第一篇:第4讲函数极限及性质2009
《数学分析I》第4讲教案
第4讲函数极限概念及其性质
讲授内容
一、x趋于时函数的极限
例如,对于函数f(x)
1x,当x无限增大时,函数值无限地接近于0;而对于函数g(x)=arctanx,则
2当x趋于+时函数值无限地接近于.
定义1设f为定义在[a,)上的函数,A为定数.若对任给的>0,存在正数M(a),使得当x>M时有 |f(x)A|<
则称函数f当x趋于+时以A为极限,记作limf(x)A.x
定义1的几何意义如图3—1所示,对任给的>0,在坐标平面上平行
于x轴的两条直线)yA与yA,围成以直线yA为中心线、宽为2的带形区域;定义中的“当x>M时有|f(x)A|”表示:在直线xM的右方,曲线y=f(x)全部落在这个带形区域之内.如果正
数给得小一点,即当带形区域更窄一点,那么直线xM一般要往右平移;但无论带形区域如何窄,总存在这样的正数M,使得曲线yf(x)在直线xM的右边部分全部落在这更窄的带形区域内.limf(x)A或 f(x)A(x);
x
limf(x)A或f(x)A(x).x
这两种函数极限的精确定义与定义1相仿,只须把定义1中的“xM”分别改为“xM或”xM".不难证明:若f为定义在U()上的函数,则limf(x)Alimf(x)limf(x)A
x
x
x
例1 证明lim
1x
x
0
证:任给0,取
,则当:x时有
1x
0
1x
1
,所以lim
1x
x
0。
例2证明:(1)limarctanx
x,(2)limarctanx
x
.注:当x时arctanx不存在极限.
二、x趋于x0时函数的极限
定义2(函数极限的定义)设函数f在点x0的某个空心邻域U(x0;)内有定义,为定数.若
'
对任给的0存在正数(),使得当0xx0时有 f(x),则称函数f当x趋于x0。
'
时以为极限,记作limf(x)或f(x)(xx0)
xx0
举例说明如何应用定义来验证这种类型的函数极限.特别讲清以下各例中的值是怎样确定的.
例3设f(x)
x4x
2,证明limf(x)4.x2
证:由于当x2时,f(x)4
x4x2
4x24x2,故对给定的0,只要取,则当0x2时有f(x)4,这就证明了limf(x)
4x2
例4证明:limsinxsinx0;limcosxcosx0
xx0
xx0
证:先建立一个不等式:当0x
时有sinxxtanx(1)
事实上,在如图32的单位圆内,当0x
时,显然有
SOCDS扇形OADSOAB即又当x
sinx
x
tanx,由此立得(1)式.
时有sinx1x,故对一切x0都有sinxx,当x0时,由sin(x)x得sinxx综上,我们得到不等式sinxx,xR,其中等号仅当x0时
xx0
xx0
成立.而sinxsinx02cos
sin
xx0.
对任给的0,只要取,则当0xx0时,就有sinxsinx0.
所以limsinxsinx0.可用类似方法证明limcosxcosx0
xx0
xx0
例证明lim
x12xx
1x1
3.x132x1
证:当x1时有
x12xx1
x12x1
若限制x于0x11(此时x0)则2x11,于是,对任给的0只要取min{3,1},则当
x12xx1
0x1时,便有
x13
.
例6证明
xx0
limx
x0(x01)
证:由于x1,x01 因此xx
x0x1x
x
xx0xx0
x
2xx0x
于是,对任给的0(不妨设01)取
x02
,则当0xx0时,就有1xx0.
关于函数极限的定义的几点说明:
(1)定义2中的正数,相当于数列极限定义中的,它依赖于,但也不是由所惟一确定.一
般来说,愈小,也相应地要小一些,而且把取得更小些也无妨.如在例3中可取或等等.
(2)定义中只要求函数f在x0的某一空心邻域内有定义,而一般不考虑f在点x0处的函数值是否有定义,或者取什么值.这是因为,对于函数极限我们所研究的是当x趋于x0过程中函数值的变化趋势.如在例3中,函数f在点x2是没有定义的,但当x2时f的函数值趋于一个定数.
(3)定义2中的不等式0xx0等价于xU
x0;,,而不等式
fx等价于
fxU;.
下面我们讨论单侧极限.
x2,x0
例如,函数 fx(I)
x,x0
当x0而趋于0时,应按fxx2来考察函数值的变化趋势;当x0而趋于0时,则应按fxx.定义3设函数f在Ux0;
'
或Ux
0
;
'
内有定义,为定数.若对任给的
0,存在正数
'
,使得当x
xx0,
x0xx0时有fx
则称数为函数f当x趋于x0(或x0)时的右(左)极限,记作
limfxlimfx或fxxx0fxxx0
xx0
xx0
右极限与左极限统称为单侧极限.f在点x0的右极限与左极限又分别记为fx00limfx与fx00limfx
xx0
xx0
按定义3容易验证函数(I)在x0处的左、右极限分别为f00limfxlimx0,f00lim
x0
x0
fxlimx
0
x0
x0
同样还可验证符号函数sgnx在x0处的左、右极限分别为limsgnxlim11,limsgnxlim1
1x0
x0
x0
x0
定理3.1limfxlimfxlimfx
xx0
xx0
xx0
三、函数极限的性质
定理3.2(唯一性)若极限limfx存在,则此极限是唯一的.
xx0
证:设,都是f当xx0时的极限,则对任给的0,分别存在正数1与2,使得: 当0xx01时有fx,(1)当0xx02时有fx,(2)取min1,2,则当0xx0时,(1)式与(2)式同时成立,故有(fx)fxfxfx2由的任意性得,这就证明了极限是唯一的.定理3.3(局部有限性)若limfx存在,则f在x0的某空心邻域U
xx0
x0内有界.
证:设limfx.取1,则存在0使得对一切xU
xx0
x0;有
x0;内有界.
fx1fx1,这就证明了f在U
定理3.4(局部保号性)若limfx0(或0),则对任何正数r(或r),存在xx0
U
x0,使得对一切xU0x0有 fx
r0(或fxr0)
证:设0,对任何r(0,),取r,则存在0,使得对一切xUfxr,这就证得结论.对于0的情形可类似地证明.
x0;
注:在以后应用局部保号性时,常取r
A2
.
定理3.5(保不等式性)设limfx与都limgx都存在,且在某邻域U
xx0
xx0
x
;
'
内有fxgx则
xx0
limfxlimgx
xx0
证:设limfx=,limgx=,则对任给的0,分别存在正数1与2使得当0xx01
xx0
xx0
时有fx,当0xx02 时有gx,令min,1,2,则当0xx0时,有fxgx,'
从而2.由的任意性推出,即limfxlimgx成立.
xx0
xx0
第二篇:函数极限的性质
§3.2 函数极限的性质
§2 函数极限的性质
Ⅰ.教学目的与要求
1.理解掌握函数极限的唯一性、局部有界性、局部保号性、保不等式性,迫敛性定理并会利用这些定理证明相关命题.2.掌握函数极限四则运算法则、迫敛性定理,会利用其求函数极限.Ⅱ.教学重点与难点:
重点: 函数极限的性质.难点: 函数极限的性质的证明及其应用.Ⅲ.讲授内容
在§1中我们引入了下述六种类型的函数极限:
1)limfx ;2)limfx;3)limfx
xxxfx;
6)limfx。4)limfx; 5)limxx0xx0xx0它们具有与数列极限相类似的一些性质,下面以第4)种类型的极限为代表来叙述并证明这些性质.至于其他类型极限的性质及其证明,只要相应地作些修改即可.定理3.2(唯一性)若极限limfx存在,则此极限是唯一的.
xx0
证
设,都是f当xx0时的极限,则对任给的0,分别存在正数
1与2,使得当0xx01时有
fx,(1)
当0xx02时有
fx,(2)
取min1,2,则当0xx0时,(1)式与(2)式同时成立,故有
(fx)fxfxfx2
由的任意性得,这就证明了极限是唯一的.定理3。3(局部有限性)若limfx存在,则f在x0的某空心邻域U0x0内有界.
xx0
证
设limfx.取1,则存在0使得对一切xU0x0;有
xx0
fx1fx1 这就证明了f在U0x0;内有界.
§3.2 函数极限的性质
定理3.4(局部保号性)若limfx0(或0),则对任何正数r(或
xx0r),存在U0x0,使得对一切xU0x0有
fxr0(或fxr0)
证
设0,对任何r(0,),取r,则存在0,使得对一切
xU0x0;
fxr,这就证得结论.对于0的情形可类似地证明.
注
在以后应用局部保号性时,常取rA.
2xx0定理3.5(保不等式性)设limfx与都limgx都存在,且在某邻域U0x0;'内
xx0有fxgx则
limfxlimgx
(3)
xx0xx0
证
设
limfx=,limgx=,则对任给的0,分别存在正数1与2使xx0xx0得当0xx01时有
fx,当0xx02 时有
gx
令min',1,2,则当0xx0时,不等式fxgx与(4)、(5)两式同时成立,于是有
fxgx
从而2.由的任意性推出,即(3)式成立.
定理3.6(迫敛性)设limfx=limgx=A,且在某U0x0;'内有
xx0xx0
fx则limhx.
xx0hxgx
证
按假设,对任给的0,分别存在正数1与2,使得当 0xx01时有,§3.2 函数极限的性质
fx
(7)
当0xx02时有
gx
(8)
令min,1,2,则当0xx0时,不等式(6)、(7)、(8)同时成立,故有
fxhxgx 由此得hx,所以limhx
xx0'
定理3.7(四则运算法则)若极限limfx与limgx都存在,则函数
xx0xx0fg,fg当xx0时极限也存在,且
1)limfxgxlimfxlimgx;
xx0xx0xx02)limfxgxxx0xx0limfx.limgx;
xx0 又若limgx0,则f|g当xx0时极限存在,且有
xx03)limxx0fxgxxx0limfxlimgx.
xx0
这个定理的证明类似于数列极限中的相应定理,留给学生作为练习.
利用函数极限的迫敛性与四则运算法则,我们可从一些简单的函数极限出发,计算较复杂的函数极限.
例 1求limxx0x解
当x0时有
1xx1,x1
11x1故由迫敛性得:
xlim
而limx=1
0x0x另一方面,当x0有1x1x,故又由迫敛性又可得:
lim x1
x0
xx综上,我们求得lim x1
x0x
1111§3.2 函数极限的性质
例 2求limxtanx1x
4解由xtanxxsinx及§1例4所得的,cosxsixnsin
limx442limcoxs,2x4并按四则运算法则有
limsinxxtanx1=limx
limxx
44x4limcosx
x
1=limx41 44例 3求lim313.
x1x1x1解 当x10时有
x1x2x
2133x1x1x31x2x1故所求的极限等于
x2121 2x1x2x1111lim例4
证明lima1a1 xx0
证
任给0(不妨设1),为使
x
a1
(9)
即1a1,利用对数函数loga
loga1xloga1 于是,令
x(当a1时)的严格增性,只要
minloga1,loga1,则当0x时,就有(9)式成立,从而证得结论.
Ⅳ 小结与提问:本节要求学生理解掌握函数极限的性质,并利用其讨论相关命题.指导学生对定理的应用作总结.Ⅴ 课外作业: P51 2、3、5、7、8、9.
第三篇:函数极限的性质
§3.2 函数极限的性质
§2函数极限的性质
Ⅰ.教学目的与要求
1.理解掌握函数极限的唯一性、局部有界性、局部保号性、保不等式性,迫敛性定理并会利用这些定理证明相关命题.2.掌握函数极限四则运算法则、迫敛性定理,会利用其求函数极限.Ⅱ.教学重点与难点:
重点: 函数极限的性质.难点: 函数极限的性质的证明及其应用.Ⅲ.讲授内容
在§1中我们引入了下述六种类型的函数极限:
1)limfx ;2)limfx;3)limfxxxx
fx;6)limfx。4)limfx; 5)limxx0xx0xx0
它们具有与数列极限相类似的一些性质,下面以第4)种类型的极限为代表来叙述并证明这些性质.至于其他类型极限的性质及其证明,只要相应地作些修改即可.定理3.2(唯一性)若极限limfx存在,则此极限是唯一的. xx0
证设,都是f当xx0时的极限,则对任给的0,分别存在正数
1与2,使得当0xx01时有
fx,(1)当0xx02时有
fx,(2)
取min1,2,则当0xx0时,(1)式与(2)式同时成立,故有
(fx)fxfxfx2
由的任意性得,这就证明了极限是唯一的.定理3。3(局部有限性)若limfx存在,则f在x0的某空心邻域U0x0内有界. xx0
证设limfx.取1,则存在0使得对一切xU0x0;有 xx0
fx1fx1
这就证明了f在U0x0;内有界.
定理3.4(局部保号性)若limfx0(或0),则对任何正数r(或xx0
r),存在U0x0,使得对一切xU0x0有
fxr0(或fxr0)
证设0,对任何r(0,),取r,则存在0,使得对一切
xU0x0;
fxr,这就证得结论.对于0的情形可类似地证明.
注在以后应用局部保号性时,常取rA.2
xx0定理3.5(保不等式性)设limfx与都limgx都存在,且在某邻域U0x0;'内xx0
有fxgx则
limfxlimgx(3)xx0xx0
证设limfx=,limgx=,则对任给的0,分别存在正数1与2使xx0xx0
得当0xx01时有
fx,当0xx02 时有
gx
令min',1,2,则当0xx0时,不等式fxgx与(4)、(5)两式同时成立,于是有
fxgx
从而2.由的任意性推出,即(3)式成立.
定理3.6(迫敛性)设limfx=limgx=A,且在某U0x0;'内有 xx0xx0
fx
则limhx. xx0hxgx
证按假设,对任给的0,分别存在正数1与2,使得当0xx01时有,2fx(7)当0xx02时有
gx(8)令min,1,2,则当0xx0时,不等式(6)、(7)、(8)同时成立,故有
fxhxgx
由此得hx,所以limhx xx0'
定理3.7(四则运算法则)若极限limfx与limgx都存在,则函数 xx0xx0
fg,fg当xx0时极限也存在,且
1)limfxgxlimfxlimgx; xx0xx0xx0
2)limfxgxxx0xx0limfx.limgx; xx0
又若limgx0,则f|g当xx0时极限存在,且有 xx0
3)limxx0fxgxxx0limfxlimgx. xx0
这个定理的证明类似于数列极限中的相应定理,留给学生作为练习.
利用函数极限的迫敛性与四则运算法则,我们可从一些简单的函数极限出发,计算较复杂的函数极限.
例 1求limxx0x
解当x0时有
1xx1,x1 1
1x1故由迫敛性得:xlim而limx=1 0x0x
另一方面,当x0有1x1x,故又由迫敛性又可得:lim x1 x0xx
综上,我们求得lim x1 x0x1111
例 2求limxtanx1
x
解由xtanxxsinx及§1例4所得的,cosx
sixnsilim
x442limcoxs,2x4
并按四则运算法则有
limsinx
xtanx1=limxlim
xx44x
4limcosxx1=limx41
4例 3求lim313. x1x1x1
解 当x10时有
x1x2x2133x1x1x31x2x1
故所求的极限等于
x2121 2x1x2x1111lim
例4证明lima1a1 x
x0
证任给0(不妨设1),为使
xa1(9)
即1a1,利用对数函数loga
loga1xloga1
于是,令x(当a1时)的严格增性,只要 minloga1,loga1,则当0x时,就有(9)式成立,从而证得结论.
Ⅳ 小结与提问:本节要求学生理解掌握函数极限的性质,并利用其讨论相关命题.指导学生对定理的应用作总结.Ⅴ 课外作业: P51 2、3、5、7、8、9.
第四篇:第2讲数列极限及其性质2009
《数学分析I》第2讲教案
第2讲数列极限概念及其性质
讲授内容
一、数列极限概念
数列 a1,a2,,an,,或简单地记为{an},其中an,称为该数列的通项.
关于数列极限,先举二个我国古代有关数列的例子.(1)割圆术:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”——刘徽.n
22园内接正n边形的面积An
Rsin
2n
sin
(n3,4,),当n时,AnR
2nn
R
2
(2)古代哲学家庄周所著的《庄子·天下篇》引用过一句话:“一尺之棰,日取其半,万世不竭”,其含义是:一根长为一尺的木棒,每天截下一半,这样的过程可以无限制地进行下去.第一天截下
12,第二天截下
n
2,„„,第n天截下
n,„„这样就得到一个数列
22,2,,1,.或n.n22
不难看出,数列{}的通项
n
随着n的无限增大而无限地接近于0.一般地说,对于数列{an},若当n无
限增大时an能无限地接近某一个常数a,则称此数列为收敛数列,常数a称为它的极限.不具有这种特性的数列就不是收敛数列.下面我们给出收敛数列及其极限的精确定义.
定义1设{an}为数列,a为定数.若对任给的正数,总存在正整数N,使得当,n>N时有|ana|则称数列{an收敛于a,定数a称为数列{an}的极限,并记作limana,或ana(n).读作“当n
n
趋于无穷大时,an的极限等于a或an趋于a”.
若数列{an}没有极限,则称{an}为发散数列.下面举例说明如何根据N定义来验证数列极限.
二、根据N定义来验证数列极限
例2证明lim
1n
n
0,这里为正数
,故对任给的>0,只要取N=
1
1,则当nN时,便有
证:由于 |
1n
0|
1n
1n
1N
即|
1n
0|.这就证明了lim
1n
n
0.例3证明lim
3n
n
n33n
3.分析由于|
n
33|
9n3
9n
(n3).因此,对任给的>o,只要
9n
,便有
|
3n
n3
3|,即当n
时,(2)式成立.故应取Nmax{3,
999
证任给0,取Nmax{3,据分析,当nN时有|23|,式成立.于是本题得证.n3
n
例4证明limq=0,这里|q|<1.
n
3n
证若q=0,则结果是显然的.现设0<|q|<1.记h
1|q|
1,则h>0.我们有
|q0||q|
11nh
nn
1(1h)
n,并由(1h)1+nh得到|q|
|q0|,这就证明了limq
n
n
nn
1nh
.对任给的0,只要取N
h,则当nN时,得
n
0.注:本例还可利用对数函数ylgx的严格增性来证明,简述如下:对任给的>0(不妨设<1),为使
n
n
只要nlg|q|lg即n|q0||q|,lglg|q|
(这里0|q|1).于是,只要取N
lglg|q|
即可。
例5证明lim
n
n
a1,其中a>0.
证:(ⅰ)当a1时,结论显然成立.(ⅱ)当a1时,记an1,则0.由 a(1)n1n1n(an1)得
an1
a1n.(1)
任给0,由(1)式可见,当n
a1
N时,就有an1,即|an1|.所以lim
n
a1.(ⅲ)当0a1时,,1
n
-1,则0.由
a
1
1n
(1)1n1n1得 aa1
1a
n
a
1n.a
a
1
1
n.1
(2)
任给0,由(2式可见,当n1
a1
N时,就有1an,即|an1|.所以lim
n
n
a1.关于数列极限的—N定义,应着重注意下面几点:
1.的任意性:尽管有其任意性,但一经给出,就暂时地被确定下来,以便依靠它来求出N,又既
2时任意小的正数,那么,3或等等同样也是任意小的正数,因此定义1中不等式|ana|中的可用
,3或等来代替.
2.N的相应性:一般说,N随的变小而变大,由此常把N写作N(),来强调N是依赖于的;但这并不意味着N是由所唯一确定的.3.从几何意义上看,“当n>N时有|aa|”意味着:所有下标大于N的项an都落在邻域U(a;)内;而在U(a;)之外,数列{an}中的项至多只有N个(有限个).
定义2若liman0,则称{an}为无穷小数列.由无穷小数列的定义,不难证明如下命题:
n
n
定理2.1数列{an}收敛于a的充要条件是:{ana}为无穷小数列.
三、收敛数列的性质
定理2.2(唯一性)若数列{an}收敛,则它只有一个极限.
定理2.3(有界性)若数列{an}收敛,则{an}为有界数列,即存在正数M,使得对一切正整数有|an|M.证:设limana取1,存在正数N,对一切n>N有
n
|ana|1即a1ana1.记Mmax{|a1|,|a2|,|aN|,|a1|,|a1|},则对一切正整数n都有anM.注:有界性只是数列收敛的必要条件,而非充分条件.例如数列1定理2.4(保号性)若limana0
n
n
有界,但它并不收敛.
(a,0
(或<0),则对任何a(0,a)(或a,存在正数N,使
得当nN时有ana(或ana).
证:设a0.取aa(>0),则存在正数N,使得当nN时有aana,即
anaa,这就证得结果.对于a0的情形,也可类似地证明.
注:在应用保号性时,经常取a
a2
.即有an
a2,或an
a2
定理2.5(保不等式性)设an与bn均为收敛数列.若存在正数N0,使得当nN0时,有anbn,则limanlimbn.n
n
请学生思考:如果把定理2.5中的条件anbn换成严格不等式anbn,那么能否把结论换成limanlimbn?,并给出理由.n
n
例1设an0n1,2,.证明:若limana,则lim
n
n
an
a.证:由定理2.5可得a0.若a0,则由liman0,任给0,存在正数N,使得当nN时有an,从而an即
n
an0,故有lim
n
an0.anaan
a
ana
a
若a0,则有
an
a
.任给0,由limana,存在正数N,使得当
n
nN时有ana
a,从而
an
a.故得证.
第五篇:2函数极限的性质解读
§2 函数极限的性质
在§1中我们引入了下述六种类型的函数极限:
1);
2);
3);
4);
5);
6)。
它们具有与数列极限相类似的一些性质,下面以第4)种类型的极限为代表来叙述并证明这些性质。
至于其他类型极限的性质及其证明,只要相应的作些修改即可。
定理3.2(唯一性)若极限 证
设与、都是
当
存在,则此极限是唯一的。
时的极限,则对任给的,分别存在正数,使得当
时有
(1)
当 时有
(2)
取,则当时,(1)式与(2)式同时成立,故有
由的任意性得。这就证明了极限是唯一的。定理3.3(局部有界性)若极限 内有界。
存在,则在某空心邻域证
设。取,则存在,使得对一切。
有
这就证明了在内有界。
定理3.4(局部保号性)若(或),存在,使得对一切
有
(或),则对任何正数
(或证 设有,这就证得结论。对于,对任何,取,则存在)。,使得对一切的情形可类似地证明。
定理3.5(保不等式性)设 内有,则
与都存在,且在某邻域。
(3)
证 设,使得当,时,则对任给的,分别存在正数与
(4)
当
时有
(5)
令,则当
时,不等式
与(4),(5)式同时成立,于是 有式成立。,从而
。由的任意性得,即(3)定理3.6(迫敛性)设==,且在某内有
(6)
则。
证 按假设,对任给的时
(7),分别存在正数
与,使得当当时有
(8)
令,则当
时,不等式(6)、(7)、(8)式同时成立,故有,由此得,所以。定理3.7(四则运算法则)若极限数,当
与
都存在,则函 时极限也存在,且
1)=
2)=
又若,则当时极限也存在,且有
3)
这个定理的证明类似于数列极限中的相应定理,留给读者作为练习。利用函数极限的迫敛性与四则运算法则,我们可从一些简单的函数极限出发计算较复杂的函数极限。
例1求。
解 由第一章§3习题13,当 时有,而,故由迫敛性得
。另一方面,当时有,故由迫敛性又可得。
综上,我们求得。
例2 求。
解
由
及§1例4所得的
并按四则运算法则有
=
例3 求
解 当 时有。故所求极限等于。
例4
证明
证
任给(不妨设),为使
(9)
即,利用对数函数
(当
时)的严格增性,只要
于是,令成立,从而证得结论。,则当时,就有(9)式