第一篇:函数极限证明
函数极限证明
记g(x)=lim^(1/n),n趋于正无穷;
下面证明limg(x)=max{a1,...am},x趋于正无穷。把max{a1,...am}记作a。
不妨设f1(x)趋于a;作b>a>=0,M>1;
那么存在N1,当x>N1,有a/M<=f1(x)注意到f2的极限小于等于a,那么存在N2,当x>N2时,0<=f2(x)同理,存在Ni,当x>Ni时,0<=fi(x)取N=max{N1,N2...Nm};
那么当x>N,有
(a/M)^n<=f1(x)^n<=f1(x)^n+...fm(x)^n所以a/M<=^(1/n)
第二篇:函数极限的证明
函数极限的证明
(一)时函数的极限:
以时和为例引入.介绍符号:的意义,的直观意义.定义(和.)
几何意义介绍邻域其中为充分大的正数.然后用这些邻域语言介绍几何意义.例1验证例2验证例3验证证……
(二)时函数的极限:
由考虑时的极限引入.定义函数极限的“”定义.几何意义.用定义验证函数极限的基本思路.例4验证例5验证例6验证证由=
为使需有为使需有于是,倘限制,就有
例7验证例8验证(类似有(三)单侧极限:
1.定义:单侧极限的定义及记法.几何意义:介绍半邻域然后介绍等的几何意义.例9验证证考虑使的2.单侧极限与双侧极限的关系:
Th类似有:例10证明:极限不存在.例11设函数在点的某邻域内单调.若存在,则有
=§2函数极限的性质(3学时)
教学目的:使学生掌握函数极限的基本性质。
教学要求:掌握函数极限的基本性质:唯一性、局部保号性、不等式性质以及有理运算性等。
教学重点:函数极限的性质及其计算。
教学难点:函数极限性质证明及其应用。
教学方法:讲练结合。
一、组织教学:
我们引进了六种极限:,.以下以极限为例讨论性质.均给出证明或简证.二、讲授新课:
(一)函数极限的性质:以下性质均以定理形式给出.1.唯一性:
2.局部有界性:
3.局部保号性:
4.单调性(不等式性质):
Th4若和都存在,且存在点的空心邻域,使,都有证设=(现证对有)
註:若在Th4的条件中,改“”为“”,未必就有以举例说明.5.迫敛性:
6.四则运算性质:(只证“+”和“”)
(二)利用极限性质求极限:已证明过以下几个极限:
(注意前四个极限中极限就是函数值)
这些极限可作为公式用.在计算一些简单极限时,有五组基本极限作为公式用,我们将陆续证明这些公式.利用极限性质,特别是运算性质求极限的原理是:通过有关性质,把所求极限化为基本极限,代入基本极限的值,即计算得所求极限.例1(利用极限和)
例2例3註:关于的有理分式当时的极限.例4
例5例6例7
第三篇:函数极限的定义证明
习题13
1.根据函数极限的定义证明:
(1)lim(3x1)8;x3
(2)lim(5x2)12;x2
x244;(3)limx2x2
14x3
(4)lim2.x2x12
1证明(1)分析 |(3x1)8||3x9|3|x3|, 要使|(3x1)8| , 只须|x3|.3
1证明 因为 0, , 当0|x3|时, 有|(3x1)8| , 所以lim(3x1)8.x33
1(2)分析 |(5x2)12||5x10|5|x2|, 要使|(5x2)12| , 只须|x2|.5
1证明 因为 0, , 当0|x2|时, 有|(5x2)12| , 所以lim(5x2)12.x25
(3)分析
|x(2)|.x24x24x4x24(4)|x2||x(2)|, 要使(4), 只须x2x2x2
x24x24(4), 所以lim4.证明 因为 0, , 当0|x(2)|时, 有x2x2x2
(4)分析 14x31114x312, 只须|x()|.2|12x2|2|x()|, 要使2x12x1222
14x31114x3
2, 所以lim证明 因为 0, , 当0|x()|时, 有2.12x12x122x2.根据函数极限的定义证明:
(1)lim1x3
2x3
sinxx1;2(2)limxx0.证明(1)分析
|x|1
1x32x311x3x322x312|x|3, 要使1x32x311, 只须, 即322|x|2.证明 因为 0, X(2)分析
sinxx0
12, 当|x|X时, 有1x
1x32x311x31, 所以lim.x2x322
1x
, 即x
sinxx
|sinx|x
, 要使
sinx
证明 因为0, X
2, 当xX时, 有
xsinxx
0, 只须
.0, 所以lim
x
0.3.当x2时,yx24.问等于多少, 使当|x2|<时, |y4|<0.001?
解 由于x2, |x2|0, 不妨设|x2|1, 即1x3.要使|x24||x2||x2|5|x2|0.001, 只要
|x2|
0.001
0.0002, 取0.0002, 则当0|x2|时, 就有|x24|0.001.5
x21x
34.当x时, y
x21x23
1, 问X等于多少, 使当|x|>X时, |y1|<0.01?
解 要使1
4x23
0.01, 只|x|
3397, X.0.01
5.证明函数f(x)|x| 当x0时极限为零.x|x|
6.求f(x), (x)当x0时的左﹑右极限, 并说明它们在x0时的极限是否存在.xx
证明 因为
x
limf(x)limlim11,x0x0xx0x
limf(x)limlim11,x0x0xx0limf(x)limf(x),
x0
x0
所以极限limf(x)存在.x0
因为
lim(x)lim
x0
x0
|x|x
lim1,x0xx|x|xlim1,xx0x
lim(x)lim
x0
x0
lim(x)lim(x),
x0
x0
所以极限lim(x)不存在.x0
7.证明: 若x及x时, 函数f(x)的极限都存在且都等于A, 则limf(x)A.x
证明 因为limf(x)A, limf(x)A, 所以>0,x
x
X10, 使当xX1时, 有|f(x)A|;X20, 使当xX2时, 有|f(x)A|.取Xmax{X1, X2}, 则当|x|X时, 有|f(x)A| , 即limf(x)A.x
8.根据极限的定义证明: 函数f(x)当xx0 时极限存在的充分必要条件是左极限、右极限各自存在并且相等.证明 先证明必要性.设f(x)A(xx0), 则>0, 0, 使当0<|xx0|< 时, 有
|f(x)A|<.因此当x0 |f(x)A|<.这说明f(x)当xx0时左右极限都存在并且都等于A.再证明充分性.设f(x00)f(x00)A, 则>0,1>0, 使当x01 | f(x)A|< ,即f(x)A(xx0).9.试给出x时函数极限的局部有界性的定理, 并加以证明.解 x时函数极限的局部有界性的定理 如果f(x)当x时的极限存在 则存在X0及M0 使当|x|X时 |f(x)|M 证明 设f(x)A(x) 则对于 1 X0 当|x|X时 有|f(x)A| 1 所以|f(x)||f(x)AA||f(x)A||A|1|A| 这就是说存在X0及M0 使当|x|X时 |f(x)|M 其中M1|A| 《数学分析》教案 第三章 函数极限 xbl 第三章 函数极限 教学目的: 1.使学生牢固地建立起函数极限的一般概念,掌握函数极限的基本性质; 2.理解并运用海涅定理与柯西准则判定某些函数极限的存在性; 3.掌握两个重要极限 和,并能熟练运用; 4.理解无穷小(大)量及其阶的概念,会利用它们求某些函数的极限。教学重(难)点: 本章的重点是函数极限的概念、性质及其计算;难点是海涅定理与柯西准则的应用。 教学时数:16学时 § 1 函数极限概念(3学时) 教学目的:使学生建立起函数极限的准确概念;会用函数极限的定义证明函数极限等有关命题。 教学要求:使学生逐步建立起函数极限的定义的清晰概念。会应用函数极限的定义证明函数的有关命题,并能运用语言正确表述函数不以某实数为极限等相应陈述。 教学重点:函数极限的概念。 教学难点:函数极限的定义及其应用。 一、复习:数列极限的概念、性质等 二、讲授新课: (一)时函数的极限: 《数学分析》教案 第三章 函数极限 xbl 例4 验证 例5 验证 例6 验证 证 由 = 为使 需有 需有 为使 于是, 倘限制 , 就有 例7 验证 例8 验证(类似有 (三)单侧极限: 1.定义:单侧极限的定义及记法.几何意义: 介绍半邻域 《数学分析》教案 第三章 函数极限 xbl 我们引进了六种极限:.以下以极限,为例讨论性质.均给出证明或简证.二、讲授新课: (一)函数极限的性质: 以下性质均以定理形式给出.1.唯一性: 2.局部有界性: 3.局部保号性: 4.单调性(不等式性质): Th 4 若使,证 设 和都有 = (现证对 都存在, 且存在点 的空心邻域),有 註: 若在Th 4的条件中, 改“ 就有 5.6.以 迫敛性: ”为“ 举例说明.”, 未必 四则运算性质:(只证“+”和“ ”) (二)利用极限性质求极限: 已证明过以下几个极限: 《数学分析》教案 第三章 函数极限 xbl 例8 例9 例10 已知 求和 补充题:已知 求和()§ 3 函数极限存在的条件(4学时) 教学目的:理解并运用海涅定理与柯西准则判定某些函数极限的存在性。教学要求:掌握海涅定理与柯西准则,领会其实质以及证明的基本思路。教学重点:海涅定理及柯西准则。教学难点:海涅定理及柯西准则 运用。 教学方法:讲授为主,辅以练习加深理解,掌握运用。本节介绍函数极限存在的两个充要条件.仍以极限 为例.一.Heine归并原则——函数极限与数列极限的关系: Th 1 设函数在,对任何在点 且的某空心邻域 内有定义.则极限都存在且相等.(证) 存Heine归并原则反映了离散性与连续性变量之间的关系,是证明极限不存在的有力工具.对单侧极限,还可加强为 单调趋于 .参阅[1]P70.例1 证明函数极限的双逼原理.7 《数学分析》教案 第三章 函数极限 xbl 教学难点:两个重要极限的证明及运用。 教学方法:讲授定理的证明,举例说明应用,练习。一. (证)(同理有) 例1 例2.例3 例4 例5 证明极限 不存在.二.证 对 有 例6 特别当 等.例7 例8 《数学分析》教案 第三章 函数极限 xbl 三. 等价无穷小: Th 2(等价关系的传递性).等价无穷小在极限计算中的应用: Th 3(等价无穷小替换法则) 几组常用等价无穷小:(见[2]) 例3 时, 无穷小 与 是否等价? 例4 四.无穷大量: 1.定义: 2.性质: 性质1 同号无穷大的和是无穷大.性质2 无穷大与无穷大的积是无穷大.性质3 与无界量的关系.无穷大的阶、等价关系以及应用, 可仿无穷小讨论, 有平行的结果.3.无穷小与无穷大的关系: 无穷大的倒数是无穷小,非零无穷小的倒数是无穷大 习题 课(2学时) 一、理论概述: 《数学分析》教案 第三章 函数极限 xbl 例7.求 .注意 时, 且 .先求 由Heine归并原则 即求得所求极限 .例8 求是否存在.和.并说明极限 解; 可见极限 不存在.--32 习题 1.按定义证明下列极限: (1)limx6x5=6;(2)lim(x2-6x+10)=2;x2x x251;(4)lim(3)lim2xx1x2 (5)limcos x = cos x0 xx04x2=0; 2.根据定义2叙述limf(x)≠ A.xx0 3.设limf(x)= A.,证明limf(x0+h)= A.xx0h0 4.证明:若limf(x)= A,则lim| f(x)| = |A|.当且仅当A为何值时反之也成立? xx0xx0 5.证明定理3.1 6.讨论下列函数在x0→0 时的极限或左、右极限:(1)f(x)=x x;(2)f(x)= [x] 2x;x0.(3)f(x)=0;x0.1x2,x0. 7.设 limf(x)= A,证明limf(xxx01)= A x 8.证明:对黎曼函数R(x)有limR(x)= 0 , x0∈[0,1](当x0=0或1时,考虑单侧极限).xx0 习题 1. 求下列极限: x21(1)lim2(sinx-cosx-x);(2)lim;x02x2x1x22 x21x113x; lim(3)lim;(4) x12x2x1x0x22x3 xn1(5)limm(n,m 为正整数);(6)lim x1xx41 (7)lim x0 2x3x2 70; a2xa3x68x5.(a>0);(8)lim xx5x190 2. 利用敛性求极限:(1)lim x xcosxxsinx ;(2)lim2 x0xx4 xx0 3. 设 limf(x)=A, limg(x)=B.证明: xx0 (1)lim[f(x)±g(x)]=A±B; xx0 (2)lim[f(x)g(x)]=AB; xx0 (3)lim xx0 f(x)A =(当B≠0时)g(x)B 4. 设 a0xma1xm1am1xam f(x)=,a0≠0,b0≠0,m≤n,nn1 b0xb1xbn1xbn 试求 limf(x) x 5. 设f(x)>0, limf(x)=A.证明 xx0 xx0 lim第四篇:函数极限
第五篇:函数极限