函数极限的性质

时间:2019-05-14 15:41:32下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《函数极限的性质》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《函数极限的性质》。

第一篇:函数极限的性质

§3.2 函数极限的性质

§2 函数极限的性质

Ⅰ.教学目的与要求

1.理解掌握函数极限的唯一性、局部有界性、局部保号性、保不等式性,迫敛性定理并会利用这些定理证明相关命题.2.掌握函数极限四则运算法则、迫敛性定理,会利用其求函数极限.Ⅱ.教学重点与难点:

重点: 函数极限的性质.难点: 函数极限的性质的证明及其应用.Ⅲ.讲授内容

在§1中我们引入了下述六种类型的函数极限:

1)limfx ;2)limfx;3)limfx

xxxfx;

6)limfx。4)limfx; 5)limxx0xx0xx0它们具有与数列极限相类似的一些性质,下面以第4)种类型的极限为代表来叙述并证明这些性质.至于其他类型极限的性质及其证明,只要相应地作些修改即可.定理3.2(唯一性)若极限limfx存在,则此极限是唯一的.

xx0

设,都是f当xx0时的极限,则对任给的0,分别存在正数

1与2,使得当0xx01时有

fx,(1)

当0xx02时有

fx,(2)

取min1,2,则当0xx0时,(1)式与(2)式同时成立,故有

(fx)fxfxfx2

由的任意性得,这就证明了极限是唯一的.定理3。3(局部有限性)若limfx存在,则f在x0的某空心邻域U0x0内有界.

xx0

设limfx.取1,则存在0使得对一切xU0x0;有

xx0

fx1fx1 这就证明了f在U0x0;内有界.

§3.2 函数极限的性质

定理3.4(局部保号性)若limfx0(或0),则对任何正数r(或

xx0r),存在U0x0,使得对一切xU0x0有

fxr0(或fxr0)

设0,对任何r(0,),取r,则存在0,使得对一切

xU0x0;

fxr,这就证得结论.对于0的情形可类似地证明.

在以后应用局部保号性时,常取rA.

2xx0定理3.5(保不等式性)设limfx与都limgx都存在,且在某邻域U0x0;'内

xx0有fxgx则

limfxlimgx

(3)

xx0xx0

limfx=,limgx=,则对任给的0,分别存在正数1与2使xx0xx0得当0xx01时有

fx,当0xx02 时有

gx

令min',1,2,则当0xx0时,不等式fxgx与(4)、(5)两式同时成立,于是有

fxgx

从而2.由的任意性推出,即(3)式成立.

定理3.6(迫敛性)设limfx=limgx=A,且在某U0x0;'内有

xx0xx0

fx则limhx.

xx0hxgx

按假设,对任给的0,分别存在正数1与2,使得当 0xx01时有,§3.2 函数极限的性质

fx

(7)

当0xx02时有

gx

(8)

令min,1,2,则当0xx0时,不等式(6)、(7)、(8)同时成立,故有

fxhxgx 由此得hx,所以limhx

xx0'

定理3.7(四则运算法则)若极限limfx与limgx都存在,则函数

xx0xx0fg,fg当xx0时极限也存在,且

1)limfxgxlimfxlimgx;

xx0xx0xx02)limfxgxxx0xx0limfx.limgx;

xx0 又若limgx0,则f|g当xx0时极限存在,且有

xx03)limxx0fxgxxx0limfxlimgx.

xx0

这个定理的证明类似于数列极限中的相应定理,留给学生作为练习.

利用函数极限的迫敛性与四则运算法则,我们可从一些简单的函数极限出发,计算较复杂的函数极限.

例 1求limxx0x解

当x0时有

1xx1,x1

11x1故由迫敛性得:

xlim

而limx=1

0x0x另一方面,当x0有1x1x,故又由迫敛性又可得:

lim x1 

x0

xx综上,我们求得lim x1

x0x

1111§3.2 函数极限的性质

例 2求limxtanx1x

4解由xtanxxsinx及§1例4所得的,cosxsixnsin

limx442limcoxs,2x4并按四则运算法则有

limsinxxtanx1=limx

limxx

44x4limcosx

x

1=limx41 44例 3求lim313.

x1x1x1解 当x10时有

x1x2x

2133x1x1x31x2x1故所求的极限等于

x2121 2x1x2x1111lim例4

证明lima1a1 xx0

任给0(不妨设1),为使

x

a1

(9)

即1a1,利用对数函数loga

loga1xloga1 于是,令

x(当a1时)的严格增性,只要

minloga1,loga1,则当0x时,就有(9)式成立,从而证得结论.

Ⅳ 小结与提问:本节要求学生理解掌握函数极限的性质,并利用其讨论相关命题.指导学生对定理的应用作总结.Ⅴ 课外作业: P51 2、3、5、7、8、9.

第二篇:函数极限的性质

§3.2 函数极限的性质

§2函数极限的性质

Ⅰ.教学目的与要求

1.理解掌握函数极限的唯一性、局部有界性、局部保号性、保不等式性,迫敛性定理并会利用这些定理证明相关命题.2.掌握函数极限四则运算法则、迫敛性定理,会利用其求函数极限.Ⅱ.教学重点与难点:

重点: 函数极限的性质.难点: 函数极限的性质的证明及其应用.Ⅲ.讲授内容

在§1中我们引入了下述六种类型的函数极限:

1)limfx ;2)limfx;3)limfxxxx

fx;6)limfx。4)limfx; 5)limxx0xx0xx0

它们具有与数列极限相类似的一些性质,下面以第4)种类型的极限为代表来叙述并证明这些性质.至于其他类型极限的性质及其证明,只要相应地作些修改即可.定理3.2(唯一性)若极限limfx存在,则此极限是唯一的. xx0

证设,都是f当xx0时的极限,则对任给的0,分别存在正数

1与2,使得当0xx01时有

fx,(1)当0xx02时有

fx,(2)

取min1,2,则当0xx0时,(1)式与(2)式同时成立,故有

(fx)fxfxfx2

由的任意性得,这就证明了极限是唯一的.定理3。3(局部有限性)若limfx存在,则f在x0的某空心邻域U0x0内有界. xx0

证设limfx.取1,则存在0使得对一切xU0x0;有 xx0

fx1fx1

这就证明了f在U0x0;内有界.

定理3.4(局部保号性)若limfx0(或0),则对任何正数r(或xx0

r),存在U0x0,使得对一切xU0x0有

fxr0(或fxr0)

证设0,对任何r(0,),取r,则存在0,使得对一切

xU0x0;

fxr,这就证得结论.对于0的情形可类似地证明.

注在以后应用局部保号性时,常取rA.2

xx0定理3.5(保不等式性)设limfx与都limgx都存在,且在某邻域U0x0;'内xx0

有fxgx则

limfxlimgx(3)xx0xx0

证设limfx=,limgx=,则对任给的0,分别存在正数1与2使xx0xx0

得当0xx01时有

fx,当0xx02 时有

gx

令min',1,2,则当0xx0时,不等式fxgx与(4)、(5)两式同时成立,于是有

fxgx

从而2.由的任意性推出,即(3)式成立.

定理3.6(迫敛性)设limfx=limgx=A,且在某U0x0;'内有 xx0xx0

fx

则limhx. xx0hxgx

证按假设,对任给的0,分别存在正数1与2,使得当0xx01时有,2fx(7)当0xx02时有

gx(8)令min,1,2,则当0xx0时,不等式(6)、(7)、(8)同时成立,故有

fxhxgx

由此得hx,所以limhx xx0'

定理3.7(四则运算法则)若极限limfx与limgx都存在,则函数 xx0xx0

fg,fg当xx0时极限也存在,且

1)limfxgxlimfxlimgx; xx0xx0xx0

2)limfxgxxx0xx0limfx.limgx; xx0

又若limgx0,则f|g当xx0时极限存在,且有 xx0

3)limxx0fxgxxx0limfxlimgx. xx0

这个定理的证明类似于数列极限中的相应定理,留给学生作为练习.

利用函数极限的迫敛性与四则运算法则,我们可从一些简单的函数极限出发,计算较复杂的函数极限.

例 1求limxx0x

解当x0时有

1xx1,x1 1

1x1故由迫敛性得:xlim而limx=1 0x0x

另一方面,当x0有1x1x,故又由迫敛性又可得:lim x1 x0xx

综上,我们求得lim x1 x0x1111

例 2求limxtanx1

x

解由xtanxxsinx及§1例4所得的,cosx

sixnsilim

x442limcoxs,2x4

并按四则运算法则有

limsinx

xtanx1=limxlim

xx44x

4limcosxx1=limx41

4例 3求lim313. x1x1x1

解 当x10时有

x1x2x2133x1x1x31x2x1

故所求的极限等于

x2121 2x1x2x1111lim

例4证明lima1a1 x

x0

证任给0(不妨设1),为使

xa1(9)

即1a1,利用对数函数loga

loga1xloga1

于是,令x(当a1时)的严格增性,只要 minloga1,loga1,则当0x时,就有(9)式成立,从而证得结论.

Ⅳ 小结与提问:本节要求学生理解掌握函数极限的性质,并利用其讨论相关命题.指导学生对定理的应用作总结.Ⅴ 课外作业: P51 2、3、5、7、8、9.

第三篇:2函数极限的性质解读

§2 函数极限的性质

在§1中我们引入了下述六种类型的函数极限:

1);

2);

3);

4);

5);

6)。

它们具有与数列极限相类似的一些性质,下面以第4)种类型的极限为代表来叙述并证明这些性质。

至于其他类型极限的性质及其证明,只要相应的作些修改即可。

定理3.2(唯一性)若极限 证

设与、都是

存在,则此极限是唯一的。

时的极限,则对任给的,分别存在正数,使得当

时有

(1)

当 时有

(2)

取,则当时,(1)式与(2)式同时成立,故有

由的任意性得。这就证明了极限是唯一的。定理3.3(局部有界性)若极限 内有界。

存在,则在某空心邻域证

设。取,则存在,使得对一切。

这就证明了在内有界。

定理3.4(局部保号性)若(或),存在,使得对一切

(或),则对任何正数

(或证 设有,这就证得结论。对于,对任何,取,则存在)。,使得对一切的情形可类似地证明。

定理3.5(保不等式性)设 内有,则

与都存在,且在某邻域。

(3)

证 设,使得当,时,则对任给的,分别存在正数与

(4)

时有

(5)

令,则当

时,不等式

与(4),(5)式同时成立,于是 有式成立。,从而

。由的任意性得,即(3)定理3.6(迫敛性)设==,且在某内有

(6)

则。

证 按假设,对任给的时

(7),分别存在正数

与,使得当当时有

(8)

令,则当

时,不等式(6)、(7)、(8)式同时成立,故有,由此得,所以。定理3.7(四则运算法则)若极限数,当

都存在,则函 时极限也存在,且

1)=

2)=

又若,则当时极限也存在,且有

3)

这个定理的证明类似于数列极限中的相应定理,留给读者作为练习。利用函数极限的迫敛性与四则运算法则,我们可从一些简单的函数极限出发计算较复杂的函数极限。

例1求。

解 由第一章§3习题13,当 时有,而,故由迫敛性得

。另一方面,当时有,故由迫敛性又可得。

综上,我们求得。

例2 求。

及§1例4所得的

并按四则运算法则有

=

例3 求

解 当 时有。故所求极限等于。

例4

证明

任给(不妨设),为使

(9)

即,利用对数函数

(当

时)的严格增性,只要

于是,令成立,从而证得结论。,则当时,就有(9)式

第四篇:函数极限的性质证明

函数极限的性质证明

X1=2,Xn+1=2+1/Xn,证明Xn的极限存在,并求该极限

求极限我会

|Xn+1-A|<|Xn-A|/A

以此类推,改变数列下标可得|Xn-A|<|Xn-1-A|/A;

|Xn-1-A|<|Xn-2-A|/A;

……

|X2-A|<|X1-A|/A;

向上迭代,可以得到|Xn+1-A|<|Xn-A|/(A^n)

2只要证明{x(n)}单调增加有上界就可以了。

用数学归纳法:

①证明{x(n)}单调增加。

x(2)=√=√5>x(1);

设x(k+1)>x(k),则

x(k+2)-x(k+1))=√-√(分子有理化)

=/【√+√】>0。

②证明{x(n)}有上界。

x(1)=1<4,设x(k)<4,则

x(k+1)=√<√(2+3*4)<4。

3当0

当0

构造函数f(x)=x*a^x(0

令t=1/a,则:t>

1、a=1/t

且,f(x)=x*(1/t)^x=x/t^x(t>1)

则:

lim(x→+∞)f(x)=lim(x→+∞)x/t^x

=lim(x→+∞)(分子分母分别求导)

=lim(x→+∞)1/(t^x*lnt)

=1/(+∞)

=0

所以,对于数列n*a^n,其极限为0

用数列极限的定义证明

3.根据数列极限的定义证明:

(1)lim=0

n→∞

(2)lim=3/2

n→∞

(3)lim=0

n→∞

(4)lim0.999…9=1

n→∞n个9

5几道数列极限的证明题,帮个忙。。Lim就省略不打了。。

n/(n^2+1)=0

√(n^2+4)/n=1

sin(1/n)=0

实质就是计算题,只不过题目把答案告诉你了,你把过程写出来就好了

第一题,分子分母都除以n,把n等于无穷带进去就行

第二题,利用海涅定理,把n换成x,原题由数列极限变成函数极限,用罗比达法则(不知楼主学了没,没学的话以后会学的)

第三题,n趋于无穷时1/n=0,sin(1/n)=0

不知楼主觉得我的解法对不对呀limn/(n^2+1)=lim(1/n)/(1+1/n^2)=lim(1/n)/(1+lim(1+n^2)=0/1=0

lim√(n^2+4)/n=lim√(1+4/n^2)=√1+lim(4/n^2)=√1+4lim(1/n^2)=1

limsin(1/n)=lim=lim(1/n)*lim/(1/n)=0*1=0

第五篇:函数极限

《数学分析》教案

第三章 函数极限

xbl

第三章 函数极限

教学目的:

1.使学生牢固地建立起函数极限的一般概念,掌握函数极限的基本性质; 2.理解并运用海涅定理与柯西准则判定某些函数极限的存在性; 3.掌握两个重要极限

和,并能熟练运用;

4.理解无穷小(大)量及其阶的概念,会利用它们求某些函数的极限。教学重(难)点:

本章的重点是函数极限的概念、性质及其计算;难点是海涅定理与柯西准则的应用。

教学时数:16学时

§ 1 函数极限概念(3学时)

教学目的:使学生建立起函数极限的准确概念;会用函数极限的定义证明函数极限等有关命题。

教学要求:使学生逐步建立起函数极限的定义的清晰概念。会应用函数极限的定义证明函数的有关命题,并能运用语言正确表述函数不以某实数为极限等相应陈述。

教学重点:函数极限的概念。

教学难点:函数极限的定义及其应用。

一、复习:数列极限的概念、性质等

二、讲授新课:

(一)时函数的极限:

《数学分析》教案

第三章 函数极限

xbl

例4 验证

例5 验证

例6 验证

证 由 =

为使

需有

需有

为使

于是, 倘限制 , 就有

例7 验证

例8 验证(类似有

(三)单侧极限:

1.定义:单侧极限的定义及记法.几何意义: 介绍半邻域

《数学分析》教案

第三章 函数极限

xbl

我们引进了六种极限:.以下以极限,为例讨论性质.均给出证明或简证.二、讲授新课:

(一)函数极限的性质: 以下性质均以定理形式给出.1.唯一性:

2.局部有界性:

3.局部保号性:

4.单调性(不等式性质):

Th 4 若使,证 设

和都有 =

(现证对 都存在, 且存在点 的空心邻域),有

註: 若在Th 4的条件中, 改“ 就有

5.6.以

迫敛性:

”为“ 举例说明.”, 未必

四则运算性质:(只证“+”和“ ”)

(二)利用极限性质求极限: 已证明过以下几个极限:

《数学分析》教案

第三章 函数极限

xbl

例8

例9

例10 已知

求和

补充题:已知

求和()§ 3 函数极限存在的条件(4学时)

教学目的:理解并运用海涅定理与柯西准则判定某些函数极限的存在性。教学要求:掌握海涅定理与柯西准则,领会其实质以及证明的基本思路。教学重点:海涅定理及柯西准则。教学难点:海涅定理及柯西准则 运用。

教学方法:讲授为主,辅以练习加深理解,掌握运用。本节介绍函数极限存在的两个充要条件.仍以极限

为例.一.Heine归并原则——函数极限与数列极限的关系:

Th 1 设函数在,对任何在点

且的某空心邻域

内有定义.则极限都存在且相等.(证)

存Heine归并原则反映了离散性与连续性变量之间的关系,是证明极限不存在的有力工具.对单侧极限,还可加强为

单调趋于

.参阅[1]P70.例1 证明函数极限的双逼原理.7 《数学分析》教案

第三章 函数极限

xbl

教学难点:两个重要极限的证明及运用。

教学方法:讲授定理的证明,举例说明应用,练习。一.

(证)(同理有)

例1

例2.例3

例4

例5 证明极限 不存在.二.证 对

例6

特别当 等.例7

例8

《数学分析》教案

第三章 函数极限

xbl

三. 等价无穷小:

Th 2(等价关系的传递性).等价无穷小在极限计算中的应用: Th 3(等价无穷小替换法则)

几组常用等价无穷小:(见[2])

例3 时, 无穷小

是否等价? 例4

四.无穷大量:

1.定义:

2.性质:

性质1 同号无穷大的和是无穷大.性质2 无穷大与无穷大的积是无穷大.性质3 与无界量的关系.无穷大的阶、等价关系以及应用, 可仿无穷小讨论, 有平行的结果.3.无穷小与无穷大的关系:

无穷大的倒数是无穷小,非零无穷小的倒数是无穷大

习题 课(2学时)

一、理论概述:

《数学分析》教案

第三章 函数极限

xbl

例7.求

.注意 时, 且

.先求

由Heine归并原则

即求得所求极限

.例8 求是否存在.和.并说明极限

解;

可见极限 不存在.--32

下载函数极限的性质word格式文档
下载函数极限的性质.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    函数极限

    习题 1.按定义证明下列极限: limx6x5=6 ; lim(x2-6x+10)=2; x2x x251 ; lim lim2xx1x2 limcos x = cos x0 xx04x2=0; 2.根据定义2叙述limf (x) ≠ A. xx0......

    函数极限

    数学之美2006年7月第1期函数极限的综合分析与理解经济学院 财政学 任银涛 0511666数学不仅仅是工具,更是一种能力。一些数学的方法被其它学科广泛地运用。例如,经济学中的边际......

    §2函数极限的性质[大全五篇]

    《数学分析》上册教案第三章函数极限武汉科技学院理学院§2 函数极限的性质教学章节:第三章函数极限——§2 函数极限的性质教学目标:使学生掌握函数极限的基本性质.教学要求:......

    第4讲函数极限及性质2009

    《数学分析I》第4讲教案第4讲函数极限概念及其性质讲授内容一 、x趋于时函数的极限例如,对于函数f(x)1x,当x无限增大时,函数值无限地接近于0;而对于函数g(x)=arctanx,则2当x趋于+......

    2 函数极限的性质(小编推荐)

    §2 函数极限的性质在§1中我们引入了下述六种类型的函数极限:1);2);3);4);5);6)。它们具有与数列极限相类似的一些性质,下面以第4)种类型的极限为代表来叙述并证明这些性质。至于其他类型......

    1-2函数极限

    高等数学教案§1.2函数极限教学目标:1. 掌握各种情形下的函数极限的基本概念和性质。2. 掌握极限存在性的判定及应用。3. 熟练掌握求函数极限的基本方法。教学重难点:函数极限......

    函数极限概念

    一. 函数极限的概念 1.x趋于时函数的极限 设函数f定义在,上,类似于数列情形,我们研究当自变量x趋于+时,对应的函数值能否无线地接近于某个定数A.例如,对于函数fx=,从图象上可见,当......

    2.3函数极限

    高三极限同步练习3(函数的极限) 求第一类函数的极限 例1、讨论下列函数当x,x,x时的极限: 1(1)f(x)1 2 (2)f(x)x1 x1 (x0)2(3)h(x)x2 x0)x1求函数的左右极限 例2、讨论下列函数在点x1处的......