第一篇:世韩CSM超滤膜在污水回用处理中的应用
世韩CSM超滤膜在污水回用处理中的应用世韩CSM超滤膜产品是能将水深度处理的水处理配件。其应用十分广泛,食品工业、制药工业等,可以作为药物、果汁、乳品等的浓缩提纯,纯净水、矿泉水净化等,超滤设备具有过滤效果好,出水量大,稳定性强等特点。
试验通过使用孔径为0.25μm聚丙烯腈微滤膜和切割分子量为10000的中空纤维的世韩CSM超滤膜产品,对机场污水进行了试验及结果分析,同时为使试验数据具有普遍意义,还对北石桥污水处理中心的出水和兴庆湖入口处水样作了对比试验 试验流程如下:超滤:原水→格栅→原水泵→保安过滤器→超滤膜组件→滤后水(浓缩水)微滤:原水→格栅→ 原水泵→ 微滤膜组件→滤后水(浓缩水)
主要结论如下:
微滤膜和超滤膜对于二级生化处理后的生活污水的深度处理都有非常稳定的表现。对于机场水,超滤膜对浊度的去除率能达到99%对有机物的去除率达到55%-85%微滤膜的相应的去除率分别为80% 和45%-70%。对于浊度和有机物都较小的北石桥污水,出水的效果比机场污水差,而且微滤膜与超滤膜对有机物的去除率差别不大,这与进水有机物颗粒的粒径分布和膜切割分子量的选择有关。
(2)膜的污染与清洗是膜工艺中一个非常重要的操作环节。本试验中,膜组件每工作1h用机场自备井水进行反冲洗,运行10d后采用5% 的氢氧化钠溶液与5%的盐酸溶液进行化学清洗,能达到恢复94%的透水通量的效果.。在对不同污水试验时,通过对压力及透水通量的检测发现,有机物对膜的污染起着很大的作用,进水的有机物含量越高,膜越容易被污染。
(3)超滤膜工艺的操作简便..在一定的操作条件下,即每次运行时间为1h然后用水反冲20min每10d用化学清洗剂进行一次较彻底清洗.在这种情况下,对膜工艺进行经济技术分析,结果UF和MF 的单位运行费用分别为.2.14元/m.和12 元/m 计算发,膜组件的透水通量,总流量,出流率以及原水的水质等对总费用都有很大的影响,其中,透水通量的影响最为明显。
(4)混凝作为膜工艺的预处理,能对污水的处理起到积极的作用,通过对超滤处理机场污水,微滤膜处理兴庆湖水的分析濛可以看到混凝对浊度和有机物的去除都有一定的作用,选择适当混凝剂的投药量以及适当孔径的膜组件,不
仅能够提高出水的水质,而且还能够在一定程度上缓解透水通量的下降,从而延长膜组件的寿命,降低膜工艺的生产成本,在本试验的条件下,分子量为10000 的超滤膜在使用硫酸铝作为混凝剂对机场污水预处理效果不明显;孔径为0.25μm的微滤膜在最佳投药量为60mg/时,对兴庆湖水的处理能达到比较理想的结果。
第二篇:稠油污水深度处理与回用技术探讨
超稠油污水净化处理技术探讨 前言
随着油田开采进入中后期,采出原油含水量高达60 %~90 % ,大量的含油污水直接排放到水环境中,一方面造成严重的环境污染,同时也造成宝贵的水资源和油资源的严重浪费。如何节能、降耗、保护环境,使能量、水资源重复使用,已成为石油工业的共性问题。超稠油分离出的污水水质复杂,一般具有高温(70℃以上)、高含油量(> 10 000 mg/ L)、高悬浮物含量的特性。所含超稠油粘度大、密度与水接近(0.997mg/ L)、流动性差(相变温度拐点> 58 ℃)。该污水稳定性极强,室内放置几个月或更长的时间都不发生变化,其原因是在原油开采和处理过程中加入大量的化学助剂,污水形成了比较稳定的乳化液,很难破乳。另外,污水中油和悬浮物含量高,使普通净化剂对这种稳定的乳化液作用甚微。另因超稠油的粘度大极易给整个处理工艺,尤其是后续过滤工序带来致命的冲击,严重时整个处理工程面临报废的危险。为此,为了达到污水处理的预期目标,必须研制开发具有极强适用性的污水净化装置。本文介绍了新疆油田在稠油污水处理和回用方面的关键技术和成熟经验,采用强酸性树脂软化技术和化学清洗技术实现了稠油污水回用注汽锅炉。六九区污水处理站采用高效水质稳定技术,使处理后的污水达到了GB 8978一1996((污水综合排放标准》的二级标准,稠油污水在处理后符合GB 1576—2008((工业锅炉水质》的要求,大幅度降低了注汽锅炉的运行成本;将60℃以上的稠油污水替代清水回注稀油油藏,热水驱油,改善了驱油效果,同时根据污水温度较高的特点,对注水井井口的保温工艺进行改进,实现了稠油污水热能的综合利用,为油田污水治理和回用提供了借鉴。
引言
油田污水的处理和回用一直是油田科技工作者关注的焦点,特别是随着油田开发的不断深入,部分油田已进入高含水开采期,因而污水处理和回用工作显得更为重要。新疆油田公司重油开发公司经过多年的摸索,摸索出一套将稠油污水处理后用于油田注水和注汽锅炉给水的技术,可充分利用热采稠油含油污水温度高的特点,实现热能的综合利用和水资源的循环使用,对于降低稠油生产成本、保护环境和实现油田的可持续发展具有重要意义。
一、油田污水处理的基本方法概述
油田污水主要包括原油脱出水(又名油田采出水)、钻井污水及站内其它类型的含油污水。油田污水的处理依据油田生产、环境等因素可以有多种方式。当油田需要注水时,油田污水经处理后回注地层,此时要对水中的悬浮物、油等多项指标进行严格控制,防止其对地层产生伤害。如果是作为蒸汽发生器或锅炉的给水,则要严格控制水中的钙、镁等易结垢的离子含量、总矿化度以及水中的油含量等。如果处理后排放,则根据当地环境要求,将污水处理到回注排放标准。我国一些干旱地区,水资源严重缺乏,如何将采油过程中产生的污水变废为宝,处理后用于饮用或灌溉,具有十分重要的现实意义。钻井污水成分也十分复杂,主要包括钻井液、洗井液等。钻井污水的污染物主要包括钻屑、石油、粘度控制剂(如粘土)、加重剂、粘土稳定剂、腐蚀剂、防腐剂、杀菌剂、润滑剂、地层亲和剂、油基解卡剂、消泡剂等,钻井污水中还含有重金属。其它类型污水主要包括油污泥堆放场所的渗滤水、洗涤设备的污水、油田地表径流雨水、生活污水以及事故性泄露和排放引起的污染水体等。由于油田污水种类多,地层差异及钻井工艺不同等原因,各油田污水处理站不仅水质差异大,而且油田污水的水质变化大,这为油田污水的处理带来困难。现状油田污水主要包括油田采出水、钻井污水及其他类型的含油污水,油田水质特点和生产目的不同,处理方式不同。随着环保和油田回注水水质要求的提高,中外油田的污水治理技术已经得到了改进和提高,由原来的隔油一浮选除油一过滤技术,改变为隔油一混凝气浮一生化一过滤技术和物化预处理一水解酸化一生化一过滤技术。综合起来,油田污水的处理基本方法一般有以下三种。
1、物理法
膜分离法膜分离法是利用特殊膜所具有的选择透过性,对污水中某些微粒或离子性物质进行分离和浓缩的方法。近年来,加大了膜处理技术的研发力度。王农村等采用改性的PVC合金超滤膜法对油田采出水进行了深度处理。处理后水质达到了榆树林油田特低渗透油层要求的回注水水质指标。因此,各种膜处理方法的结合,或与其他方法的相互结合以及复合膜的研发是该方法的发展趋势。吸附法吸附法是利用吸附剂的多孔性和较大的比表面积,将油田污水中的溶解油和其他溶解性有机物吸附在表面,达到油水分离的目的。常用于含油污水的深度处理。其最新研究进展体现在高效、经济吸附剂的开发与应用。磁吸附分离法是其最新研究成果。郑学海等用炼钢厂排放的烟气和气溶胶凝聚物,通过静电除尘后的“红土”状细粉作磁性物质载体处理含油污水,除油率可达80%--90%。浮选法浮选法又称气浮法,应用广泛,一般与絮凝法结合使用。气浮法还具有充氧的功效,能提高微生物的生化降解性能,可作为生化法的预处理技术。目前中外对气浮法的研究多集中在气浮装置的革新、改进以及气浮工艺优化组合方面。水力旋流法水力旋流法是国外20世纪80年代末开始开发和应用的高效除油法,在陆上和海上油田均有应用Dz+la3,是油水分离技术的发展趋势。粗粒化聚结法该方法主要用于重力除油工艺之前,可大幅度提高除油效果。2.2化学法
水解酸化法水解酸化法是在水解菌的作用下,难降解的大分子有机物发生开环裂解或断链,最终转化为易生物降解的小分子有机物,从而提高油田污水的可生化性,减少后续处理负荷。该方法需要和生化法结合使用,形成水解酸化一生化处理工艺。王新刚等采用水解酸化一生物接触氧化法处理高盐含油污水,将污水的可生化性提高了10.2%;当进水盐的质量浓度为12~189/L时,系统对有机物的去除率达到84.54%,除油率达到88.4%。化学氧化法化学氧化法是在催化剂作用下,用化学氧化剂将污水中呈溶解状态的无机物和有机物氧化成微毒或无毒物质,使之稳定化或转化成易与水分离的形态,以提高其可生化性。包括臭氧法、UV/O。氧化法、Uv/H。氧化法和催化氧化法等,一般作为预处理技术或与其他方法联用。超临界水氧化技术因其快速和高效的优点,近年来得到了迅速发展。王亮等[16]在间歇式超临界水氧化反应装置上进行的含油污水的超临界水氧化实验结果表明,该方法是一种高效、快速的有机废弃物处理技术。化学絮凝法化学絮凝法普遍应用于各油田,一般作为预处理技术与气浮法联合使用。常用的絮凝剂有无机絮凝剂、有机絮凝剂(合成类有机高分子和天然改性类有机高分子絮凝剂)和复合絮凝剂。有机高分子絮凝剂具有用量少、效率高、处理速度快和产生污泥量少等优点,因此近年来研究发展迅速,在油田污水处理中研究及运用较多。
2.3生化法 生化法利用微生物的生物化学作用使污水得到净化,包括厌氧生物处理法和好氧生物处理法(即活性污泥法、生物膜法、接触氧化法、纯氧曝气法等)。对含油污水分离和筛选优势菌种的研究是生化法的发展方向。吕荣湖等选用聚乙烯醇和海藻酸钠复配作为包埋固定化载体材料,通过包埋固定化微生物法固定除油菌,结果表明,在25--40℃、处理时间为6h的条件下,乳化油去除率达85%~90%,含油量由20---50mg/L降至5mg/L以下。
二、稠油污水水质分析
稠油污水水质较复杂,是含有多种杂质且水质波动较大的工业废水,具有如下特点:一是稠油平均密度为900 kg/m3以上,其原油颗粒可长期悬浮在水中;其次,超稠油污水温度较高,在开发稠油过程中为降低原油黏度一般将温度提高到60~80℃;乳化较严重,废水易形成水包油型乳状液,污水平均含油一般在500 mg/L。稠油污水含有大量的阴阳离子和有机成分,它们会影响稠油污水的缓冲能力、含盐量和结垢倾向。
稠油采出水不仅被原油污染,成分复杂多变,而且在高温、高压的开采过程中携带了许多悬浮固体、溶解了各种盐类;在采油和脱水处理过程中加入了各种化学药剂,使稠油采出水含有多种杂质成分。新疆油田稠油污水属NaHC0。型、偏碱性、不同区块污水矿化度在2000~6000 mg/L之间、温度60--80℃、有机物和悬浮物含量波动较大。根据稠油废水所含污染物种类和数量,以及热采锅炉用水水质指标,稠油废水处理用于回注和热采锅炉给水,主要应处理废水中油、悬浮物和硬度及其他易引起结垢和腐蚀的成分。超稠油污水经深度处理后回用于热采锅炉是解决稠油、超稠油污水处置问题的有效途径。热采锅炉是在高温、高压条件下运行的,对用水水质有着严格要求,不合格水质会对锅炉产生结垢、积盐、腐蚀三大危害。结垢时炉管表层形成的导热系数很低的垢层严重影响传热效率,造成管壁过热使其强度下降,甚至变形或发生爆管事故,积盐能降低锅炉的热效率,严重则会造成爆管。腐蚀造成炉管壁减薄和苛性脆化,影响安全生产,缩短锅炉使用寿命。所以锅炉入水必须进行处理,达到锅炉安全运行指标时才可以使用。
2稠油污水处理技术
2.1稠油污水处理技术原理
新疆油田公司六九区污水处理站采用“油田污水水质高效净化与稳定技术”处理稠油污水,超稠油污水中的石油类主要以浮油、分散油、乳化油和溶解油4种状态存在Ⅲ,平均浓度达到4 000 mg/L以上,完全具备回收利用的价值。超稠油污水预处理工艺应首先解决石油类的回收问题,相应CODcr也会大幅度降低。因此确定石油类、CODcr为超稠油污水预处理的主要目标污染物,选择合适的温度、水处理剂及其投加量,采用合理工艺,使污水中石油类、cODcr等指标达到下游污水场进水要求,从根本上解决对污水处理设施的冲击。大量的试验研究表明,保持较长的油水分离时间可以回收大部分的浮油与分油;破乳可使污水的乳化油回收率高达90%以上,随温度升高,乳化油回收率有所增加;从原油比重随温度变化情况看,再对出水进行混凝浮选处理,COD、悬浮物等指标大幅度降低。最终通过重力沉降、化学反应、混凝沉降、压力过滤等手段除去油、悬浮物、水中结垢与腐蚀因子,抑制细菌繁殖。
其主要机理:油田产出污水中乳化油破乳、固体颗粒聚并、腐蚀、结垢及细菌繁殖,均与离子有关,采用离子调整技术向水中加入特定的离子调整剂,调整水中有关离子含量,去除或减少水中具有腐蚀、结垢倾向的离子(如Ca
2十、Fe2+、CO。2_、HCO。一等),控制腐蚀、结垢,抑制细菌生长;对于水中的乳化油和固体悬浮微粒。则通过加入高价阳离子,中和其表面电荷,破坏其稳定性,使乳化油乳聚并成游离油而被分离,固体悬浮微粒聚并增大而迅速沉积;处理后的污水略偏碱性(pH=8),在碱性条件下,细菌细胞中酶的活性降低,新陈代谢变慢,细菌逐渐死亡,最后投加絮凝剂使上述吸附了油的各种难溶性微粒、细菌残骸絮凝长大,并在重力作用下迅速沉降。
2.2稠油污水处理技术特点 采用旋流反应技术,使药剂在反应罐内充分反应,同“高效水质净化与稳定技术”配套使用,处理效率高、处理量大,现场生产稳定;将斜板沉降罐改为下进水、上出水,有利于水与悬浮物的分离;利用改性纤维球亲油憎水的特点和独特的压紧装置,实现了污水的精细过滤,采用一套工艺两套流程实现了污水回注和污水外排达到GB 8978—1996((污水综合排放标准》;混凝沉降段的4座加药反应罐、4座斜板沉降罐,采用单泵一单罐一单罐流程,避免了因偏流产生加药不均而造成的水质不稳定;沉降段2座9000 m3调储罐具有沉降功能,可相互调换使用,使系统具有较强灵活性,保证了来液有缓冲空间的同时对来液水质有一定平衡作用;全站采用集散控制系统进行自动控制,保证了水质稳定合格,减轻了员工的劳动强度。
2.3稠油污水处理效果分析
六九区污水处理站于2001年9月投产后,在经历了多次水质变化的冲击后。仍实现了处理后外排污水水质的稳定。选取六九区污水处理站投产以来,每年10月出水水质全分析数据,处理后污水水质指标与GB 8978—1996《污水综合排放标准》的对比 见表1。
表1表明:六九区污水处理站运行稳定,六九区污水处理站处理后的污水达到了GB 8978—1996((污水综合排放标准》的二级标准,可以达标排放。3稠油污水回用技术六九区污水处理站出水实现了达标排放,但是,在达标排放的同时造成油田水资源的严重浪费。通过对比符合GB 1576--2008{{工业锅炉水质》的要求,如表2所示。
由表2看出:只需要将处理后的稠油污水中的悬浮物除去,再经过软化处理除去其中的金属离子,就能够满足注汽锅炉回用要求。六九区污水处理站将处理合格后的污水通过管道输送到各个注汽站,经过储罐沉降除去水中的悬浮物,再进行软化处理,使稠油污水达到注汽锅炉给水标准后供给注汽锅炉。根据六九区污水特点和近年来树脂行业的发展情况,采用薄壳型强酸性树脂实现了污水软化,达到了注汽锅炉给水要求。研究和试验表明:薄壳型强酸性树脂是适合稠油污水软化的,其长期运行能力除与树脂本身性能有关外,与再生液浓度、运行参数有密 切关系,在国内油田首次实现了利用强酸性树脂回用稠油污水的工业化应用。处理后的稠油污水符合GB 1576~2008((工业锅炉水质》的要求,实现稠油污水的软化成为污水回用注汽锅炉的关键技术,结果见表2。
在大规模工业性试验一年(回用污水160654 m3)后,对炉管进行解剖检验,锅炉出口管线垢层厚度为278~328“1TI。炉解剖结果表明:实际运行情况与理论研究结果相符,炉管结垢与回用初期蒸汽干度过高有关。及时调整蒸汽干度,降低了结垢趋势。在进行可行性研究后,2002年两台注汽锅炉进行了试验。2003年1月在六九区进行了污水回用注汽锅炉大规模工业性试验,回用规模为3000 m3/d,在解决了关键技术问题后,稠油污水回用规模上升到回用量2.5×104 rn3/d,稠油污水回用锅炉获得成功,2008年根据六九区污水处理站的成功经验,在克浅十井区建成一座年处理量55万t的稠油污水处理站。六九区污水处理站处理后的稠油污水在满足回用锅炉需求后,水量还有部分完全利用。2003年,将 60℃以上的稠油污水替代清水回注稀油油藏,热水驱油,大大改善了驱油效果,同时根据污水温度较高的特点,对注水井井口的保温工艺进行改进,使用污水对注水井保温,实现了稠油污水热能的综合利用。结论
近些年来,我国油田加大了环保的投入力度,积极治理老污染源,改进设备工艺、使用新型节能减排环保设施、加大环保工程建设,进行责任区划分和属汽完全可行,解决了超稠油污水外排污染环境、高温热能浪费和锅炉用清水资源紧张的问题,填补了国内在超稠油污水深度处理技术上的空白,达到了国际领先水平。该项目的研究成功对于超稠油污水深度处理批量化顺利实现提供了有力保障,具有积极的社会效益和经济效益,实现了稠油污水的工业化应用,降低了稠油开采成本,减少了对环境的危害,实现了水资源的循环利用和热能的综合利用,取得了可观的经济效益、环境效益和良好的社会效益。
第三篇:陶瓷超滤膜在冷轧浓油废水处理中的应用实践[最终版]
陶瓷超滤膜在冷轧浓油废水处理中的应用实践
【摘 要】本文对陶瓷超滤膜在含铁含油较高的废水处理中应用工艺进行阐述,并对应用过程中的污堵问题进行分析解决,提出利用化学络合的原理来解决重金属铁的沉积堵塞问题。
【关键词】浓油废水;陶瓷膜;污堵;络合0.引言
在含油工业废水中,油一般以三种形式存在:浮油、溶解油、乳化油。冷轧浓油废水中三种油并存,以乳化油和浮油为主。对于浮油,通常采用漩涡分离或气浮处理令其上浮,利用刮油器即可有效去除;对于溶解油,则要视其物化性质加以确定处理方法;对于乳化油,由于其添加乳化剂,油在水中的物化性质相对比较稳定,乳化油的分离则比较困难,目前工业中用的较多方法则采用化学破乳去除或超滤过滤除油法。
本文所探讨的是采用超滤法来处理冷轧浓油废水,超滤是膜分离技术的一种,我国早在20世纪80年代初就开始采用超滤法处理冷轧乳化液废水[1]。而陶瓷膜因其具有耐酸耐碱性能强、机械强度高、孔径分布均匀、耐温性能好、使用寿命长等突出优点,已经引起了国内外的广泛注意,并在许多领域得到了应用[2]。因此,在处理冷轧废水时首先考虑采用无机陶瓷超滤膜进行浓含油废水的处理。
第四篇:高效污水净化器在造纸污水处理中的应用
高效污水净化器在造纸污水处理中的应用
对以废纸再生桨料造纸的废水,采用一级物化处理工艺的EWP高效污水净化器治理,具有工艺简单、设备可靠、管理方便、投资省、占地少、效率高、运行费用低、经处理废水能达标排放并可回用等优点。
关键词:造纸废水,造纸废水处理
造纸污水水量大,浓度高,可生化性差。传统采用的生化法处理这类造纸污水,投资大、运行费高,去除率低。近年的治理情况表明,较为经济实用的是物化法[1],在一些国家,已把处理技术的重点转到物化凝聚法的研究和开发[2]。EWP高效污水净化器是只有一级物化处理工艺的设备系统,对利用废纸再生桨料造纸的污水进行治理,达到以污染物去除率COD在90%以上;BOD在70%能上能下;SS在95%以上,经处理污水还可回用到生产上。
1、试验研究
1.1设备原理
造纸污水经絮凝反应后能分离出大量的污泥,这些含有纤维的絮状泥有类似活性碳的很好的吸附能力,以往的沉淀或气浮工艺,只把这些固形物分离,没有再充分发挥这些污泥的只附过滤作用。则EWP高效污水净化器就是利用这些絮凝反应后生成的絮凝沉淀物在净化器内形成一个稳定的、可连续自动更新的只附过港督流化床,令污染物起到活性碳的作用,使进入的污水除了得到平常混凝反应之后的固液分离效果外,还让污水得到过滤和吸附的净化处理,即可达到比普通的气浮或沉淀的物化处理工艺提高10-20%的去除率。由于EWP高效污水净化器没有用任何的滤料或填料作为滤床,不会堵塞,所以免除了砂滤池或其他过滤装置必需的反冲洗的麻烦和额外的动力消耗,更解决了处理装置偶然停用后滤料干涸板结造成的堵塞问题。EWP高效污水净化器是集污水絮凝反应、沉淀、吸附、过滤、污泥浓缩等功能于一体的设备。
1.2试验效果
在试验的五个月中,分六个阶段进行测试,表1结果表明试验达到要求目标。
2、工程应用
2.1处理规模
珠江纸厂治理工程中,采用两台处理量100m3/h(高13 m)和两台50 m3/h(高11 m),共4台净化器,分别处理黄板纸和白纸的制桨、抄纸废水。人民纸厂采用六台处理量100(高15)的净化器,处理黄板纸和灰板纸的制桨、抄纸废水。配有污泥浓缩槽和加药系统2套、调节池刮泥机、污泥脱水机等设备。两个工程处理量分别为7200和15000,总投资分别为590万元和980万元,占地1600和2800。广州头号城纸箱厂应用EWP高效污水净化器,污水处理后回用到造纸生产中,使得该厂达到1吨水造1吨纸的先进水平。
2.2工艺流程
对比试验流程增加了调节池刮泥李、泵后加药系统、污泥脱水机等设备。
2.3运行效果
EWP高效污水净化器的技术特点是没有用任何的滤料或填料,而利用先进生产方式的污水中的悬浮与絮凝剂反应后生成的絮凝沉淀物形成吸附过滤订对连续进入的污水进行净化。其关键是EWP高效污水净化器能把污水中的絮凝沉淀物形成稳定的流化,今污染物起到活性碳的作用,并能由新鲜进入的絮凝沉淀物推动老的絮凝沉淀物排出,始终保持净化器的治理效果。虽然只是一级物化处理工艺,却可比气浮、沉淀等同类工艺提高效率10-20%。经过三年多的运行,尽管进水浓度变化较大,但出水仍然比较好和稳定。表2监测结果表明,可达到去降率COD为92.5%,BOD78.5%,SS98.9%,达到项目的设计要求和国家标准。直接运行费用(药剂费0.25元,电耗0.2度)为0.38元/吨水。
对以废纸再生桨料造纸的废水,采用一级物化处理工艺的EWP高效污水净化器治理,具有工艺简单、设备可靠、管理方便、投资省、占地少、效率高、运行费用低、经处理废水能达标排放并可回用等优点。
第五篇:PLC在污水处理厂中的应用
PLC在污水处理厂中的应用
作者:穆 杰
摘要:
PLC在现代工业控制领域中早己得到了广泛的应用,污水处理项目的自控工艺相对于轧钢等其他项目的工艺来说相对简单,但它也有其自身的特点,如设备更为分散,功能则相对独立等。本文依滁州某污水处理厂为例谈一下PLC在污水处理厂中的应用,希望与大家分享。
关键词:污水处理,Siemens S7 V5.4,Wincc 6.0。
一、污水处理工艺流程
从厂区外的主污水管道而来的污水进入格间,由2台粗格栅和2台细格栅将污水中体积较大的污物除去。通过格栅机的污水继续前行流入进水泵房。该处为全厂区标高的最低处,进水泵房底部放置有6台大功率潜水泵,主要用于将污水提升到高处的旋流沉砂池,以使污水只靠重力作用流经其余的处理阶段。旋流沉砂池将污水中的砂子分离出来,防止其对后续工作的设备产生磨损,经过旋流沉砂池的污水靠重力进入生物池,生物池为厌氧/好氧生物反应池,经过生物作用,将有机物质分解。然后污水通过污泥泵池进入二次沉淀池,经过刮泥桥的运动,池上面的浮碴进入浮碴井中,池下部的污泥由真空泵吸出并送到污泥均质池。污泥泵池内的4台回流泵根据需要将一部分污泥送回生物池,以保证厌氧池中含有一定量的污泥,另一部分被2台剩余污泥泵送入到污泥均质池。经过二次沉淀处理后的污水通过管道自流到消毒渠道,经过紫外消毒已达标准,经过处理的污水经管道自流到附近的河流。污水处理工艺流程如图1所示
图1 污水处理工艺流程
二、系统的硬件组态
系统采用一套PLC控制系统,选用SIMATIC S7-319 CPU和WINCC6.0软件包,采用PROFIBUS-DP 现场总线技术,ET200分站集中放置在PLC室。系统的硬件配置如下图2。PLC通过光纤与综合楼中控室的上位机监控系统进行通讯。上位机监控系统使用一台工程师站和二台操作员站,实时监测各生产流程,采集生产信息,并且下达操作人员的每个控制指令。
系统组态如下图:
图2 系统组态示意图
三、控制系统的功能实现
3.1 PLC控制系统的功能实现:
上位机的操作分为3种操作模式 手动操作,PLC远程手动遥控操作和全自动操作三种方式。
前两种方式一般只在设备调试或维修时使用,系统主要以全自动操作方式为主。在这种方式下,各类泵、风机等设备的开、停,各种工况的切换都由程序自动完成,不需要操作人员干预。每种工况的运行时间及各种测量参数均可以在线或离线调整,每台设备和每种工况的运行情况也都可以由PLC系统进行监视。现场的泵类、风机、搅拌器等信号通过PLC的控制转化也在上位机上显示。这样,既能对设备开关量,如各类泵、风机、搅拌器等的开停进行控制,又能对现场的模拟量(液位信号、溶解氧浓度、PH值、温度等)进行调节,使全厂的工艺、设备运行得到全面的控制。3.2 提升泵房及的沉砂池自动控制
提升泵房共有6台水泵,2大4小,液位的不同决定启动水泵的大小和个数。当水位高于高水位时,启动2大2小共4台泵,另2台小泵备用;当水位位于高水位和正常水位之间时,启动2台大泵;当水位位于正常水位和低水位之间时,启动1台大泵,1台小泵;当水位位于低水位和停泵水位之间时,启动1台大泵;当水位低于停泵水位时,所有泵停开;正常情况下 2台大泵互为备用,4台小泵也互为备用,且轮换使用,每2小时自动轮换一次。沉砂池搅拌器连续24h运行。其它设备开始状态为关闭,当沉砂池搅拌器连续运行时间达3h(沉砂阶段,可调)时,自动启动,启动次序为:洗砂电磁阀自动打开,同时鼓风机启动,6min(洗砂阶段,可调)后,洗砂电磁阀关闭,同时提砂电磁阀和电动闸阀自动打开,砂水分离器随即联锁启动;该状态持续20min(提砂阶段,可调)后,鼓风机关闭,同时提砂电磁阀、电动闸阀关闭,5min(可调)后,砂水分离器关闭。沉砂池搅拌器继续运行,直至再次连续运行3h(可调),进入下一个洗砂阶段。提升泵房及旋流沉砂池监控画面如下:
图3 提升泵房及旋流沉砂池监控画面
3.3生物池与鼓风机及污泥泵池的连锁
生物池中的DO(溶解氧)一般控制在2~4mg/L之间,当池中的含氧量低,即DO低于2mg/L时要加开一台鼓风机,以保证生物池的丝状菌和细菌的存活量,鼓风机的启动台数太多使DO高于4mg/L时则造成资源浪费。鼓风机的启停台数要在正常的生产中进行调整,细菌的生存状况与季节也有很大关系,因此程序为此专门设定了调整窗口。随着时间的推移,生物池内的污泥会被水流冲到污泥泵池,要定期启动回流泵,将污泥泵池里的含菌污泥回流到生物池,以保证生物池的污泥量。3.4 污泥泵池和污泥脱水间的连锁
当中控室发出可排泥信号后,首先检测污泥泵池内液位,若污泥泵池液位不高于停泵液位,则剩余污泥泵不接受可排泥信号,无操作;若污泥泵池液位高于停泵液位,则自动检测污泥均质池内液位;若污泥均质池液位低于最高水位,剩余污泥泵启动,开始排泥;若污泥均质池液位不低于最高水位,则等待,直至均质池液位低于正常水位时,再启动剩余污泥泵。当中控室发出不可排泥信号时,则检测剩余污泥泵运行状态,若为停,则无操作,若为开,则关闭剩余污泥泵,直至再次发出可排泥信号。
污泥泵出泥管道流量计可累计每天的总剩余污泥量,当每天累计污泥量达到每天设定的污泥量(每天发出可排泥信号前在计算机上设定)时,剩余污泥泵自动关闭。
四、结束语
本系统在污水处理厂投入使用以来,降低了操作人员的劳动强度,并改善了操作人员的工作环境。设备具有调试简单、操作方便、使用安全、运行可靠、效率高、故障率低,污水处理效果好的特点,同时由于软硬件均采用模块化结构,方便了工程技术人员的安装、调试和维修。
参考文献
[1] SIEMENS公司.SIMATIC S7-300 M7-300可编程序控制器模板规范参考手册,2001.10 [2]SIEMENS公司.STEP-7-V5.4编程使用手册.2001.10 [3] 谢克明, 夏路易主编.可编程控制器原理与程序设计.北京:电子工业出版社,2002 [4] 齐蓉主编.最新可编程控制器教程.西安:西北工业大学出版社,2000.9