第一篇:函数极限与连续习题(含答案)
1、已知四个命题:(1)若
(2)若
(3)若
(4)若f(x)在x0点连续,则f(x)在xx0点必有极限 f(x)在xx0点有极限,则f(x)在x0点必连续 f(x)在xx0点无极限,则f(x)在xx0点一定不连续f(x)在xx0点不连续,则f(x)在xx0点一定无极限。其中正确的命题个数是(B、2)
2、若limf(x)a,则下列说法正确的是(C、xx0f(x)在xx0处可以无意义)
3、下列命题错误的是(D、对于函数f(x)有limf(x)f(x0))
xx04、已知f(x)1
x,则limf(xx)f(x)的值是(C、1)
x0xx2
x125、下列式子中,正确的是(B、limx11)2(x1)
26、limxaxb5,则a、x11xb的值分别为(A、7和6)
7、已知f(3)2,f(3)2,则lim2x3f(x)的值是(C、8)
x3x38、limxa
xxaa(D、3a2)
29、当定义f(1)f(x)1x
2在x1处是连续的。1x10、lim16x12。
x27x31111、lim12、x21xxx12x31
limx2x112 3x1113、lim(x2xx21)1
x
214、lim(x2xx21)1
x2
x,0x1115、设(1)求xf(x),x1
2
1,1x2
1时,f(x)的左极限和右极限;(2)求f(x)在x1的函数值,它在这点连续吗?(3)求出的连续区间。
答:(1)左右极限都为1(2)不连续(3)(0,1)(1,2)
第二篇:函数极限与连续
函数、极限与连续
一、基本题
1、函数f
xln6x的连续区间ax2x2x
12、设函数fx,若limfx0,且limfx存在,则 x1x1x12axb
a-1,b
41sin2x
3、limx2sin-2x0xx
4、n2x4/(√2-3)k
5、lim1e2,则k=-1xx
x2axb5,则a3,b-
46、设limx1x
17、设函数fx2xsinx1,gxkx,当x0时,fx~gx,则k
ex2x0
8、函数fx2x10x1的定义域R ;连续区间(-oo,1),(1,+oo)3x1x1
1xsinx
a9、函数fx1xsinbxx0x0在x0处连续,则a1,b1x010、函数fxe
1e11
x1x的间断点为x=0,类型是 跳跃间断点。
11、fx,yx2y2xycosx,则f0,1ft,1y12、fxy,xyx2y2,则fx,yy^2+x13、函数zln
2x2y2的定义域为 {(x,y)|1
14、1e2xylim-12;x,y0,0x2y2exyx,y0,01x2y2x2y2lim
3-12;lim12xyx15、x0
y0
二、计算题
1、求下列极限
(1)0
0型:
1)limexex2x
x0xsin3x;=0
2)limexx
1x0x1e2x;=-1/
43)limtan3xln12x
x01cos2x;=-
34)limtanxsinx
x0xsin2x2;=1/4
(2)
型:
1)lnsin3x
xlim0lnsin2x=1
lim2n13n1
2)n2n3n=3
(3)型:
1)lim11
x0xex1=1/
22)lim
x111x1lnx=-1/2
3)xlimarccosx=π/3
4)xlimx=-1 x0y2
(4)0型:
1)limxarctanx=1x2
2)limx1tanx1x2=-π/2
(5)1型:
21)lim1xx3x2=e^(-6)
4x23x12)limx3x2
3)lim12xx0 =e^(-4)=e^(2/5)1sin5x
14)limcos=e^(-1/2)xx
(6)00型:1)limxsinx=1 x0x2
方法:lim x^sinx=lim e^(sinxlnx)
公式:f(x)^g(x)=e^(g(x)ln(f(x)))
(7)型:1)limx20x
x1x=2
同上
2、已知:fxsin2xln13x2limfx,求fx x0x
f(x)=(sin2x)/x+ln(1-3x)+
2(方法:两边limf(x)x->0)
x2x3、求函数fx的间断点,并判定类型。2xx1驻点x=0,x=1,x=-
11)当x=0+时,f(x)=-1;当x=0-时,f(x)=1 跳跃间断点
2)当x=1时,f(x)=oo;第二类间断点
3)当x=-1时,f(x)=1/2;但f(-1)不存在,所以x=-1是可去间断点
sin2xx
4、设函数fxa
ln1bx1e2xx0x0在定义域内连续,求a与b x0
Lim sin(2x)/x|x->0-=2=a=b/-2=>a=2,b=-
45、证明方程:x33x29x10在0,1内有唯一的实根。(存在性与唯一性)证明:
1)存在性:
令f(x)=x^3-3x^2-9x+1
f(0)=1>0;
f(1)=-10<0;
因为f(0).f(1)<0所以在(0,1)内存在一个实根
2)唯一性
f’(x)=3x^2-6x-9=3(x+1)(x-3)
所以f(x)在(0,1)内为单调减函数
故x33x29x10在0,1内有唯一的实根。
第三篇:多元函数的极限与连续习题
多元函数的极限与连续习题
1.用极限定义证明:lim(3x2y)14。x2y1
2.讨论下列函数在(0,0)处的两个累次极限,并讨论在该点处的二重极限的存在性。
(1)f(x,y)xy; xy
(2)f(x,y)(xy)sisi; 1
x1y
x3y3
(3)f(x,y)2; xy
1(4)f(x,y)ysi。x
3.求极限(1)lim(xy)x0y022x2y2;
(2)limx2y2
xy122x0y0;
(3)lim(xy)sinx0y01; 22xy
sin(x2y2)(4)lim。22x0xyy0
ln(1xy)4.试证明函数f(x,y)xy
x0x0在其定义域上是连续的。
1.用极限定义证明:lim(3x2y)14。
x2y1
因为x2,y1,不妨设|x2|0,|y1|0,有|x2||x24||x2|45,|3x2y14||3x122y2|
3|x2||x2|2|y1|15|x2|2|y1|15[|x2||y1|]
0,要使不等式
|3x2y14|15[|x2||y1|]成立 取min{
30,1},于是
0,min{
30,1}0,(x,y):|x2|,|y1|
且(x,y)(2,1),有|3x2y14|,即证。
2.讨论下列函数在(0,0)处的两个累次极限,并讨论在该点处的二重极限的存在性。(1)f(x,y)
xy
; xy
xyxy
limli1,limlim1
y0x0xyx0y0xy
二重极限不存在。
xyxy1
或lim0,li。
x0xyx0xy3
yx
y2x
(2)f(x,y)(xy)sin
11sin; xy
0|(xy)sinsin||x||y|
xy
可以证明lim(|x||y|)0所以limf(x,y)0。
x0y0
x0y0
当x
111,y0时,f(x,y)(xy)sinsin极限不存在,kxy
因此limlim(xy)sisi不存在,x0y0xy
lim(xy)sisi不存在。同理lim
y0x0
x1y
x3y3
(3)f(x,y)2;
xy
2x3
limf(x,y)lim0,x0x0xx
yx
当 P(x, y)沿着yxx趋于(0,0)时有
yxx
x3(x3x2)3limf(x,y)li21,x0x0xx3x223
x0y0
所以 limf(x,y)不存在;
limlimf(x,y)0,limlimf(x,y)0。
x0y0
y0x0
(4)f(x,y)ysinx
0|ysin||y|
x
∴limf(x,y)0,x0y0
limlimysi0,limlimysi不存在。x0y0y0x0xx
3.求极限(1)lim(xy)
x0
y0
2x2y2;
(x2y2)2
0|xyln(xy)||ln(x2y2)|,22
(x2y2)2t
ln(x2y2)limlnt0,又 lim
x0t044
y0
∴lim(xy)
x0
y0
2x2y2
e
limx2y2ln(x2y2)(x,y)(0,0)
1。
(2)lim
x2y2xy1
x0y0;
(x2y2)(x2y21)lim2。lim2222x001xy1xy1x
y0y0
x2y2
(3)lim(xy)sin
x0y0
;22
xy
||xy|,|(xy)sin2
xy
而lim(xy)0
x0
y0
故lim(xy)si20。2x0xyy0
sin(x2y2)
(4)lim。22x0xyy0
令xrcos,yrsin,(x,y)(0,0)时,r0,sin(x2y2)sinr2
limlim21。22x0r0rxyy0
ln(1xy)
4.试证明函数f(x,y)x
y
x0x0
在其定义域上是连续的。
证明:显然f(x, y)的定义域是xy>-1.当x0时,f(x, y)是连续的,只需证明其作为二元函数在y轴的每一点上连续。以下分两种情况讨论。(1)在原点(0,0)处
f(0, 0)=0,当x0时
0ln(1xy)1f(x,y)
xyxyln(1xy)
由于limln1(xy)
x0
y0
1xy
y0,y0
1
1xy
不妨设|ln1(xy)从而0,取
xy
1|1,|ln1(xy)|2,当0|x|,0|y|时,
ln(1xy)
0||yln(1xy)xy||
x
|y||ln(1xy)|2|y|,于是,无论x0,x0,当|x|,|y|时,都有limf(x,y)0f(0,0)
x0y0
1xy
(2)在(0,)处。(0)
xy
当x0时,|f(x,y)f(0,)||yln(1xy)
1xy
|
1(xy)|y(ln1)(y)| 1||y|
|y||ln(1xy)
xy
当x=0时,|f(x,y)f(0,)||y|,1xy
注意到,当0时limln1(xy)
x0
y1,于是,无论x0,x0,当0时lim|f(x,y)f(0,)|0,x0y即 f(x, y)在在(0,)处连续,综上,f(x, y)在其定义域上连续。
第四篇:函数极限与连续教案
第四讲
Ⅰ 授课题目(章节)
1.8:函数的连续性
Ⅱ 教学目的与要求:
1、正确理解函数在一点连续及在某一区间内连续的定义;
2、会判断函数的间断点.4、了解初等函数在定义区间内是连续的、基本初等函数在定义域内是连续的;
5、了解初等函数的和、差、积、商的连续性,反函数与复合函数的连续性; 6 掌握闭区间上连续函数的性质
教学重点与难点:
重点:函数在一点连续的定义,间断点,初等函数的连续性
难点:函数在一点连续的定义,闭区间上连续函数的性质
Ⅳ 讲授内容:
一 连续函数的概念函数的增量
定义1设变量u从它的初值u0变到终值u1,终值与初值之差u1u0,称为变量u的增
量,或称为u的改变量,记为u,即uu1u0
xx1x0
yf(x0x)f(x0)函数的连续性
定义2 设函数yf(x)在点x0的某个邻域内有定义,若当自变量的增量x趋近于零
时,相应函数的增量y也趋近于零,即
limy0或 x0
x0limf(x0x)f(x0)0
则称函数f(x)在x0点连续
2例1 用连续的定义证明y3x1在点x02处是连续的证明 略
若令xx0x则当x0时,xx0又yf(x0x)f(x0)即
f(x)f(x0)y故y0就是f(x)f(x0)
因而limy0可以改写成limf(x)f(x0)x0xx0
定义3 设函数yf(x)在点x0的某个邻域内有定义,若
xx0limf(x)f(x0)
则称函数f(x)在x0点连续
由定义3知函数fx在点x0连续包含了三个条件:
(1)fx在点x0有定义
(2)limf(x)存在xx0
(3)limf(x)f(x0)xx0
sinx,x0例2 考察函数f(x)x在点x0处得连续性
1,x0
解略
3左连续及右连续的概念.定义4 若limf(x)f(x0),则函数f(x)在x0点左连续 xx0
若limf(x)f(x0),则函数f(x)在x0点右连续 xx0+
由此可知函数f(x)在x0点连续的充分必要条件函数f(x)在x0点左连续又右连续
4、函数在区间上连续的定义
(a,b)(a,b)定义5 若函数f(x)在开区间内每一点都连续,则称函数f(x)在开区间内连
续
(a,b)若函数f(x)在开区间内连续,且在左端点a右连续,在右端点b左连续,则
称称函数f(x)在闭区间a,b上连续
(-,+)例3 讨论函数yx在内的连续性
解 略
二 函数的间断点定义6函数f(x)不连续的点x0称为函数f(x)的间断点
由定义6可知函数f(x)不连续的点x0有下列三种情况
(1)fx在点x0没有定义
(2)limf(x)不存在xx0
(3)limf(x)f(x0)xx0
2间断点的分类
左右极限都相等(可去间断点)第一类间断点:左右极限都存在间断点 左右极限不相等(跳跃间断点)
第二类间断点:左右极限至少有一个不存在
x21,x0例4考察函数f(x)在x0处得连续性
0,x0
解 略
例5考察函数f(x)
解 略
1,x0例6考察函数f(x)x在x0处得连续性
0,x0x,x0x1,x0在x0处得连续性
解 略
三 连续函数的运算与初等函数的连续性
1、连续函数的和、差、积、商的连续性
2、反函数与复合函数的连续性
3、初等函数的连续性:基本初等函数在它们的定义域内都是连续的.一切初等函数在其定义区间内都是连续的.对于初等函数,由于连续性xx0limf(x)f(x0),求其极限即等价于求函数的函数值
四闭区间上连续函数的性质
定理1(最大值最小值定理)
若函数f(x)在闭区间a,b上连续,则函数f(x)在闭区间a,b上必有最大值和最小值
定理2(介值定理)
若函数f(x)在闭区间a,b上连续,m 和M分别为f(x)在a,b上的最小值和最大值,则对于介于m 和M之间的任一实数C,至少存在一点a,b,使得
f()C
定理3(零点定理)
若函数f(x)在闭区间a,b上连续,且f(a)与f(b)异号,则至少存在一点a,b,使得f()0
例7 证明x52x20在区间(0,1)内至少有一个实根 证明 略
Ⅴ 小结与提问:
Ⅵ 课外作业:
习题1-8 2,5,7,9
第五篇:函数极限连续试题
····· ········密············································订·········线·································装·····系·····封················· ··················__ __:_ :___: ___________名______________业_姓_____ _号_____ _::___级_ ____别年专______学
· ·····密·········· ·············································卷···线·································阅·······封········································
函数 极限 连续试题
1.设f(x)
求
(1)f(x)的定义域;(2)12f[f(x)]2
;(3)lim
f(x)x0x
.2.试证明函数f(x)x3ex2
为R上的有界函数.3.求lim1nnln[(11n)(12
n)
(1nn)].4.设在平面区域D上函数f(x,y)对于变量x连续,对于变量y 的一阶偏导数有界,试证:f(x,y)在D上连续.(共12页)第1页
5.求lim(2x3x4x1
x03)x.1(1x)x
6.求lim[
x0e]x.7.设f(x)在[1,1]上连续,恒不为0,求x0
8.求lim(n!)n2
n
.9.设x
axb)2,试确定常数a和b的值.(共12页)第2页
10.设函数f(x)=limx2n1axb
n1x
2n连续,求常数a,b的值.11.若limsin6xxf(x)6f(xx0x30,求lim)
x0x2
.12.设lim
axsinx
x0c(c0),求常数a,b,c的值.xln(1t3)btdt
13.判断题:当x0时,x
1cost2
0t
是关于x的4阶无穷小量.114.设a为常数,且lim(ex
x0
2aarctan1
x)存在,求a的值,并计算极限.ex1
(共12页)第3页
215.设lim[
ln(1ex)x0
1a[x]]存在,且aN,求a的值,并计算极限.ln(1ex)
16.求n(a0).n
17.求limn2(a0,b0).
ln(1
f(x)
18.设lim)
x0
3x1
=5,求limf(x)x0x2.19.设f(x)为三次多项式,且xlim
f(x)f(x)f2ax2axlim4ax4a1,求xlim(x)
3ax3a的值.(共12页)第4页
24.设连续函数f(x)在[1,)上是正的,单调递减的,且
dnf(k)f(x)dx,试证明:数列dn收敛.n
n
20.设x1,求lim(1x)(1x2)(1x4n
n)
(1x2).21.试证明:(1)(1n1111+n)1
为递减数列;(2)n1ln(1n)n,n1,2,3,.limnn
22.求n3nn!
.23.已知数列:a1
112,a222,a32,22
a42
12
1的极限存在,求此极限.22
(共12页)第5页
k1
25.设数列xn,x0a,x1b,求limn
xn.26.求lima2n
n1a2n
.28.求limx
.x1
n2
(xn1xn2)(n2),(共12页)第6页
29.设函数f(x)是周期为T(T0)的连续函数,且f(x)0,试证:
xlim1xx0f(t)dt1TT0f(t)dt.30.求lim1
1n0
x.en
(1x)n
n
31.设lim(1x)x
tetxx
dt,求的值.32.判断函数f(x)limxn1
nxn1的连续性.33.判断函数f(x.(共12页)第7页
34.设f(x)为二次连续可微函数,f(0)=0,定义函数
g(x)
f(0)当x0,试证:g(x)f(x)
x当x0连续可微.35.设f(x)在[a,b]上连续,f(a)f(b),对x(a,b),g(x)lim
f(xt)f(xt)
t0
t
存在,试证:存在c(a,b),使g(c)0.36.若f(x)为[a,b]上定义的连续函数,如果b
a[f(x)]2dx0,试证:
f(x)0(axb).37.设函数f(x)在x=0处连续,且lim
f(2x)f(x)
x0
x
A,试证:f(0)=A.(共12页)第8页
38.设f(x)在[a,b]上二阶可导,过点A(a,f(a))与B(b,f(b))的直线与曲线
yf(x)相交于C(c,f(c)),其中acb.试证:至少存在一点(a,b),使得f()=0.39.设f(x),g(x),h(x)在axb上连续,在(a,b)内可导,试证:
f(a)
g(a)
h(a)
至少存在一点(a,b),使得f(b)
g(b)h(b)=0,并说明拉格朗日中值 f()g()h()
定理和柯西中值定理是它的特例.40.试证明函数ysgnx在x[1,1]上不存在原函数.41.设函数f(x)=nf(x)的不可导点的个数.(共12页)第9页
42.设f(x(0x
),求f(x).43.设xn1(n1,2,3,),0x13,试说明数列xn的极限存在.x0
44.求函数f(x)=sin1
x21
x(2x)的间断点.2cosx
x0
45.求曲线
3的斜渐近线.(共12页)第10页
1
46.求数列nn的最小项.
50.求lim
x.x0
sin1
x
47.求limtan(tanx)sin(sinx)
x0tanxsinx
.48.设f(x)在[0,2]上连续,在(0,2)内有二阶导数,且lim
f(x)
x1(x1)2
1,
f(x)dxf(2),试证:存在(0,2),使得f()=(1+1)f().49.试证:若函数f(x)在点a处连续,则函数f+(x)=maxf(x),0与
f-(x)=minf(x),0在点a处都连续.(共12页)第11页
12页)第12页
(共