第一篇:函数极限习题
习题1—2
1.确定下列函数的定义域:
(1)y;
x9(4)y2.求函数
1sinyx0
(x0)(x0)
(2)ylogaarcsinx;
(3)y
; sinx
1x1
(5)yarccosloga(2x3);loga(4x2)
x22的定义域和值域。
3.下列各题中,函数f(x)和g(x)是否相同?
(1)f(x)x,g(x)x2;
(2)f(x)cosx,g(x)12sin2(4)f(x)
x,g(x)x0。x
2;
x21
(3)f(x),g(x)x1;
x1
4.设f(x)sinx证明:
f(xx)f(x)2sin
x
x
cosx 22
5.设f(x)ax2bx5且f(x1)f(x)8x3,试确定a,b的值。
6.下列函数中哪些是偶函数?哪些是奇函数?哪些是既非奇函数又非偶函数?
1x22223
(1)yx(1x)(2)y3xx;(3)y;
1xaxax
(4)yx(x1)(x1);(5)ysinxcosx1(6)y。
7.设f(x)为定义在(,)上的任意函数,证明:
(1)F1(x)f(x)f(x)偶函数;(2)F2(x)f(x)f(x)为奇函数。
8.证明:定义在(,)上的任意函数可表示为一个奇函数与一个偶函数的和。9.设f(x)定义在(L,L)上的奇函数,若f(x)在(0,L)上单增,证明:f(x)在(L,0)上也单增。
10.下列各函数中哪些是周期函数?对于周期函数,指出其周期:(1)ycos(x2)(2)ycos4x;(3)y1sinx;(4)yxcosx;(5)ysin2x(6)ysin3xtanx。11.下列各组函数中哪些不能构成复合函数?把能构成复合函数的写成复合函数,并指出其定义域。
(1)yx3,xsint
(2)yau,ux2;(3)ylogau,u3x22;
(6)ylogau,ux22。
(4)y,usinx2(5)y,ux3 12.下列函数是由哪些简单函数复合而成的?(1)y(1x)21(3)ysin2(3x1)
(2)y3(x1);(4)ylogacos2x。
2x
(3)yx。
21
13.求下列函数的反函数:(1)y2sinx;
(2)y1loga(x2);
14.已知函数f(x,y)x2y2xytan
x,试求f(tx,ty)。y
15.已知函数f(u,v,w)uwwuv。试求f(xy,xy,xy)。16.求下列各函数的定义域:
111(1)u; xyz(2)uR2x2y2z2
xyzr
(Rr0)。
习题1—3
1.利用数列极限定义证明:如果limunA,则lim|un||A|,并举例说明反之不然。
n
n
习题1—4
x2(x1)1.设f(x)
x1(x1)
(1)作函数yf(x)的图形;(2)根据图形求极限limf(x)与limf(x);
x1
x1
(3)当x1时,f(x)有极限吗? 2.求下列函数极限:
xx
(1)lim;(2)lim2;
x0|x|x0x|x|3.下列极限是否存在?为什么?(1)limsinx;
x
(3)lim
x0
x。
x2|x|
(2)limarctanx;
x
(3)limcos;
x0x
(4)lim(1ex);
x
(5)lim
|x1|;
x1x1
(6)limex。
x
习题1—5
求下列极限
1112n1
1.lim; 2.; lim22x12xn223n(n1)nnx22x1
4.lim;
x1x21
x25
3.lim; x2x3
(xh)2x2
5.lim;h0h
6.lim
x1x1
x1。
习题1—6
1.求下列极限:
sinax
(1)lim(b0);
x0sinbx2xtanx
(4)lim;
x0sinx
(2)lim
tanxsinx;
x0x3
(3)lim
1cosx;
x0xsinx
2; x
x
arcsinx
(5)lim;
x0x
(6)lim1
x
1
(7)lim1;
tt
x
t
1
(8)lim1
xx
x3;
x21
(9)lim(1tanx)cotx;
x0
xa
(10)lim;
xxa
x22
(11)lim
xx21
1
;(12)lim1。
xn
n
2.利用极限存在准则证明:
111
(1)limn2221;
xnn2nn(2)数列,22,222,„的极限存在;(3)lim
x21
1。x1
x
习题1—7
1.当n无限增加时,下列整标函数哪些是无穷小?
(1)n12n11cosn
(1)2;(2);(3);(4)。
n1nnn
2.已知函数
xsinx,2,ln(1x),ex,ex
xx
(1)当x0时,上述各函数中哪些是无穷小?哪些是无穷大?(2)当x时,上述各函数中哪些是无穷小?哪些是无穷大?
(3)“是无穷小”,这种说法确切吗?
x
3.函数yxcosx在(,)是是否有界?又当x地,这个函数是否为无穷大?为什么?
4.求下列极限
n2n1aa2an!000n
(1)lim2;(2)lim;(3)lim ;(|a|1,|b|1)
xn2x1bb2bnxn1
4x21(2)n2nx3
(4)lim;(5)lim;(6)lim2;
16x5x1x(2)3x1x1x
5.求下列极限:
sinx
(1)limex;
xx
(2)limxcos;
x0x
(3)lim
n
n
sinn;
exarctanx
(4)lim;(5)lim;(6)limexarctanx。
xxarctanxxx
6.下列各题的做法是否正确?为什么?
(1)lim
x9x9
x9x9lim(x9)
x9
lim(x29)
1111
2)limlim20
x1x1x1x1x1x1x1
cosx1
(3)limlimcosxlim0。
xxxxx
7.证明:当x0时,arcsinx~x,arctanx~x。8.利用等价无穷小的性质,求下极限:
(2)lim(sin2xsin2x
;(2)lim;
x0sin3xx0arctanx
sinxnx
(3)lim(为正整数);(4)。limm,n
x0(sinx)mx0cosx
(1)lim
9.当x1时,x33x2是x1是多少阶无穷小?
x11
10.当x时,4是是多少阶无穷小?
x1x111
11.当x时,sin是是多少阶无穷小?
xxx
习题1—8
1.研究下列函数的连续性,并画出函数的图形: x
(1)f(x);
x
x2(0x1)
(2)f(x);
2x(1x2)
x2(|x|1)|x|(x0)
(3)f(x);(4)(x)。
1(x0)x(|x|1)
2.指出下列函数的间断点,说明这些间断点属于哪一类?如果是可去间断点,则补充或改变函数的定义使它连续。
x21n21(1)y2;(2)y;(3)ycos。
tanxxx3x2
ex(0x1)
3.a为何值时函数f(x)在[0,2]上连续?
ax(1x2)1x2n
x的连续性,若有间断点,判断共类型。4.讨论函数f(x)lim
n1x2n
5.函数z
y22xy22x
在何上是间断的?
习题1—9
1.设f(x)连续,证明|f(x)|也是连续的。
2.若f(x)在[a,b]上连续,且在[a,b]上f(x)恒为正,证明:续。
3.求下列极限:
(1)lim
x0
在[a,b]上迹连f(x)
(sin2x)3;(3)limx22x5;(2)lim
x
sin5xsin3x;
x0sinx
(6)lim
axabsinxsina
(a0);(4)lim;(5)lim
xbxaxbxa
sinx
(7)lim2;(8)limthx;
xx0xx
ln(13x);
x0x
(9)lim(x2x1);
x
(10)lim
x2
x2x2;
x4
ln(ax)lna
(12)lim。
x0x
(11)lim
xxx
x1
x
习题1—10
1.证明:方程x3x1在区间(1,2)上至少有一个根。
x1,x2,,xn是[a,2.设f(x)在闭区间[a,b]上连续,b]内的n个点,证明:[a,b],使得
f()
f(x1)f(x2)f(xn)
n
附件习题
1.用数列极限的定义证明:
(1)n11
(1)lim(2)lim(1n)1; 0;
nnn10(4)lim
n2
n
(3)lim
3n2n24
n
3;
n9n73
2.用数列极限的定义证明数列{(1)n}发散。
n
n
0;(5)lim
2n1
0;
(6)limqn0(|q|1)。
n
3.设a0,用数列极限的定义证明极限lima1。
4.用数列极限的定义证明数列极限的夹逼准则。
5.下述几种说法与数列{un}极限是A的定义是否等价,并说明理由。
(1)对于任意给定的0,存在正整数N,使得当nN时,有|unA|;(2)存在正整数N,对任意给定的0,使得当nN时,有|unA|;(3)对于任意给定0,存在实数M,使得当nM时,有|unA|;(4)对于01,存在正整数N,使得当nN时,有|unA|;
(5)对于任意给定的0,有正整数N使得当nN时,有|unA|K,其中K是与无关的常数;
(6)对于任意给定的正整数m,都有正整数N,使得当nN时,有|unA|。
m
习题18—2
2x12
(1)lim;
x3x13
x21x1
(2)lim
x
1;(3)limxa(a0);
xa
x41
(4)limcosxcos;(5)lim(6)limex0。4;
xxx1x1
3.用函数极限的定义证明下列命题:
(1)如果limf(x)A,limg(x)B,则lim[f(x)g(x)]AB;
xx0
xx0
xx0
(2)如果limf(x)A,limg(x)B,(B0),则
x
x
x
lim
f(x)A
。g(x)B
4.用Hine定理证明函数极限的四则运算法则。5.证明极限limxsinx不存在。
x
6.若f(x)在[a,)上连续,且limf(x)存在,证明:f(x)在[a,)上有界。
x
7.设f(x)在(a,b)上连续,又limf(x)A,limf(x)B,且AB,则(A,B),xa
xb
x0(a,b),使得f(x0)。
8.设f(x)在[a,b]上连续,如果xn[a,b],数列{xn}收敛,且limf(xn),证明:
x
x0(a,b),使得f(x0)。
第二篇:函数极限
习题
1.按定义证明下列极限:
(1)limx6x5=6;(2)lim(x2-6x+10)=2;x2x
x251;(4)lim(3)lim2xx1x2
(5)limcos x = cos x0 xx04x2=0;
2.根据定义2叙述limf(x)≠ A.xx0
3.设limf(x)= A.,证明limf(x0+h)= A.xx0h0
4.证明:若limf(x)= A,则lim| f(x)| = |A|.当且仅当A为何值时反之也成立? xx0xx0
5.证明定理3.1
6.讨论下列函数在x0→0 时的极限或左、右极限:(1)f(x)=x
x;(2)f(x)= [x]
2x;x0.(3)f(x)=0;x0.1x2,x0.
7.设 limf(x)= A,证明limf(xxx01)= A x
8.证明:对黎曼函数R(x)有limR(x)= 0 , x0∈[0,1](当x0=0或1时,考虑单侧极限).xx0
习题
1. 求下列极限:
x21(1)lim2(sinx-cosx-x);(2)lim;x02x2x1x22
x21x113x;
lim(3)lim;(4)
x12x2x1x0x22x3
xn1(5)limm(n,m 为正整数);(6)lim
x1xx41
(7)lim
x0
2x3x2
70;
a2xa3x68x5.(a>0);(8)lim
xx5x190
2. 利用敛性求极限:(1)lim
x
xcosxxsinx
;(2)lim2
x0xx4
xx0
3. 设 limf(x)=A, limg(x)=B.证明:
xx0
(1)lim[f(x)±g(x)]=A±B;
xx0
(2)lim[f(x)g(x)]=AB;
xx0
(3)lim
xx0
f(x)A
=(当B≠0时)g(x)B
4. 设
a0xma1xm1am1xam
f(x)=,a0≠0,b0≠0,m≤n,nn1
b0xb1xbn1xbn
试求 limf(x)
x
5. 设f(x)>0, limf(x)=A.证明
xx0
xx0
lim
f(x)=A,其中n≥2为正整数.6.证明limax=1(0 x0 7.设limf(x)=A, limg(x)=B.xx0 xx0 (1)若在某∪(x0)内有f(x)< g(x),问是否必有A < B ? 为什么? (2)证明:若A>B,则在某∪(x0)内有f(x)> g(x).8.求下列极限(其中n皆为正整数):(1)lim x0 x x11 lim;(2);nnx0x1xx1x xx2xnn (3)lim;(4)lim x0x0x1 x1 x (5)lim x x(提示:参照例1) x x0 x0 x0 9.(1)证明:若limf(x3)存在,则limf(x)= lim f(x3)(2)若limf(x2)存在,试问是否成立limf(x)=limf(x2)? x0 x0 x0 习题 1.叙述函数极限limf(x)的归结原则,并应用它证明limcos x不存在.n n 2.设f 为定义在[a,+)上的增(减)函数.证明: lim= f(x)存在的充要条件是f在n [a,+)上有上(下)界.3.(1)叙述极限limf(x)的柯西准则; n (2)根据柯西准则叙述limf(x)不存在的充要条件,并应用它证明limsin x不存在.n n 4.设f在∪0(x0)内有定义.证明:若对任何数列{xn}∪0(x0)且limxn=x0,极限limf(xn)都 n n 存在,则所有这极限都相等.提示: 参见定理3.11充分性的证明.5设f为∪0(x0)上的递减函数.证明:f(x0-0)和f(x0+0)都存在,且f(x0-0)=supf(x),f(x0+0)= 0xu x0 0xun(x0) inff(x) 6.设 D(x)为狄利克雷函数,x0∈R证明limD(x)不存在.xx0 7.证明:若f为周期函数,且limf(x)=0,则f(x)=0 x 8.证明定理3.9 习题 1.求下列极限 sin2xsinx3 (1)lim;(2)lim x0x0sinx2x (3)lim x cosxx tanxsinxarctanx lim(5)lim;(6);3x0x0xx sin2xsin2a1 (7)limxsin;(8)lim; xxaxxa ;(4)lim x0 tanx ;x cosx2 (9)lim;(10)lim x0x01cosxx11 sin4x 2.求下列极限 12x (1)lim(1);(2)lim1axx(a为给定实数); nx0x x (3)lim1tanx x0 cotx ;(4)lim 1x ; x01x (5)lim(x 3x22x1);(6)lim(1)x(,为给定实数) n3x1x 3.证明:limlimcosxcoxcos4.利用归结原则计算下列极限:(1)limnsin n x0n x2 xxcos1 2n22 n ;(2) 习题 1. 证明下列各式 (1)2x-x2=O(x)(x→0);(2)x sinxO(x)(x→0); + (3)x1o(1)(x→0); (4)(1+x)n= 1+ nx+o(x)(x→0)(n 为正整数)(5)2x3 + x2=O(x3)(x→∞); (6)o(g(x))±o(g(x))=o(g(x))(x→x0) (7)o(g1(x))·0(g2(x))=o(g1(x)g2(x))(x→x0)2. 应用定理3.12求下列极限: x21x(1)lim(2)lim x01cosxxxcosx x3. 证明定理3.13 4. 求下列函数所表示曲线的渐近线: 13x34 (1)y =;(2)y = arctan x;(3)y = 2 xx2x 5. 试确定a的值,使下列函数与xa当x→0时为同阶无穷小量: (1)sin2x-2sinx;(2) -(1-x);1x (3)tanxsinx;(4) x24x3 6. 试确定a的值,使下列函数与xa当x→∞时为同阶无穷大量: (1) x2x5;(2)x+x2(2+sinx); (3)(1+x)(1+x2)…(1+xn).7. 证明:若S为无上界数集,则存在一递增数列{xn}s,使得xn→+∞(n→∞) 8. 证明:若f为x→r时的无穷大量,而函数g在某U0(r)上满足g(x)≥K>0,则fg为x→r 时的无穷大量。 9. 设 f(x)~g(x)(x→x0),证明: f(x)-g(x)= o(f(x))或 f(x)-g(x)= o(g(x)) 总 练习题 1. 求下列极限: 1 (x[x])lim([x]1)(1)lim;(2) x3 x1 (3)lim(x axbxaxbx) xxa (4)lim x (5)lim xxa x (6)lim xxxx x0 (7)lim nm,m,n 为正整数 nx11xm1x 2. 分别求出满足下述条件的常数a与b: x21 (1)limaxb0 xx1 x(3)limx (2)lim xxx2 x1axb0 x1axb0 x2 3. 试分别举出符合下列要求的函数f: (1)limf(x)f(2);(2)limf(x)不存在。 4. 试给出函数f的例子,使f(x)>0恒成立,而在某一点x0处有limf(x)0。这同极限的xx0 局部保号性有矛盾吗? 5. 设limf(x)A,limg(u)B,在何种条件下能由此推出 xa gA limg(f(x))B? xa 6. 设f(x)=x cos x。试作数列 (1){xn} 使得 xn→∞(n→∞), f(xn)→0(n→∞);(2){yn} 使得 yn→∞(n→∞), f(yn)→0(n→∞);(3){zn} 使得 zn→∞(n→∞), f(zn)→0(n→∞).7. 证明:若数列{an}满足下列条件之一,则{an}是无穷大数列: (1)limanr1 n (2)lim an1 s1(an≠0,n=1,2,…) nan n2 n2 8. 利用上题(1)的结论求极限: (1)lim1 n 11(2)lim1 nnn 9. 设liman,证明 n (1)lim (a1a2an) nn n (2)若an > 0(n=1,2,…),则lima1a2an 10.利用上题结果求极限: (1)limn!(2)lim n In(n!) nn 11.设f为U-0(x0)内的递增函数。证明:若存在数列{xn}U-0(x0)且xn→x0(n→∞),使得 limf(xn)A,则有 n f(x0-0)= supf(x)A 0xU(x0) 12.设函数f在(0,+∞)上满足方程f(2x)=f(x),且limf(x)A。证明:f(x)A,x∈(0,+∞) x 13.设函数f在(0,+∞)此上满足方程f(x2)= f(x),且 f(x)=limf(x)f(1)lim x0 x 证明:f(x)f(1),x∈(0,+∞) 14.设函数f定义在(a,+∞)上,f在每一个有限区间内(a,b)有界,并满足 x lim(f(x1)f(1))A证明 x lim f(x) A x 《数学分析》教案 第三章 函数极限 xbl 第三章 函数极限 教学目的: 1.使学生牢固地建立起函数极限的一般概念,掌握函数极限的基本性质; 2.理解并运用海涅定理与柯西准则判定某些函数极限的存在性; 3.掌握两个重要极限 和,并能熟练运用; 4.理解无穷小(大)量及其阶的概念,会利用它们求某些函数的极限。教学重(难)点: 本章的重点是函数极限的概念、性质及其计算;难点是海涅定理与柯西准则的应用。 教学时数:16学时 § 1 函数极限概念(3学时) 教学目的:使学生建立起函数极限的准确概念;会用函数极限的定义证明函数极限等有关命题。 教学要求:使学生逐步建立起函数极限的定义的清晰概念。会应用函数极限的定义证明函数的有关命题,并能运用语言正确表述函数不以某实数为极限等相应陈述。 教学重点:函数极限的概念。 教学难点:函数极限的定义及其应用。 一、复习:数列极限的概念、性质等 二、讲授新课: (一)时函数的极限: 《数学分析》教案 第三章 函数极限 xbl 例4 验证 例5 验证 例6 验证 证 由 = 为使 需有 需有 为使 于是, 倘限制 , 就有 例7 验证 例8 验证(类似有 (三)单侧极限: 1.定义:单侧极限的定义及记法.几何意义: 介绍半邻域 《数学分析》教案 第三章 函数极限 xbl 我们引进了六种极限:.以下以极限,为例讨论性质.均给出证明或简证.二、讲授新课: (一)函数极限的性质: 以下性质均以定理形式给出.1.唯一性: 2.局部有界性: 3.局部保号性: 4.单调性(不等式性质): Th 4 若使,证 设 和都有 = (现证对 都存在, 且存在点 的空心邻域),有 註: 若在Th 4的条件中, 改“ 就有 5.6.以 迫敛性: ”为“ 举例说明.”, 未必 四则运算性质:(只证“+”和“ ”) (二)利用极限性质求极限: 已证明过以下几个极限: 《数学分析》教案 第三章 函数极限 xbl 例8 例9 例10 已知 求和 补充题:已知 求和()§ 3 函数极限存在的条件(4学时) 教学目的:理解并运用海涅定理与柯西准则判定某些函数极限的存在性。教学要求:掌握海涅定理与柯西准则,领会其实质以及证明的基本思路。教学重点:海涅定理及柯西准则。教学难点:海涅定理及柯西准则 运用。 教学方法:讲授为主,辅以练习加深理解,掌握运用。本节介绍函数极限存在的两个充要条件.仍以极限 为例.一.Heine归并原则——函数极限与数列极限的关系: Th 1 设函数在,对任何在点 且的某空心邻域 内有定义.则极限都存在且相等.(证) 存Heine归并原则反映了离散性与连续性变量之间的关系,是证明极限不存在的有力工具.对单侧极限,还可加强为 单调趋于 .参阅[1]P70.例1 证明函数极限的双逼原理.7 《数学分析》教案 第三章 函数极限 xbl 教学难点:两个重要极限的证明及运用。 教学方法:讲授定理的证明,举例说明应用,练习。一. (证)(同理有) 例1 例2.例3 例4 例5 证明极限 不存在.二.证 对 有 例6 特别当 等.例7 例8 《数学分析》教案 第三章 函数极限 xbl 三. 等价无穷小: Th 2(等价关系的传递性).等价无穷小在极限计算中的应用: Th 3(等价无穷小替换法则) 几组常用等价无穷小:(见[2]) 例3 时, 无穷小 与 是否等价? 例4 四.无穷大量: 1.定义: 2.性质: 性质1 同号无穷大的和是无穷大.性质2 无穷大与无穷大的积是无穷大.性质3 与无界量的关系.无穷大的阶、等价关系以及应用, 可仿无穷小讨论, 有平行的结果.3.无穷小与无穷大的关系: 无穷大的倒数是无穷小,非零无穷小的倒数是无穷大 习题 课(2学时) 一、理论概述: 《数学分析》教案 第三章 函数极限 xbl 例7.求 .注意 时, 且 .先求 由Heine归并原则 即求得所求极限 .例8 求是否存在.和.并说明极限 解; 可见极限 不存在.--32 数学之美2006年7月第1期 函数极限的综合分析与理解 经济学院 财政学 任银涛 0511666 数学不仅仅是工具,更是一种能力。一些数学的方法被其它学科广泛地运用。例如,经济学中的边际分析、弹性分析等方法。函数极限是高等数学中的一个重要问题。极限可以与很多的数学问题相联系。例如,导数从根本上是求极限;函数连续首先要求函数在某一点的左极限等于右极限。有鉴于函数极限的重要性,结合自己的学习心得,笔者写下了此文。其目的在于归纳和总结解决函数极限问题的实用方法和技巧,以期对函数极限问题的学习有所帮助。局限于笔者的认知水平,缺点和不足在所难免,欢迎批评指正。 一、函数极限的定义和基本性质 函数极限可以分成x→x0,x→∞两类,而运用ε-δ定义更多的见诸于已知 极限值的证明题中。掌握这类证明对初学者深刻理解运用极限定义大有裨益。以xx0的极限为例,fx在点x0以A极限的定义是:0,0,使当0xx0时,有f(x)A(A为常数).问题的关键在于找到符合定义要求的,在这一过程中会用到一些不等式技巧,例如放缩法等。1999年的研究生考试试题中,更是直接考察了考生对定义的掌握情况。详见附例1。 函数极限性质的合理运用。常用的函数极限的性质有函数极限的唯一性、局部有界性、保序性以及函数极限的运算法则和复合函数的极限等等。如函数极限的唯一性(若lim存在,则在该点的极限是唯一的)可以体现在用海涅定理证明xx0 ''即如果fxnA,fxn,fx在x0处的极限不存在。B(n,xn和xnx0) 则fx在x0处的极限不存在。 运用函数极限的性质可以方便地求出一些简单函数的极限值。例如对于有理分式fxPxPx,Qx均为多项式,Qx0)。设Px的次数为n,Qx的Qx次数为m,当x时,若nm,则fx0;若nm,则fxPx与Qx的最高次项系数之比;若nm,则fx。当xx0时,f(x)P(x0)(Q(x0)0)。Q(x0) 二、运用函数极限的判别定理 最常用的判别定理包括单调有界定理和夹挤定理,在运用它们去求函数的极限时尤需注意以下关键之点。一是先要用单调有界定理证明收敛,然后再求极限值,参见附例2。二是应用夹挤定理的关键是找到极限值相同的函数gx与 hx,并且要满足gxfxhx,从而证明或求得函数fx的极限值。 三、应用等价无穷小代换求极限 掌握常用的等价无穷小很重要。等价无穷小代换可以将复杂的极限式变的简单明了,让求解过程变得简明迅速。 x0时,sinx与x,tanx与x,arcsinx与x,arctanx与x,1cosx与x2,xa,ax1与xlna,1a与ax(a0)等等可ln1x与x,loga1x与lna 以相互替换。特别需要注意的是,等价无穷小代换只能用于分子、分母中的乘积 sinxx 因子,而对于加减法运算则不能运用。例如lim,不能直接把sinx替换 x0x 3sinxx 1成x,得出极限值为0,实际上lim。 x0x36 四、运用洛必达法则求函数极限 设函数fx,gx在点a的某空心邻域可导,且g'(x)0。当xa时,fxf'x,fx和gx的极限同时为0或时才适用'A(A为常数或) gxgx洛必达法则。洛必达法则实际上把求函数极限问题转化为学生较为拿手的求导数 0、00、1、0等类型则需要问题。这使得求解思路简单程序化。而对于、0 对式子进行转化,或通分或取倒数或取对数等转化为型,再使用洛必达法 0 则求极限。例如fx gx的极限转化为求egxlnfx的极限等等。然而,对于数列,则必须转化为函数再运用洛必达法则。这是因为如果把数列看作是自变量为n的函数时,它的定义域是一系列孤立的点,不存在导数。这是使用洛必达法则时必须要注意的一点。参见附例3。 五、泰勒公式的运用 对于使用洛必达法则不易求出结果的复杂函数式,可以考虑使用泰勒公式。这样将函数式化为最高次项为相同或相近的式子,这时就变成了求多项式的极限值(接着求值见上文所述方法),使计算一目了然。因此掌握和记忆常用基本初 等函数的麦克劳林展开式是十分必要的。如ex,sinx,cosx,ln1x等等。至于展开式展开多少,则要与题干中的自变量x最高次项保持一致。如 cosxelimx0x4x4)。 x 2利用泰勒公式展开cosx,e x22,展开到x4即可(原式x最高次项为 六、利用微分中值定理来求极限 f(x)在a,b上连续,在a,b上可导,则至少存在一点a,b,使 f'() f(b)f(a)'f(b)f(a),f()即可看成特殊的极限,用来求解。一般需 baba 要函数式可以看成同一函数的区间端点的差,这样可以使用微分中值定理。参见附例4。 另外,一些重要的结论往往在求极限时可以直接加以引用,例如 lim(1x)e,lim x0 1x sinx 1, 1,1等等。 x0nnx 求极限的方法和技巧更多的在于实践中的摸索和探讨,上述方法只是笔者在高等数学学习和练习的一些心得,求极限的方法还有很多。局限于笔者的认知水平,缺点和不足在所难免,敬请批评指正。 南开大学张阳和张效成老师的课堂教学给了笔者很大的启发,在此向两位老师表示感谢。 附:例1:对任意给定的0,1,总存在正整数N,使得当nN时,恒有。xna2,是数列xn收敛于a的() A 充分非必要条件 B必要非充分条件C充分必要条件D既非充分又非必要条件 解析:这道题是1999年全国考研试卷(二)的数学选择题,这道题直接考察了对极限定义的掌握和理解。 例2:若x1a,y1b(ba0),xn1xnyn,yn1明数列xn,yn有相同的极限。(见习题册1 Page.18) 解析:由已知条件易知,by1y2……yn1xn1……x1a,数列 xn1yn 1,试证 2文中习题册是指南开大学薛运华,赵志勇主编的《高等数学习题课讲义(上册)》,为学生用数学练习册。 xyn limyn1linxn,yn单调有界,可以推出xn,yn收敛。nn n 。设 limynA,limxnB,则A n AB,AB。2 例3:求lim(ntan)n的值。(见课本2 Page.153) nn 1 解析:这是数列。设fxxtan,则对limfx可以运用洛必达法则,xx且原式=limfx。 x x2 aa arctan),a0 nnn1 arctan解析:如例题3,设fxa,则在x,x1上fx连续,在x,x1内 x 例4:求limn2(arctan 可导。于是,x,x1,f'()arctan aaaarctan2(使用微分中x1xa2 a)a。22 a 值定理可得)。x,则,原式=lim2( 参考书目 [1] 张效成主编,《经济类数学分析(上册)》,天津大学出版社,2005年7月 [2] 薛运华,赵志勇主编,《高等数学习题课讲义(上册)》,南开大学 [3] 张友贵等,《掌握高等数学(理工类、经济类)》,大连理工出版社,2004年11月 [4]《硕士研究生入学考试试题》,1984—2005 ※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○ 文中课本是指笔者使用的天津大学出版社05年7月版的《经济类数学分析(上册)》张效成主编 1、已知四个命题:(1)若 (2)若 (3)若 (4)若f(x)在x0点连续,则f(x)在xx0点必有极限 f(x)在xx0点有极限,则f(x)在x0点必连续 f(x)在xx0点无极限,则f(x)在xx0点一定不连续f(x)在xx0点不连续,则f(x)在xx0点一定无极限。其中正确的命题个数是(B、2) 2、若limf(x)a,则下列说法正确的是(C、xx0f(x)在xx0处可以无意义) 3、下列命题错误的是(D、对于函数f(x)有limf(x)f(x0)) xx04、已知f(x)1 x,则limf(xx)f(x)的值是(C、1) x0xx2 x125、下列式子中,正确的是(B、limx11)2(x1) 26、limxaxb5,则a、x11xb的值分别为(A、7和6) 7、已知f(3)2,f(3)2,则lim2x3f(x)的值是(C、8) x3x38、limxa xxaa(D、3a2) 29、当定义f(1)f(x)1x 2在x1处是连续的。1x10、lim16x12。 x27x31111、lim12、x21xxx12x31 limx2x112 3x1113、lim(x2xx21)1 x 214、lim(x2xx21)1 x2 x,0x1115、设(1)求xf(x),x1 2 1,1x2 1时,f(x)的左极限和右极限;(2)求f(x)在x1的函数值,它在这点连续吗?(3)求出的连续区间。 答:(1)左右极限都为1(2)不连续(3)(0,1)(1,2)第三篇:函数极限
第四篇:函数极限
第五篇:函数极限与连续习题(含答案)