范围的光电二极管电流,运放的偏流不应大于数pA。OP07偏流高达4000pA,带偏流补偿的超β双极型运放OP97在室温下偏流约为100pA,适用于高温场合。所以通常选择带FET输入的静电计级运放,但只能工作于有限温度范围内,如AD549,AD645,AD795等,采用JFET输入级,BiFET工艺,将失调电压和失调电压漂移减至最低。
工艺要求:
1.另外必须注意实际电路中潜在的泄漏路径:在+125度时,长1英寸的PCB上相隔0.05英寸的平行导电印制线具有大约1011欧姆的泄漏电阻,若两条印制线之间存在15V电压,将有150pA的电流流动。2.反馈电阻应用玻璃绝缘的陶瓷电阻或玻璃上的薄膜电阻。3.补偿电容应具有聚丙烯或聚苯乙烯介质。4.连线足够短,电缆尽可能采用聚四氟乙烯绝缘。
5.将放大器的输入与印制电路板上的大电压梯度进行隔离,减少寄生泄漏电流。保护措施是一种环绕输入线路的低阻抗连接,通过将泄漏转移到远离敏感节点的方法来缓冲泄漏。
6.对于偏流极小的应用场和,如利用输入偏流为100fA的AD549的场合,所有与该运放输入端的连线都应接到没有玷污过的聚四氟乙烯隔离绝缘端子上。而不穿过印制电路板上的通孔,印制电路板本身需要仔细清洁,然后用优质共形涂覆材料加以密封,防止湿气和灰尘侵入。7.整个电路应当用接地金属屏进行良好屏蔽,以防止接受杂散信号。失调电压和漂移分析;
1.光敏二极管等效电阻随温度的变化对电路的直流噪声增益产生剧烈的影响。
2.电路每升高10度,偏流加倍。3.热电势,不同温度下不同金属之间进行电气连接将产生热电势。最好是相同材料,相同温度。
4.主要因素为偏流,因此最好降低放大器工作电压,降低输出驱动要求,采取散热措施。
5.输入失调电压可以通过外部失调调零电路。带宽:
信号带宽由补偿电容决定,闭环带宽则由增益带宽积决定。较小的补偿电容得到较大的信号带宽,但相位容限也相应减少。
低频增益由电阻决定,高频增益由电容决定。
增大补偿电容,降低高频噪声增益,降低信号带宽,但积分带宽增大,即闭环带宽增大。后续增加简单的德滤波器就能显著降低输出噪声,主要是滤去了大部分闭环带宽内的噪声,此时电阻噪声和电流噪声便成为噪声主要来源。
噪声分析:
单极点带宽变成等效噪声带宽,需要乘上系数1.57(π/2),电阻器的热噪声为:VR=(4kTR)1/2,k为玻尔兹曼常数:1.38*10-23J/K,+25度时1k的电阻噪声谱密度为4nV/Hz1/2,其它电阻的热噪声可以通过将4nV乘以电阻值与1k之比的平方求得。
失调调零电路比失调调零脚的效果好,原因在于调零脚每调零1mV,失调电压的温度系数增加3uV/oC。
3.有源带通滤波器
在放大电路中限制通频带是抑制干扰和噪声很有效的一种方法。信号功率往往只限在很窄的频率范围之内,而白噪声是系统中固有的噪声,其频谱范围很宽,如果信号放大过程中用滤波器仅滤出信号频谱能量,抑制其他频率的能量通过,则能显著提高系统信噪比。
C10.01uFR1V16.2k1 V 5kHz 0Deg C2R362kVEE-12V42U10.01uFR2100R4100_LIN50%Key = A 63715741VCC12V 电路如图所示,二阶有源滤波器的设计公式如下: a)电路的电压增益
H(s)Vo(s)Vi(s)AssBsC2
其中:
A1R1C1;B1C11C2R3;C1R11R2R3C1C2;sj2fj
b)带通滤波器的中心频率f0
f0121R11R2R3C1C2
c)中频增益H
HR3C2R1C1C2
d)品质因素Q
QR31R11R2C2C1C1C2
e)带宽Δf
ff0Q1C11C22R3
电容器比较难以调节,所以设计这种电路时,往往假设C=C1=C2,且C是某个实际固定值。三个电阻R1、R2和R3对滤波器性能的影响如下式所示:
R112fHCQ2f0HC
Q2f0C2QR2f2C2f120fHQ22H
R3fCf0C
由上可知: a)R1影响Δf和H b)R2影响f0、Δf和H,但是对Δf和H的影响很小 c)R3只影响Δf 设计步骤如下:
a)根据放大器uA741在f0处的开环增益检查中频增益H的合理性
在f0等于5KHz时,开环增益Av约为500,而H=5,因此H≈0.01Av(f0),这样,即使Av变化100%,也能保证H的变化不大于1%。
b)根据运放的输入偏臵电流对R3进行估值
令C=C1=C2=0.01uF,Q取10,由此对R3进行估值
R31fCQf0C10500010863662 若R3取63.7K,根据运放uA741的输入偏臵电流Ib的求输出直流偏移Voo=IbR3=800nA×63.7K=51mV。若输出信号在5V左右,则误差在1%左右。c)计算R1
R1Q2f0HC102500051086366
d)计算R2
R2Q2f0C2QH2102500010821005163
e)验证H、Q和Δf
HR3C2R1(C1C2)63662263665
QR31R11R2C2C1f0QC1C2636621636611632210810
f1C11C22R3263662499.99
三、光电报警电路
电路如图所示,用LF353配臵成一个比较放大器。放大器的正端加2V的左右的偏压,负端加信号电压。当光线未阻断时,从主放大器来的交流信号经二极管检波电路,再经C2低通滤波后得到直流电压,使后面的放大器负输入端电位大于(等于)正输入端电位,则放大器输出电压近似为零,LED管截止,不发光。当光线被阻断时,信号消失,放大器只有正端加正电压,输出为正电压,LED管导通发出红色光以示报警。
R48.0KVEEJ1Key = S 5 V 5kHz 0Deg V1-12VC10.1uFD11N4007R1R21.0k1.5KC210uF12VR32.0kR58.0kVCCR621384U1BR70.2kLF353PVCCLED50%2K_LIN12VKey = Space
C1和R1是承接主放大电路的高通滤波部分,其截止频率为
fc12R1C11210001071.6KHz
D1和R3组成二极管检波电路,同时R3作为C2的放电通道,D1导通时C2开始充电,设输入信号经高通滤波后通过二极管半波整流后的有效值为0.45Vrsm,Vrsm是输入脉冲幅度的最大值,此处设为4V,则C2充电的最终值约为0.45×4=1.8,考虑到R2对C2的放电效应,实际电压应该小于1.8V,此处估计C2的最终充电电压为1.7V。
在本设计中C2的放电时间显得更为重要,它决定了系统的时间灵敏度,如果光脉冲在被阻断的一瞬间,C2上的电压还没有降到预定值1V以下,则会出现漏报错误,根据5KHz的光脉冲频率可知光脉冲周期为0.2mS,每次留给C2的放电时间只有半个周期,即0.1mS,即在这个时间内C2上的2V电压无法通过R3放电而降到预定值1V以下,设灵敏度为10mS,即出现1mS的光脉冲被阻断,C2上的电压在T2=1mS的时间段放电至1V以下而发出警报,当C2取10uF时可知:
T2lnR302010.7R3C210mS0.710-5T20.7C2
1.5KC2的充电电压达到1V时LF353组成的比较放大器发生翻转,C2充电电压达到1.6V左右时输出应该接近零,而图中反相放大倍数设计为-4,正相放大倍数为5,因此为了使输出端接近零,LF353的正相输入端电压大约为4×1.7/5=1.36V。由此可以大致确定R5和R6的值。当光脉冲信号被阻断时,C2的电压近似为零(实际不为零),则LF353的输出应该在6.8V(1.36×5=6.8)附近,LED应该加上几百欧姆的限流电阻R7。
根据LF353组成的比较器可知,C2上的电压需要达到约1V才能使LF353输出翻转,因此充电时间为:
T1lnvC()vC(0)vC()vC(T1)ln1.701.71ln2.4280.89RDC2
其中1.7V是C2的最终充电电压,RD为二极管的导通电阻,非常小,因为C2取值在uF量级,因此大致可以估计出充电时间T1在微秒(uS)量级以下。充电时间的大小影响到系统从警报状态到警戒状态的恢复时间,还影响电路开启时进入警戒状态的时间,充电时间越快,进入警戒状态的时间越短。
四、实验仪器
1.示波器3台以上; 2.烙铁5把以上 3.直流电源3台以上 4.线材:飞线、电源线若干