第一篇:考研大纲第一章函数与极限
2013年试卷内容结构: 高等教学 约56% 线性代数 约22% 概率论与数理统计22%
试卷题型结构: 单选题8小题每题4分共32分;填空题6小题每题4分共24分; 解答题包括证明题9小题共94分高等数学
一、函数、极限、连续
考试内容
函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立 数列极限与函数极限的定义及其性质 函数的左极限与右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则单调有界准则和夹逼准则 两个重要极限函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质。
考试要求
1理解函数的概念掌握函数的表示法会建立应用问题的函数关系.2了解函数的有界性、单调性、周期性和奇偶性
3理解复合函数及分段函数的概念了解反函数及隐函数的概念
4掌握基本初等函数的性质及其图形了解初等函数的概念.5理解极限的概念理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系
6掌握极限的性质及四则运算法则.7掌握极限存在的两个准则并会利用它们求极限掌握利用两个重要极限求极限的方法
8理解无穷小量、无穷大量的概念掌握无穷小量的比较方法会用等价无穷小量求极限
9理解函数连续性的概念含左连续与右连续会判别函数间断点的类型
10了解连续函数的性质和初等函数的连续性理解闭区间上连续函数的性质有界性、最大值和最小值定理、介值定理并会应用这些性质函数、极限、连续
第二篇:2016考研数学大纲解析及复习重点--函数、极限、连续
凯程考研辅导班,中国最强的考研辅导机构
2016考研数学大纲解析及复习重点--函
数、极限、连续
9月18日这个在中国历史上成为转折点的一天,同样也为2016年参加考研的同学带来了重磅消息—2016年考研大纲正式发布,下面凯程教育数学教研室老师就按章节来分析大纲的要求以及复习该章节的重点:
一、大纲要求:函数、极限、连续
1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、复习重点
本部分重点是极限,前后内容交叉多,综合性强,主要有两个出题点,一个是计算极限,一个是对极限的定义的考查。主要求极限的方法有:
利用极限的四则运算法则、幂指函数运算、连续函数代入法
利用两个重要极限求极限
利用洛必达法则
利用等价无穷小
极限存在准则:夹逼准则,单调有界准则
利用左右极限求分段函数分段点
利用导数定义
利用定积分定义
利用泰勒公式求极限
通过与2015年的数学一大纲比较,今年没有做任何调整,同学们按照原计划复习,夯实基础,把握重点,重视总结、归纳解题思路、方法和技巧,提高解题计算能力必能在2016
凯程考研辅导班,中国最强的考研辅导机构 的考试中创造辉煌。最后祝同学们,金榜题名。
2016考研数学考试大纲对比—高等数学(数二)
大家翘首以待的2016年考研数学大纲终于出炉,凯程教育数学教研室第一时间为各位考生权威、详尽解析大纲变化、预测命题趋势,从而有的放矢地提供备考指导,以帮助同学们快速了解、把握今年的考试方向、复习重点,选择适合的复习方法和策略,以利于同学们在今后复习中,高效学习,取得好成绩。
在逐字逐句的比对后,发现2016年考研数学二大纲与2015年相比,没有发生任何变化,经历了多年统考实践,考研数学的考试内容已趋于完善,因此,相应的考试大纲今年也没有发生变化。考生可以通过研究真题来揣摩命题者的出题规律,从而把握今年命题的思路和趋势,按部就班的进行分析复习,增加复习备考的针对性和有效性。尽管2016年考研数学大纲没有变动,但是仍然需要考生提高横向、纵向梳理考点的能力,只有这样才能拿到高分,所以考生仍然需要扎实备考。
下面我们就看看今年数学二高等数学部分的大纲要求:
一、函数、极限、连续
1.理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学
1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数的最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间 内,设函数 具有二阶导数.当 时,的图形是凹的;当 时,的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会
凯程考研辅导班,中国最强的考研辅导机构
描绘函数的图形.9.了解曲率、曲率圆和曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学
1.理解原函数的概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数平均值.四、多元函数微积分学
1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,了解隐函数存在定理,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标、极坐标).五、常微分方程
1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法,会解齐次微分方程.3.会用降阶法解下列形式的微分方程: 和.4.理解二阶线性微分方程解的性质及解的结构定理.5.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.6.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.7.会用微分方程解决一些简单的应用问题.所以同学们继续按照原计划复习,夯实基础,把握重点,重视总结、归纳解题思路、方法和技巧,提高解题计算能力必能在2016的考试中创造辉煌。最后祝同学们,金榜题名。
第三篇:函数极限
习题
1.按定义证明下列极限:
(1)limx6x5=6;(2)lim(x2-6x+10)=2;x2x
x251;(4)lim(3)lim2xx1x2
(5)limcos x = cos x0 xx04x2=0;
2.根据定义2叙述limf(x)≠ A.xx0
3.设limf(x)= A.,证明limf(x0+h)= A.xx0h0
4.证明:若limf(x)= A,则lim| f(x)| = |A|.当且仅当A为何值时反之也成立? xx0xx0
5.证明定理3.1
6.讨论下列函数在x0→0 时的极限或左、右极限:(1)f(x)=x
x;(2)f(x)= [x]
2x;x0.(3)f(x)=0;x0.1x2,x0.
7.设 limf(x)= A,证明limf(xxx01)= A x
8.证明:对黎曼函数R(x)有limR(x)= 0 , x0∈[0,1](当x0=0或1时,考虑单侧极限).xx0
习题
1. 求下列极限:
x21(1)lim2(sinx-cosx-x);(2)lim;x02x2x1x22
x21x113x;
lim(3)lim;(4)
x12x2x1x0x22x3
xn1(5)limm(n,m 为正整数);(6)lim
x1xx41
(7)lim
x0
2x3x2
70;
a2xa3x68x5.(a>0);(8)lim
xx5x190
2. 利用敛性求极限:(1)lim
x
xcosxxsinx
;(2)lim2
x0xx4
xx0
3. 设 limf(x)=A, limg(x)=B.证明:
xx0
(1)lim[f(x)±g(x)]=A±B;
xx0
(2)lim[f(x)g(x)]=AB;
xx0
(3)lim
xx0
f(x)A
=(当B≠0时)g(x)B
4. 设
a0xma1xm1am1xam
f(x)=,a0≠0,b0≠0,m≤n,nn1
b0xb1xbn1xbn
试求 limf(x)
x
5. 设f(x)>0, limf(x)=A.证明
xx0
xx0
lim
f(x)=A,其中n≥2为正整数.6.证明limax=1(0 x0 7.设limf(x)=A, limg(x)=B.xx0 xx0 (1)若在某∪(x0)内有f(x)< g(x),问是否必有A < B ? 为什么? (2)证明:若A>B,则在某∪(x0)内有f(x)> g(x).8.求下列极限(其中n皆为正整数):(1)lim x0 x x11 lim;(2);nnx0x1xx1x xx2xnn (3)lim;(4)lim x0x0x1 x1 x (5)lim x x(提示:参照例1) x x0 x0 x0 9.(1)证明:若limf(x3)存在,则limf(x)= lim f(x3)(2)若limf(x2)存在,试问是否成立limf(x)=limf(x2)? x0 x0 x0 习题 1.叙述函数极限limf(x)的归结原则,并应用它证明limcos x不存在.n n 2.设f 为定义在[a,+)上的增(减)函数.证明: lim= f(x)存在的充要条件是f在n [a,+)上有上(下)界.3.(1)叙述极限limf(x)的柯西准则; n (2)根据柯西准则叙述limf(x)不存在的充要条件,并应用它证明limsin x不存在.n n 4.设f在∪0(x0)内有定义.证明:若对任何数列{xn}∪0(x0)且limxn=x0,极限limf(xn)都 n n 存在,则所有这极限都相等.提示: 参见定理3.11充分性的证明.5设f为∪0(x0)上的递减函数.证明:f(x0-0)和f(x0+0)都存在,且f(x0-0)=supf(x),f(x0+0)= 0xu x0 0xun(x0) inff(x) 6.设 D(x)为狄利克雷函数,x0∈R证明limD(x)不存在.xx0 7.证明:若f为周期函数,且limf(x)=0,则f(x)=0 x 8.证明定理3.9 习题 1.求下列极限 sin2xsinx3 (1)lim;(2)lim x0x0sinx2x (3)lim x cosxx tanxsinxarctanx lim(5)lim;(6);3x0x0xx sin2xsin2a1 (7)limxsin;(8)lim; xxaxxa ;(4)lim x0 tanx ;x cosx2 (9)lim;(10)lim x0x01cosxx11 sin4x 2.求下列极限 12x (1)lim(1);(2)lim1axx(a为给定实数); nx0x x (3)lim1tanx x0 cotx ;(4)lim 1x ; x01x (5)lim(x 3x22x1);(6)lim(1)x(,为给定实数) n3x1x 3.证明:limlimcosxcoxcos4.利用归结原则计算下列极限:(1)limnsin n x0n x2 xxcos1 2n22 n ;(2) 习题 1. 证明下列各式 (1)2x-x2=O(x)(x→0);(2)x sinxO(x)(x→0); + (3)x1o(1)(x→0); (4)(1+x)n= 1+ nx+o(x)(x→0)(n 为正整数)(5)2x3 + x2=O(x3)(x→∞); (6)o(g(x))±o(g(x))=o(g(x))(x→x0) (7)o(g1(x))·0(g2(x))=o(g1(x)g2(x))(x→x0)2. 应用定理3.12求下列极限: x21x(1)lim(2)lim x01cosxxxcosx x3. 证明定理3.13 4. 求下列函数所表示曲线的渐近线: 13x34 (1)y =;(2)y = arctan x;(3)y = 2 xx2x 5. 试确定a的值,使下列函数与xa当x→0时为同阶无穷小量: (1)sin2x-2sinx;(2) -(1-x);1x (3)tanxsinx;(4) x24x3 6. 试确定a的值,使下列函数与xa当x→∞时为同阶无穷大量: (1) x2x5;(2)x+x2(2+sinx); (3)(1+x)(1+x2)…(1+xn).7. 证明:若S为无上界数集,则存在一递增数列{xn}s,使得xn→+∞(n→∞) 8. 证明:若f为x→r时的无穷大量,而函数g在某U0(r)上满足g(x)≥K>0,则fg为x→r 时的无穷大量。 9. 设 f(x)~g(x)(x→x0),证明: f(x)-g(x)= o(f(x))或 f(x)-g(x)= o(g(x)) 总 练习题 1. 求下列极限: 1 (x[x])lim([x]1)(1)lim;(2) x3 x1 (3)lim(x axbxaxbx) xxa (4)lim x (5)lim xxa x (6)lim xxxx x0 (7)lim nm,m,n 为正整数 nx11xm1x 2. 分别求出满足下述条件的常数a与b: x21 (1)limaxb0 xx1 x(3)limx (2)lim xxx2 x1axb0 x1axb0 x2 3. 试分别举出符合下列要求的函数f: (1)limf(x)f(2);(2)limf(x)不存在。 4. 试给出函数f的例子,使f(x)>0恒成立,而在某一点x0处有limf(x)0。这同极限的xx0 局部保号性有矛盾吗? 5. 设limf(x)A,limg(u)B,在何种条件下能由此推出 xa gA limg(f(x))B? xa 6. 设f(x)=x cos x。试作数列 (1){xn} 使得 xn→∞(n→∞), f(xn)→0(n→∞);(2){yn} 使得 yn→∞(n→∞), f(yn)→0(n→∞);(3){zn} 使得 zn→∞(n→∞), f(zn)→0(n→∞).7. 证明:若数列{an}满足下列条件之一,则{an}是无穷大数列: (1)limanr1 n (2)lim an1 s1(an≠0,n=1,2,…) nan n2 n2 8. 利用上题(1)的结论求极限: (1)lim1 n 11(2)lim1 nnn 9. 设liman,证明 n (1)lim (a1a2an) nn n (2)若an > 0(n=1,2,…),则lima1a2an 10.利用上题结果求极限: (1)limn!(2)lim n In(n!) nn 11.设f为U-0(x0)内的递增函数。证明:若存在数列{xn}U-0(x0)且xn→x0(n→∞),使得 limf(xn)A,则有 n f(x0-0)= supf(x)A 0xU(x0) 12.设函数f在(0,+∞)上满足方程f(2x)=f(x),且limf(x)A。证明:f(x)A,x∈(0,+∞) x 13.设函数f在(0,+∞)此上满足方程f(x2)= f(x),且 f(x)=limf(x)f(1)lim x0 x 证明:f(x)f(1),x∈(0,+∞) 14.设函数f定义在(a,+∞)上,f在每一个有限区间内(a,b)有界,并满足 x lim(f(x1)f(1))A证明 x lim f(x) A x 《数学分析》教案 第三章 函数极限 xbl 第三章 函数极限 教学目的: 1.使学生牢固地建立起函数极限的一般概念,掌握函数极限的基本性质; 2.理解并运用海涅定理与柯西准则判定某些函数极限的存在性; 3.掌握两个重要极限 和,并能熟练运用; 4.理解无穷小(大)量及其阶的概念,会利用它们求某些函数的极限。教学重(难)点: 本章的重点是函数极限的概念、性质及其计算;难点是海涅定理与柯西准则的应用。 教学时数:16学时 § 1 函数极限概念(3学时) 教学目的:使学生建立起函数极限的准确概念;会用函数极限的定义证明函数极限等有关命题。 教学要求:使学生逐步建立起函数极限的定义的清晰概念。会应用函数极限的定义证明函数的有关命题,并能运用语言正确表述函数不以某实数为极限等相应陈述。 教学重点:函数极限的概念。 教学难点:函数极限的定义及其应用。 一、复习:数列极限的概念、性质等 二、讲授新课: (一)时函数的极限: 《数学分析》教案 第三章 函数极限 xbl 例4 验证 例5 验证 例6 验证 证 由 = 为使 需有 需有 为使 于是, 倘限制 , 就有 例7 验证 例8 验证(类似有 (三)单侧极限: 1.定义:单侧极限的定义及记法.几何意义: 介绍半邻域 《数学分析》教案 第三章 函数极限 xbl 我们引进了六种极限:.以下以极限,为例讨论性质.均给出证明或简证.二、讲授新课: (一)函数极限的性质: 以下性质均以定理形式给出.1.唯一性: 2.局部有界性: 3.局部保号性: 4.单调性(不等式性质): Th 4 若使,证 设 和都有 = (现证对 都存在, 且存在点 的空心邻域),有 註: 若在Th 4的条件中, 改“ 就有 5.6.以 迫敛性: ”为“ 举例说明.”, 未必 四则运算性质:(只证“+”和“ ”) (二)利用极限性质求极限: 已证明过以下几个极限: 《数学分析》教案 第三章 函数极限 xbl 例8 例9 例10 已知 求和 补充题:已知 求和()§ 3 函数极限存在的条件(4学时) 教学目的:理解并运用海涅定理与柯西准则判定某些函数极限的存在性。教学要求:掌握海涅定理与柯西准则,领会其实质以及证明的基本思路。教学重点:海涅定理及柯西准则。教学难点:海涅定理及柯西准则 运用。 教学方法:讲授为主,辅以练习加深理解,掌握运用。本节介绍函数极限存在的两个充要条件.仍以极限 为例.一.Heine归并原则——函数极限与数列极限的关系: Th 1 设函数在,对任何在点 且的某空心邻域 内有定义.则极限都存在且相等.(证) 存Heine归并原则反映了离散性与连续性变量之间的关系,是证明极限不存在的有力工具.对单侧极限,还可加强为 单调趋于 .参阅[1]P70.例1 证明函数极限的双逼原理.7 《数学分析》教案 第三章 函数极限 xbl 教学难点:两个重要极限的证明及运用。 教学方法:讲授定理的证明,举例说明应用,练习。一. (证)(同理有) 例1 例2.例3 例4 例5 证明极限 不存在.二.证 对 有 例6 特别当 等.例7 例8 《数学分析》教案 第三章 函数极限 xbl 三. 等价无穷小: Th 2(等价关系的传递性).等价无穷小在极限计算中的应用: Th 3(等价无穷小替换法则) 几组常用等价无穷小:(见[2]) 例3 时, 无穷小 与 是否等价? 例4 四.无穷大量: 1.定义: 2.性质: 性质1 同号无穷大的和是无穷大.性质2 无穷大与无穷大的积是无穷大.性质3 与无界量的关系.无穷大的阶、等价关系以及应用, 可仿无穷小讨论, 有平行的结果.3.无穷小与无穷大的关系: 无穷大的倒数是无穷小,非零无穷小的倒数是无穷大 习题 课(2学时) 一、理论概述: 《数学分析》教案 第三章 函数极限 xbl 例7.求 .注意 时, 且 .先求 由Heine归并原则 即求得所求极限 .例8 求是否存在.和.并说明极限 解; 可见极限 不存在.--32 数学之美2006年7月第1期 函数极限的综合分析与理解 经济学院 财政学 任银涛 0511666 数学不仅仅是工具,更是一种能力。一些数学的方法被其它学科广泛地运用。例如,经济学中的边际分析、弹性分析等方法。函数极限是高等数学中的一个重要问题。极限可以与很多的数学问题相联系。例如,导数从根本上是求极限;函数连续首先要求函数在某一点的左极限等于右极限。有鉴于函数极限的重要性,结合自己的学习心得,笔者写下了此文。其目的在于归纳和总结解决函数极限问题的实用方法和技巧,以期对函数极限问题的学习有所帮助。局限于笔者的认知水平,缺点和不足在所难免,欢迎批评指正。 一、函数极限的定义和基本性质 函数极限可以分成x→x0,x→∞两类,而运用ε-δ定义更多的见诸于已知 极限值的证明题中。掌握这类证明对初学者深刻理解运用极限定义大有裨益。以xx0的极限为例,fx在点x0以A极限的定义是:0,0,使当0xx0时,有f(x)A(A为常数).问题的关键在于找到符合定义要求的,在这一过程中会用到一些不等式技巧,例如放缩法等。1999年的研究生考试试题中,更是直接考察了考生对定义的掌握情况。详见附例1。 函数极限性质的合理运用。常用的函数极限的性质有函数极限的唯一性、局部有界性、保序性以及函数极限的运算法则和复合函数的极限等等。如函数极限的唯一性(若lim存在,则在该点的极限是唯一的)可以体现在用海涅定理证明xx0 ''即如果fxnA,fxn,fx在x0处的极限不存在。B(n,xn和xnx0) 则fx在x0处的极限不存在。 运用函数极限的性质可以方便地求出一些简单函数的极限值。例如对于有理分式fxPxPx,Qx均为多项式,Qx0)。设Px的次数为n,Qx的Qx次数为m,当x时,若nm,则fx0;若nm,则fxPx与Qx的最高次项系数之比;若nm,则fx。当xx0时,f(x)P(x0)(Q(x0)0)。Q(x0) 二、运用函数极限的判别定理 最常用的判别定理包括单调有界定理和夹挤定理,在运用它们去求函数的极限时尤需注意以下关键之点。一是先要用单调有界定理证明收敛,然后再求极限值,参见附例2。二是应用夹挤定理的关键是找到极限值相同的函数gx与 hx,并且要满足gxfxhx,从而证明或求得函数fx的极限值。 三、应用等价无穷小代换求极限 掌握常用的等价无穷小很重要。等价无穷小代换可以将复杂的极限式变的简单明了,让求解过程变得简明迅速。 x0时,sinx与x,tanx与x,arcsinx与x,arctanx与x,1cosx与x2,xa,ax1与xlna,1a与ax(a0)等等可ln1x与x,loga1x与lna 以相互替换。特别需要注意的是,等价无穷小代换只能用于分子、分母中的乘积 sinxx 因子,而对于加减法运算则不能运用。例如lim,不能直接把sinx替换 x0x 3sinxx 1成x,得出极限值为0,实际上lim。 x0x36 四、运用洛必达法则求函数极限 设函数fx,gx在点a的某空心邻域可导,且g'(x)0。当xa时,fxf'x,fx和gx的极限同时为0或时才适用'A(A为常数或) gxgx洛必达法则。洛必达法则实际上把求函数极限问题转化为学生较为拿手的求导数 0、00、1、0等类型则需要问题。这使得求解思路简单程序化。而对于、0 对式子进行转化,或通分或取倒数或取对数等转化为型,再使用洛必达法 0 则求极限。例如fx gx的极限转化为求egxlnfx的极限等等。然而,对于数列,则必须转化为函数再运用洛必达法则。这是因为如果把数列看作是自变量为n的函数时,它的定义域是一系列孤立的点,不存在导数。这是使用洛必达法则时必须要注意的一点。参见附例3。 五、泰勒公式的运用 对于使用洛必达法则不易求出结果的复杂函数式,可以考虑使用泰勒公式。这样将函数式化为最高次项为相同或相近的式子,这时就变成了求多项式的极限值(接着求值见上文所述方法),使计算一目了然。因此掌握和记忆常用基本初 等函数的麦克劳林展开式是十分必要的。如ex,sinx,cosx,ln1x等等。至于展开式展开多少,则要与题干中的自变量x最高次项保持一致。如 cosxelimx0x4x4)。 x 2利用泰勒公式展开cosx,e x22,展开到x4即可(原式x最高次项为 六、利用微分中值定理来求极限 f(x)在a,b上连续,在a,b上可导,则至少存在一点a,b,使 f'() f(b)f(a)'f(b)f(a),f()即可看成特殊的极限,用来求解。一般需 baba 要函数式可以看成同一函数的区间端点的差,这样可以使用微分中值定理。参见附例4。 另外,一些重要的结论往往在求极限时可以直接加以引用,例如 lim(1x)e,lim x0 1x sinx 1, 1,1等等。 x0nnx 求极限的方法和技巧更多的在于实践中的摸索和探讨,上述方法只是笔者在高等数学学习和练习的一些心得,求极限的方法还有很多。局限于笔者的认知水平,缺点和不足在所难免,敬请批评指正。 南开大学张阳和张效成老师的课堂教学给了笔者很大的启发,在此向两位老师表示感谢。 附:例1:对任意给定的0,1,总存在正整数N,使得当nN时,恒有。xna2,是数列xn收敛于a的() A 充分非必要条件 B必要非充分条件C充分必要条件D既非充分又非必要条件 解析:这道题是1999年全国考研试卷(二)的数学选择题,这道题直接考察了对极限定义的掌握和理解。 例2:若x1a,y1b(ba0),xn1xnyn,yn1明数列xn,yn有相同的极限。(见习题册1 Page.18) 解析:由已知条件易知,by1y2……yn1xn1……x1a,数列 xn1yn 1,试证 2文中习题册是指南开大学薛运华,赵志勇主编的《高等数学习题课讲义(上册)》,为学生用数学练习册。 xyn limyn1linxn,yn单调有界,可以推出xn,yn收敛。nn n 。设 limynA,limxnB,则A n AB,AB。2 例3:求lim(ntan)n的值。(见课本2 Page.153) nn 1 解析:这是数列。设fxxtan,则对limfx可以运用洛必达法则,xx且原式=limfx。 x x2 aa arctan),a0 nnn1 arctan解析:如例题3,设fxa,则在x,x1上fx连续,在x,x1内 x 例4:求limn2(arctan 可导。于是,x,x1,f'()arctan aaaarctan2(使用微分中x1xa2 a)a。22 a 值定理可得)。x,则,原式=lim2( 参考书目 [1] 张效成主编,《经济类数学分析(上册)》,天津大学出版社,2005年7月 [2] 薛运华,赵志勇主编,《高等数学习题课讲义(上册)》,南开大学 [3] 张友贵等,《掌握高等数学(理工类、经济类)》,大连理工出版社,2004年11月 [4]《硕士研究生入学考试试题》,1984—2005 ※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○ 文中课本是指笔者使用的天津大学出版社05年7月版的《经济类数学分析(上册)》张效成主编第四篇:函数极限
第五篇:函数极限