第一篇:第一章函数与极限(本站推荐)
第一章函数与极限
第一节 映射与函数
一、集合1、集合的概念
集合是数学中的一个基本概念,我们先通过例子来说明这个概念。例如,一个书柜的书构成一个集,一间教室里的学生构成一个集合,全体实数构成一个集合等等。所谓集合是指具有某种特定性质的事物的总体,组成这个集合的事物为改集合的元素(简称元)。
通常用写拉丁字母A,B,C、、、、、表示集合,用小写字母a,b,b、、、表示集合的元素。如果a是集合A的元素,就说a属于A,记作a∈A;如果a不是集合A的元素,就说a不属于A记作aA。一个集合,若他只含有限个元素,则称为有限集;不是有限集的集合称为无限集。
表示集合的方法通常有以下两种:一种是列举法,就是把集合的全体元素一一列举出来 表示。例如,由元素a1,a2 ,、、、an组成的集合A,可表示成 A={a1,a2、、、an};
另一种是描述法,若集合M是由具有某种性质P的元素x的全体所组成的,就可表示成 M={x|x具有性质p};
22例如,集合B是方程x-1=0的解集,就可表示为 B={x|x-1=0}.
第二篇:第一章函数与极限
《函数与极限》重难点
电信1003班 函数
1.定义域与定义区间的关系。
2.映射的种类及存在条件。
3.求函数定义域的基本原则(7条)。
4.几种特殊的函数类型(绝对值函数、符号函数、取整函数)。
5.基本初等函数、初等函数、简单函数的对比。分段函数不一定
是初等函数哦。
6.复合函数的分解及原则。
7.双曲函数、反双曲函数的函数式、图像、及性质。
函数的极限
1.两种极限的定义、比较以及符号语言。
2.极限的性质:唯一性、有界性、局部保号性,函数极限与数列
极限的关系以及对它们的证明。
3.函数极限的证明方法及语言的表述,左右极限的求法及意义。
4.无穷小及无穷大的定义,两个定理及证明。
5.无穷小的比较:高阶、低阶、同阶、K阶无穷小,常见等价无
穷小及应用。
6.极限的运算法则:6个定理4个推论。
7.函数的连续性与间断点。连续的定义及符号语言,连续的条件,单侧连续的求法,证明判断某点连续的方法,间断点的定义、种类及判断分类原则。
8.闭区间上函数的性质:有界性、最值定理、零点定理、介值定
理及推论。
9.有关复合函数的性质及运算。
10.函数的三种渐近线及求法。(P76)
11.函数符号和极限符号的对换。
数列的极限
1.定义及理解(8个字)
2.性质:唯一性、有界性、保号性。
3.数列发散与收敛的判断及证明。
4.数列极限与函数极限的关系,以及数列极限的证明(几个定
理)。
极限存在准则及两个重要极限
1.夹逼准则(适当的放缩)。
2.单调有界准则:判断极限存在与否。
3.两个重要极限的证明、特征、变形及应用。
课后习题推荐
P22-13P31-4,5P38-7,8P42-6,7P49-4,5P56-4P60-4P65-4,5,6P70-4.6,5P74-1,2,3,4,5,6P75-9.5,9.6P76-14
李金胜2010-11-6
第三篇:函数极限
《数学分析》教案
第三章 函数极限
xbl
第三章 函数极限
教学目的:
1.使学生牢固地建立起函数极限的一般概念,掌握函数极限的基本性质; 2.理解并运用海涅定理与柯西准则判定某些函数极限的存在性; 3.掌握两个重要极限
和,并能熟练运用;
4.理解无穷小(大)量及其阶的概念,会利用它们求某些函数的极限。教学重(难)点:
本章的重点是函数极限的概念、性质及其计算;难点是海涅定理与柯西准则的应用。
教学时数:16学时
§ 1 函数极限概念(3学时)
教学目的:使学生建立起函数极限的准确概念;会用函数极限的定义证明函数极限等有关命题。
教学要求:使学生逐步建立起函数极限的定义的清晰概念。会应用函数极限的定义证明函数的有关命题,并能运用语言正确表述函数不以某实数为极限等相应陈述。
教学重点:函数极限的概念。
教学难点:函数极限的定义及其应用。
一、复习:数列极限的概念、性质等
二、讲授新课:
(一)时函数的极限:
《数学分析》教案
第三章 函数极限
xbl
例4 验证
例5 验证
例6 验证
证 由 =
为使
需有
需有
为使
于是, 倘限制 , 就有
例7 验证
例8 验证(类似有
(三)单侧极限:
1.定义:单侧极限的定义及记法.几何意义: 介绍半邻域
《数学分析》教案
第三章 函数极限
xbl
我们引进了六种极限:.以下以极限,为例讨论性质.均给出证明或简证.二、讲授新课:
(一)函数极限的性质: 以下性质均以定理形式给出.1.唯一性:
2.局部有界性:
3.局部保号性:
4.单调性(不等式性质):
Th 4 若使,证 设
和都有 =
(现证对 都存在, 且存在点 的空心邻域),有
註: 若在Th 4的条件中, 改“ 就有
5.6.以
迫敛性:
”为“ 举例说明.”, 未必
四则运算性质:(只证“+”和“ ”)
(二)利用极限性质求极限: 已证明过以下几个极限:
《数学分析》教案
第三章 函数极限
xbl
例8
例9
例10 已知
求和
补充题:已知
求和()§ 3 函数极限存在的条件(4学时)
教学目的:理解并运用海涅定理与柯西准则判定某些函数极限的存在性。教学要求:掌握海涅定理与柯西准则,领会其实质以及证明的基本思路。教学重点:海涅定理及柯西准则。教学难点:海涅定理及柯西准则 运用。
教学方法:讲授为主,辅以练习加深理解,掌握运用。本节介绍函数极限存在的两个充要条件.仍以极限
为例.一.Heine归并原则——函数极限与数列极限的关系:
Th 1 设函数在,对任何在点
且的某空心邻域
内有定义.则极限都存在且相等.(证)
存Heine归并原则反映了离散性与连续性变量之间的关系,是证明极限不存在的有力工具.对单侧极限,还可加强为
单调趋于
.参阅[1]P70.例1 证明函数极限的双逼原理.7 《数学分析》教案
第三章 函数极限
xbl
教学难点:两个重要极限的证明及运用。
教学方法:讲授定理的证明,举例说明应用,练习。一.
(证)(同理有)
例1
例2.例3
例4
例5 证明极限 不存在.二.证 对
有
例6
特别当 等.例7
例8
《数学分析》教案
第三章 函数极限
xbl
三. 等价无穷小:
Th 2(等价关系的传递性).等价无穷小在极限计算中的应用: Th 3(等价无穷小替换法则)
几组常用等价无穷小:(见[2])
例3 时, 无穷小
与
是否等价? 例4
四.无穷大量:
1.定义:
2.性质:
性质1 同号无穷大的和是无穷大.性质2 无穷大与无穷大的积是无穷大.性质3 与无界量的关系.无穷大的阶、等价关系以及应用, 可仿无穷小讨论, 有平行的结果.3.无穷小与无穷大的关系:
无穷大的倒数是无穷小,非零无穷小的倒数是无穷大
习题 课(2学时)
一、理论概述:
《数学分析》教案
第三章 函数极限
xbl
例7.求
.注意 时, 且
.先求
由Heine归并原则
即求得所求极限
.例8 求是否存在.和.并说明极限
解;
可见极限 不存在.--32
第四篇:函数极限
习题
1.按定义证明下列极限:
(1)limx6x5=6;(2)lim(x2-6x+10)=2;x2x
x251;(4)lim(3)lim2xx1x2
(5)limcos x = cos x0 xx04x2=0;
2.根据定义2叙述limf(x)≠ A.xx0
3.设limf(x)= A.,证明limf(x0+h)= A.xx0h0
4.证明:若limf(x)= A,则lim| f(x)| = |A|.当且仅当A为何值时反之也成立? xx0xx0
5.证明定理3.1
6.讨论下列函数在x0→0 时的极限或左、右极限:(1)f(x)=x
x;(2)f(x)= [x]
2x;x0.(3)f(x)=0;x0.1x2,x0.
7.设 limf(x)= A,证明limf(xxx01)= A x
8.证明:对黎曼函数R(x)有limR(x)= 0 , x0∈[0,1](当x0=0或1时,考虑单侧极限).xx0
习题
1. 求下列极限:
x21(1)lim2(sinx-cosx-x);(2)lim;x02x2x1x22
x21x113x;
lim(3)lim;(4)
x12x2x1x0x22x3
xn1(5)limm(n,m 为正整数);(6)lim
x1xx41
(7)lim
x0
2x3x2
70;
a2xa3x68x5.(a>0);(8)lim
xx5x190
2. 利用敛性求极限:(1)lim
x
xcosxxsinx
;(2)lim2
x0xx4
xx0
3. 设 limf(x)=A, limg(x)=B.证明:
xx0
(1)lim[f(x)±g(x)]=A±B;
xx0
(2)lim[f(x)g(x)]=AB;
xx0
(3)lim
xx0
f(x)A
=(当B≠0时)g(x)B
4. 设
a0xma1xm1am1xam
f(x)=,a0≠0,b0≠0,m≤n,nn1
b0xb1xbn1xbn
试求 limf(x)
x
5. 设f(x)>0, limf(x)=A.证明
xx0
xx0
lim
f(x)=A,其中n≥2为正整数.6.证明limax=1(0 x0 7.设limf(x)=A, limg(x)=B.xx0 xx0 (1)若在某∪(x0)内有f(x)< g(x),问是否必有A < B ? 为什么? (2)证明:若A>B,则在某∪(x0)内有f(x)> g(x).8.求下列极限(其中n皆为正整数):(1)lim x0 x x11 lim;(2);nnx0x1xx1x xx2xnn (3)lim;(4)lim x0x0x1 x1 x (5)lim x x(提示:参照例1) x x0 x0 x0 9.(1)证明:若limf(x3)存在,则limf(x)= lim f(x3)(2)若limf(x2)存在,试问是否成立limf(x)=limf(x2)? x0 x0 x0 习题 1.叙述函数极限limf(x)的归结原则,并应用它证明limcos x不存在.n n 2.设f 为定义在[a,+)上的增(减)函数.证明: lim= f(x)存在的充要条件是f在n [a,+)上有上(下)界.3.(1)叙述极限limf(x)的柯西准则; n (2)根据柯西准则叙述limf(x)不存在的充要条件,并应用它证明limsin x不存在.n n 4.设f在∪0(x0)内有定义.证明:若对任何数列{xn}∪0(x0)且limxn=x0,极限limf(xn)都 n n 存在,则所有这极限都相等.提示: 参见定理3.11充分性的证明.5设f为∪0(x0)上的递减函数.证明:f(x0-0)和f(x0+0)都存在,且f(x0-0)=supf(x),f(x0+0)= 0xu x0 0xun(x0) inff(x) 6.设 D(x)为狄利克雷函数,x0∈R证明limD(x)不存在.xx0 7.证明:若f为周期函数,且limf(x)=0,则f(x)=0 x 8.证明定理3.9 习题 1.求下列极限 sin2xsinx3 (1)lim;(2)lim x0x0sinx2x (3)lim x cosxx tanxsinxarctanx lim(5)lim;(6);3x0x0xx sin2xsin2a1 (7)limxsin;(8)lim; xxaxxa ;(4)lim x0 tanx ;x cosx2 (9)lim;(10)lim x0x01cosxx11 sin4x 2.求下列极限 12x (1)lim(1);(2)lim1axx(a为给定实数); nx0x x (3)lim1tanx x0 cotx ;(4)lim 1x ; x01x (5)lim(x 3x22x1);(6)lim(1)x(,为给定实数) n3x1x 3.证明:limlimcosxcoxcos4.利用归结原则计算下列极限:(1)limnsin n x0n x2 xxcos1 2n22 n ;(2) 习题 1. 证明下列各式 (1)2x-x2=O(x)(x→0);(2)x sinxO(x)(x→0); + (3)x1o(1)(x→0); (4)(1+x)n= 1+ nx+o(x)(x→0)(n 为正整数)(5)2x3 + x2=O(x3)(x→∞); (6)o(g(x))±o(g(x))=o(g(x))(x→x0) (7)o(g1(x))·0(g2(x))=o(g1(x)g2(x))(x→x0)2. 应用定理3.12求下列极限: x21x(1)lim(2)lim x01cosxxxcosx x3. 证明定理3.13 4. 求下列函数所表示曲线的渐近线: 13x34 (1)y =;(2)y = arctan x;(3)y = 2 xx2x 5. 试确定a的值,使下列函数与xa当x→0时为同阶无穷小量: (1)sin2x-2sinx;(2) -(1-x);1x (3)tanxsinx;(4) x24x3 6. 试确定a的值,使下列函数与xa当x→∞时为同阶无穷大量: (1) x2x5;(2)x+x2(2+sinx); (3)(1+x)(1+x2)…(1+xn).7. 证明:若S为无上界数集,则存在一递增数列{xn}s,使得xn→+∞(n→∞) 8. 证明:若f为x→r时的无穷大量,而函数g在某U0(r)上满足g(x)≥K>0,则fg为x→r 时的无穷大量。 9. 设 f(x)~g(x)(x→x0),证明: f(x)-g(x)= o(f(x))或 f(x)-g(x)= o(g(x)) 总 练习题 1. 求下列极限: 1 (x[x])lim([x]1)(1)lim;(2) x3 x1 (3)lim(x axbxaxbx) xxa (4)lim x (5)lim xxa x (6)lim xxxx x0 (7)lim nm,m,n 为正整数 nx11xm1x 2. 分别求出满足下述条件的常数a与b: x21 (1)limaxb0 xx1 x(3)limx (2)lim xxx2 x1axb0 x1axb0 x2 3. 试分别举出符合下列要求的函数f: (1)limf(x)f(2);(2)limf(x)不存在。 4. 试给出函数f的例子,使f(x)>0恒成立,而在某一点x0处有limf(x)0。这同极限的xx0 局部保号性有矛盾吗? 5. 设limf(x)A,limg(u)B,在何种条件下能由此推出 xa gA limg(f(x))B? xa 6. 设f(x)=x cos x。试作数列 (1){xn} 使得 xn→∞(n→∞), f(xn)→0(n→∞);(2){yn} 使得 yn→∞(n→∞), f(yn)→0(n→∞);(3){zn} 使得 zn→∞(n→∞), f(zn)→0(n→∞).7. 证明:若数列{an}满足下列条件之一,则{an}是无穷大数列: (1)limanr1 n (2)lim an1 s1(an≠0,n=1,2,…) nan n2 n2 8. 利用上题(1)的结论求极限: (1)lim1 n 11(2)lim1 nnn 9. 设liman,证明 n (1)lim (a1a2an) nn n (2)若an > 0(n=1,2,…),则lima1a2an 10.利用上题结果求极限: (1)limn!(2)lim n In(n!) nn 11.设f为U-0(x0)内的递增函数。证明:若存在数列{xn}U-0(x0)且xn→x0(n→∞),使得 limf(xn)A,则有 n f(x0-0)= supf(x)A 0xU(x0) 12.设函数f在(0,+∞)上满足方程f(2x)=f(x),且limf(x)A。证明:f(x)A,x∈(0,+∞) x 13.设函数f在(0,+∞)此上满足方程f(x2)= f(x),且 f(x)=limf(x)f(1)lim x0 x 证明:f(x)f(1),x∈(0,+∞) 14.设函数f定义在(a,+∞)上,f在每一个有限区间内(a,b)有界,并满足 x lim(f(x1)f(1))A证明 x lim f(x) A x 数学之美2006年7月第1期 函数极限的综合分析与理解 经济学院 财政学 任银涛 0511666 数学不仅仅是工具,更是一种能力。一些数学的方法被其它学科广泛地运用。例如,经济学中的边际分析、弹性分析等方法。函数极限是高等数学中的一个重要问题。极限可以与很多的数学问题相联系。例如,导数从根本上是求极限;函数连续首先要求函数在某一点的左极限等于右极限。有鉴于函数极限的重要性,结合自己的学习心得,笔者写下了此文。其目的在于归纳和总结解决函数极限问题的实用方法和技巧,以期对函数极限问题的学习有所帮助。局限于笔者的认知水平,缺点和不足在所难免,欢迎批评指正。 一、函数极限的定义和基本性质 函数极限可以分成x→x0,x→∞两类,而运用ε-δ定义更多的见诸于已知 极限值的证明题中。掌握这类证明对初学者深刻理解运用极限定义大有裨益。以xx0的极限为例,fx在点x0以A极限的定义是:0,0,使当0xx0时,有f(x)A(A为常数).问题的关键在于找到符合定义要求的,在这一过程中会用到一些不等式技巧,例如放缩法等。1999年的研究生考试试题中,更是直接考察了考生对定义的掌握情况。详见附例1。 函数极限性质的合理运用。常用的函数极限的性质有函数极限的唯一性、局部有界性、保序性以及函数极限的运算法则和复合函数的极限等等。如函数极限的唯一性(若lim存在,则在该点的极限是唯一的)可以体现在用海涅定理证明xx0 ''即如果fxnA,fxn,fx在x0处的极限不存在。B(n,xn和xnx0) 则fx在x0处的极限不存在。 运用函数极限的性质可以方便地求出一些简单函数的极限值。例如对于有理分式fxPxPx,Qx均为多项式,Qx0)。设Px的次数为n,Qx的Qx次数为m,当x时,若nm,则fx0;若nm,则fxPx与Qx的最高次项系数之比;若nm,则fx。当xx0时,f(x)P(x0)(Q(x0)0)。Q(x0) 二、运用函数极限的判别定理 最常用的判别定理包括单调有界定理和夹挤定理,在运用它们去求函数的极限时尤需注意以下关键之点。一是先要用单调有界定理证明收敛,然后再求极限值,参见附例2。二是应用夹挤定理的关键是找到极限值相同的函数gx与 hx,并且要满足gxfxhx,从而证明或求得函数fx的极限值。 三、应用等价无穷小代换求极限 掌握常用的等价无穷小很重要。等价无穷小代换可以将复杂的极限式变的简单明了,让求解过程变得简明迅速。 x0时,sinx与x,tanx与x,arcsinx与x,arctanx与x,1cosx与x2,xa,ax1与xlna,1a与ax(a0)等等可ln1x与x,loga1x与lna 以相互替换。特别需要注意的是,等价无穷小代换只能用于分子、分母中的乘积 sinxx 因子,而对于加减法运算则不能运用。例如lim,不能直接把sinx替换 x0x 3sinxx 1成x,得出极限值为0,实际上lim。 x0x36 四、运用洛必达法则求函数极限 设函数fx,gx在点a的某空心邻域可导,且g'(x)0。当xa时,fxf'x,fx和gx的极限同时为0或时才适用'A(A为常数或) gxgx洛必达法则。洛必达法则实际上把求函数极限问题转化为学生较为拿手的求导数 0、00、1、0等类型则需要问题。这使得求解思路简单程序化。而对于、0 对式子进行转化,或通分或取倒数或取对数等转化为型,再使用洛必达法 0 则求极限。例如fx gx的极限转化为求egxlnfx的极限等等。然而,对于数列,则必须转化为函数再运用洛必达法则。这是因为如果把数列看作是自变量为n的函数时,它的定义域是一系列孤立的点,不存在导数。这是使用洛必达法则时必须要注意的一点。参见附例3。 五、泰勒公式的运用 对于使用洛必达法则不易求出结果的复杂函数式,可以考虑使用泰勒公式。这样将函数式化为最高次项为相同或相近的式子,这时就变成了求多项式的极限值(接着求值见上文所述方法),使计算一目了然。因此掌握和记忆常用基本初 等函数的麦克劳林展开式是十分必要的。如ex,sinx,cosx,ln1x等等。至于展开式展开多少,则要与题干中的自变量x最高次项保持一致。如 cosxelimx0x4x4)。 x 2利用泰勒公式展开cosx,e x22,展开到x4即可(原式x最高次项为 六、利用微分中值定理来求极限 f(x)在a,b上连续,在a,b上可导,则至少存在一点a,b,使 f'() f(b)f(a)'f(b)f(a),f()即可看成特殊的极限,用来求解。一般需 baba 要函数式可以看成同一函数的区间端点的差,这样可以使用微分中值定理。参见附例4。 另外,一些重要的结论往往在求极限时可以直接加以引用,例如 lim(1x)e,lim x0 1x sinx 1, 1,1等等。 x0nnx 求极限的方法和技巧更多的在于实践中的摸索和探讨,上述方法只是笔者在高等数学学习和练习的一些心得,求极限的方法还有很多。局限于笔者的认知水平,缺点和不足在所难免,敬请批评指正。 南开大学张阳和张效成老师的课堂教学给了笔者很大的启发,在此向两位老师表示感谢。 附:例1:对任意给定的0,1,总存在正整数N,使得当nN时,恒有。xna2,是数列xn收敛于a的() A 充分非必要条件 B必要非充分条件C充分必要条件D既非充分又非必要条件 解析:这道题是1999年全国考研试卷(二)的数学选择题,这道题直接考察了对极限定义的掌握和理解。 例2:若x1a,y1b(ba0),xn1xnyn,yn1明数列xn,yn有相同的极限。(见习题册1 Page.18) 解析:由已知条件易知,by1y2……yn1xn1……x1a,数列 xn1yn 1,试证 2文中习题册是指南开大学薛运华,赵志勇主编的《高等数学习题课讲义(上册)》,为学生用数学练习册。 xyn limyn1linxn,yn单调有界,可以推出xn,yn收敛。nn n 。设 limynA,limxnB,则A n AB,AB。2 例3:求lim(ntan)n的值。(见课本2 Page.153) nn 1 解析:这是数列。设fxxtan,则对limfx可以运用洛必达法则,xx且原式=limfx。 x x2 aa arctan),a0 nnn1 arctan解析:如例题3,设fxa,则在x,x1上fx连续,在x,x1内 x 例4:求limn2(arctan 可导。于是,x,x1,f'()arctan aaaarctan2(使用微分中x1xa2 a)a。22 a 值定理可得)。x,则,原式=lim2( 参考书目 [1] 张效成主编,《经济类数学分析(上册)》,天津大学出版社,2005年7月 [2] 薛运华,赵志勇主编,《高等数学习题课讲义(上册)》,南开大学 [3] 张友贵等,《掌握高等数学(理工类、经济类)》,大连理工出版社,2004年11月 [4]《硕士研究生入学考试试题》,1984—2005 ※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○ 文中课本是指笔者使用的天津大学出版社05年7月版的《经济类数学分析(上册)》张效成主编第五篇:函数极限