数列极限和函数极限(最终版)

时间:2019-05-13 09:02:07下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《数列极限和函数极限(最终版)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《数列极限和函数极限(最终版)》。

第一篇:数列极限和函数极限(最终版)

数列极限和函数极限

极限概念是数学分析中最重要的概念,如连续、导数、积分等都要用极限来定义,而且由极限出发产生的极限方法,是数学分析的最基本的方法.更好的理解极限思想,掌握极限理论,应用极限方法是继续学习数学分析的关键.本文将主要阐述极限的概念、性质、判别方法等问题.1.极限定义

1.1 数列极限定义

设有数列an与常数A,如果对于任意给定的正数(不论它有多么小),总存在正整数N,使得当nN时,不等式anA 都成立,那么就称常数A是数列an的极限,或者称数列an收敛于A,记作limanA.n

读作“当趋n于无穷大时,an的极限等于A或an趋于A”.数列极限存在,称数列an 为收敛数列,否则称为发散数列.关于数列极限的N定义,着重注意以下几点:

(1)的任意性: 定义中正数的作用在于衡量数列通项an与定数的a接近程度越小,表示接近的越好.而正数可以任意的小,说明an与可a以接近到任何程度,然而,尽管有其任意性,但一经给出,就暂时的被确定下来,以便依靠它来求出N.(2)N的相应性: 一般说,N随的变小而变大,由此常把N写作N,来强调N是依赖与的,但这并不意味着N是由所唯一决定的,重要的是N的存在性,而不在于它值得大小.另外,定义中nN的也可以改写成nN.(3)几何意义:对于任何一个以A为中心,为半径的开区间A,A,总可以在数列an中找到某一项aN,使得其后的所有项都位于这个开区间内,而在该区间之外,最多只有an的有限项(N项).数列是定义在自然数集上的函数,当自变量从小到大依次取自然数时,便得到相应的一系列函数值,其解析表达式为anfn;我们把数列中的n用x来替换后就得到了一个函数fx,数列和函数的区别在于数列中的点是离散的,而函数是连续的,那么类似的我们也有函数极限的定义.1.2 函数极限定义

1.2.1x时函数的极限:设函数fx为a,上的函数,A为定数,若对任给的0,总存在着正数Ma,使得当xM时有fxA,则称函数fx当

x趋于时以A为极限,记作limfxA.x

即有limfxA0,M0,xM,有fxA.x

对应的,我们也有limfxA,limfxA的相应的

x

x

M语言成立.对于函数极限的M定义着重注意以下几点:

(1)在定义中正数M的作用与数列极限定义中的N类似,表明x充分大的程度;但这里所考虑的是比M大的所有实数x,而不仅仅是正整数n.(2)当x时,函数fx以A为极限意味着: A的任意小邻域内必含有fx在的某邻域内的全部函数值.(3)几何意义是:对任给0的,在坐标平面上,平行于x轴的两条直线yA与

yA,围成以直线yA为中心线,宽2为的带形区域;定义中的“当xM时,有fxA”表示:在直线xM的右方,曲线yfx全部落在这个带形区域之内.1.2.2xx0时函数的极限:设函数fx 在点x0的某一去心邻域U

x;内有

'0

'定义,A为定数,如果对于任意给定的正数(无论它多么小),总存在正数,使



得当0xx0时,有fxA,则常数A为函数fx在xx0时的极限,记作limfxA.xx0

即limfxA0,0,x:x0xx0,有fxA.xx0

对应的,我们也有limfxA,limfxA的相应的

xx0

xx0

语言成立.对于函数极限的

定义着重注意以下几点:

N定义中的N,它依赖于,但也不是由所唯

(1)定义中的正数,相当于数列极限

一确定的,一般来说, 愈小, 也相应地要小一些,而且把取得更小些也无妨.(2)定义中只要求函数在的某一空心邻域内有定义,而一般不考虑在点处的函数值是否有意义,这是因为,对于函数极限我们所研究的是当x趋于x0过程中函数值的变化趋势.(3)定义中的不等式0xx0等价于xUx0;,而不等式fxA等价于fxUA;.于是,

定义又可写成:

任给0,存在0,使得一切xUx0;有fxUA;.或更简单的表为:

任给0,存在0,使得fUx0;UA;.

(4)几何意义是:将极限定义中的四段话用几何语言表述为

对任给0的,在坐标平面上画一条以直线yA为中心线,宽2为的横带,则必存在以直线xx0为中心线、宽为2的数带,使函数yfx的图像在该数带中的部分全部落在横带内,但点x,fx0可能例外(或无意义).

2.极限性质

2.1数列极限的性质

收敛数列有如下性质:

(1)极限唯一性:若数列an收敛,则它只有一个极限.(2)若数列an收敛,则an为有界数列.(3)若数列an有极限,则其任一子列an也有极限.''

(4)保号性,即若limana00,则对任何a0,aaa,0,存在正整数N1,n



n>N1时,ana'ana'.(5)保不等式性:即若an与bn均为收敛数列, 若存在正整数N1,使得当n>N1时有

an

n

(6)数列极限的基本公式(四则运算)设limxn,limyn存在,则

n

n

limxnynlimxnlimyn

nn

n

n

limxnynlimxnlimyn

n

n

xn

xnlimnlimlimyn0nylimynnn



n

limxnlimynxnyn

n

n

2.2函数极限性质

(1)极限唯一性;若极限limfx存在,则此极限是唯一的.xx0

(2)局部有界性

若limfx存在,则fx在x0的某空心邻域Ux内是有界的,当x0趋于无穷大时,xx0

亦成立.(3)局部保号性

若limfxA00,则对任何正数rAA,存在Ux0使得对一切

xx0

xUx0有fxr0fxr0,当趋于无穷大时,亦成立.(4)保不等式性

若limfxA,limgxB,且在某邻域U

xx0

xx0

x;内有fxgx,则

'0

xx0

limfxlimgx.xx0

(5)函数极限的基本公式(四则运算)

设limfx,limgx存在,则

xa

xa

limfxgxlimfxlimgx

xaxa

xa

xa

limfxgxlimfxlimgx

xa

xa

fxfxlimxalimlimgx0xagxlimgxxa



xa

通过以上对数列极限与函数极限的介绍,可以知道数列极限与函数极限的本质相同,性质一致.3.极限的判别法

3.1 数列极限的判别法

(1)单调有界定理:单调有界数列必有极限.证明:不妨设an为有上界的递增数列.由确界原理,数列an有上确界,记

asupan.下面证明a就是an的极限.事实上,任给0,按上确界的定义,存在数列

an中某一项aN,使得aaN.又由an的递增性,当nN时有

aaNan。

另一方面,由于a是an的一个上界,故对一切an都有anaa 所以当nN时有

aana

这样就证得, limana.n

同理可证有下界的递减数列必有极限,且极限即为它的下确界.(2)数列收敛的柯西准则:

数列an收敛的充分必要条件是:对于任意给定的正数,存在着这样的正整数N,使得当m,n>N时,有xnxm.(3)数列极限的夹逼准则

如果收敛数列an,bn都以为a极限,数列cn满足下列条件: 存在正数N,当n>N时有

ancnbn

则数列cn收敛,且 limcna.n

3.2函数极限的判别法:(1)函数极限的夹逼准则:

设limfxlimgxA且在某U

xx0

xx0

x;内有

'0

fxhxgx

则limhxA.xx0

(2)函数收敛的柯西准则:

xx0

limfx存在的充要条件是:任给, 0,存在正数',使得对任何

x',x“Ux0;,有 fx'fx”.

第二篇:D1.2-1.3数列的极限函数的极限

高等数学(1)标准化作业题参考答案—2班级姓名学号

第二节数列的极限

一、单项选择题

1.数列极限limynA的几何意义是n

A.在点A的某一邻域内部含有{yn}中的无穷多个点

B.在点A的某一邻域外部含有{yn}中的无穷多个点

C.在点A的任何一个邻域外部含有{yn}中的无穷多个点

D.在点A的任何一个邻域外部至多含有{yn}中的有限多个点

2.limynA的等价定义是n

A.对于任意0及K0,总存在正整数N,使得当nN时,ynAK

B.对于某个充分小的0,总存在正整数N,使得当nN时,ynA

C.对于任意正整数N,总存在0,使得当nN时,ynA

D.对于某个正整数N,总存在0,使得当nN时,ynA

3.“对任意给定的(0,1),总存在正整数N,当nN时,恒有xna”是数列xn收敛于a的C条件.A.充分非必要B.必要非充分C.充要D.既非充分又非必要 ﹡

二、利用数列极限的定义证明:lim

证明: 对0,要使1cosn0.nn21cosn1cosn20,只需n.nnn

1cosn1cosn20,取N,0.则当nN时,就有所以lim0成立,nnn

3高等数学(1)标准化作业题参考答案—2班级姓名学号

第三节函数的极限

一、单项选择题

1.极限limf(x)A定义中与的关系为xx0

A.先给定,后唯一确定B.先给定后确定,但的值不唯一

C.先确定,后确定D.与无关

2.若函数f(x)在某点x0极限存在,则A.f(x)在点x0的函数值必存在且等于该点极限值

B.f(x)在点x0的函数值必存在,但不一定等于该点极限值

C.f(x)在点x0的函数值可以不存在D.若f(x)在点x0的函数值存在,必等于该点极限值

3.以下结论正确的是C.A.若limf(x)A0,则f(x)0 xx0

B.若limf(x)A0,则必存在0,使当xx0时,有f(x)0 xx0

C.若limf(x)A0,则必存在0,使当0xx0时,有f(x)xx0A

2D.若在x0的某邻域内f(x)g(x),则limf(x)limg(x)xx0xx0

4.极限limx0xx

A.1B.1C.0D.不存在x2x65.﹡

二、利用函数极限的定义证明:limx3x3

x2x6证明: 0,要使5x3,只需取,则当0x3时,x3

x2x6x2x65.就有5x3成立,所以limx3x3x3

第三篇:函数极限

习题

1.按定义证明下列极限:

(1)limx6x5=6;(2)lim(x2-6x+10)=2;x2x

x251;(4)lim(3)lim2xx1x2

(5)limcos x = cos x0 xx04x2=0;

2.根据定义2叙述limf(x)≠ A.xx0

3.设limf(x)= A.,证明limf(x0+h)= A.xx0h0

4.证明:若limf(x)= A,则lim| f(x)| = |A|.当且仅当A为何值时反之也成立? xx0xx0

5.证明定理3.1

6.讨论下列函数在x0→0 时的极限或左、右极限:(1)f(x)=x

x;(2)f(x)= [x]

2x;x0.(3)f(x)=0;x0.1x2,x0.

7.设 limf(x)= A,证明limf(xxx01)= A x

8.证明:对黎曼函数R(x)有limR(x)= 0 , x0∈[0,1](当x0=0或1时,考虑单侧极限).xx0

习题

1. 求下列极限:

x21(1)lim2(sinx-cosx-x);(2)lim;x02x2x1x22

x21x113x;

lim(3)lim;(4)

x12x2x1x0x22x3

xn1(5)limm(n,m 为正整数);(6)lim

x1xx41

(7)lim

x0

2x3x2

70;

a2xa3x68x5.(a>0);(8)lim

xx5x190

2. 利用敛性求极限:(1)lim

x

xcosxxsinx

;(2)lim2

x0xx4

xx0

3. 设 limf(x)=A, limg(x)=B.证明:

xx0

(1)lim[f(x)±g(x)]=A±B;

xx0

(2)lim[f(x)g(x)]=AB;

xx0

(3)lim

xx0

f(x)A

=(当B≠0时)g(x)B

4. 设

a0xma1xm1am1xam

f(x)=,a0≠0,b0≠0,m≤n,nn1

b0xb1xbn1xbn

试求 limf(x)

x

5. 设f(x)>0, limf(x)=A.证明

xx0

xx0

lim

f(x)=A,其中n≥2为正整数.6.证明limax=1(0

x0

7.设limf(x)=A, limg(x)=B.xx0

xx0

(1)若在某∪(x0)内有f(x)< g(x),问是否必有A < B ? 为什么?

(2)证明:若A>B,则在某∪(x0)内有f(x)> g(x).8.求下列极限(其中n皆为正整数):(1)lim 

x0

x

x11

lim;(2);nnx0x1xx1x

xx2xnn

(3)lim;(4)lim

x0x0x1

x1

x

(5)lim

x

x(提示:参照例1)

x

x0

x0

x0

9.(1)证明:若limf(x3)存在,则limf(x)= lim f(x3)(2)若limf(x2)存在,试问是否成立limf(x)=limf(x2)?

x0

x0

x0

习题

1.叙述函数极限limf(x)的归结原则,并应用它证明limcos x不存在.n

n

2.设f 为定义在[a,+)上的增(减)函数.证明: lim= f(x)存在的充要条件是f在n

[a,+)上有上(下)界.3.(1)叙述极限limf(x)的柯西准则;

n

(2)根据柯西准则叙述limf(x)不存在的充要条件,并应用它证明limsin x不存在.n

n

4.设f在∪0(x0)内有定义.证明:若对任何数列{xn}∪0(x0)且limxn=x0,极限limf(xn)都

n

n

存在,则所有这极限都相等.提示: 参见定理3.11充分性的证明.5设f为∪0(x0)上的递减函数.证明:f(x0-0)和f(x0+0)都存在,且f(x0-0)=supf(x),f(x0+0)=

0xu

x0

0xun(x0)

inff(x)

6.设 D(x)为狄利克雷函数,x0∈R证明limD(x)不存在.xx0

7.证明:若f为周期函数,且limf(x)=0,则f(x)=0

x

8.证明定理3.9

习题

1.求下列极限

sin2xsinx3

(1)lim;(2)lim

x0x0sinx2x

(3)lim

x

cosxx

tanxsinxarctanx

lim(5)lim;(6);3x0x0xx

sin2xsin2a1

(7)limxsin;(8)lim;

xxaxxa

;(4)lim

x0

tanx

;x

cosx2

(9)lim;(10)lim

x0x01cosxx11

sin4x

2.求下列极限

12x

(1)lim(1);(2)lim1axx(a为给定实数);

nx0x

x

(3)lim1tanx

x0

cotx

;(4)lim

1x

;

x01x

(5)lim(x

3x22x1);(6)lim(1)x(,为给定实数)

n3x1x

3.证明:limlimcosxcoxcos4.利用归结原则计算下列极限:(1)limnsin

n

x0n



x2

xxcos1 2n22

n

;(2)

习题

1. 证明下列各式

(1)2x-x2=O(x)(x→0);(2)x sinxO(x)(x→0);

+

(3)x1o(1)(x→0);

(4)(1+x)n= 1+ nx+o(x)(x→0)(n 为正整数)(5)2x3 + x2=O(x3)(x→∞);

(6)o(g(x))±o(g(x))=o(g(x))(x→x0)

(7)o(g1(x))·0(g2(x))=o(g1(x)g2(x))(x→x0)2. 应用定理3.12求下列极限:

x21x(1)lim(2)lim x01cosxxxcosx

x3. 证明定理3.13

4. 求下列函数所表示曲线的渐近线:

13x34

(1)y =;(2)y = arctan x;(3)y = 2

xx2x

5. 试确定a的值,使下列函数与xa当x→0时为同阶无穷小量:

(1)sin2x-2sinx;(2)

-(1-x);1x

(3)tanxsinx;(4)

x24x3

6. 试确定a的值,使下列函数与xa当x→∞时为同阶无穷大量:

(1)

x2x5;(2)x+x2(2+sinx);

(3)(1+x)(1+x2)…(1+xn).7. 证明:若S为无上界数集,则存在一递增数列{xn}s,使得xn→+∞(n→∞)

8. 证明:若f为x→r时的无穷大量,而函数g在某U0(r)上满足g(x)≥K>0,则fg为x→r

时的无穷大量。

9. 设 f(x)~g(x)(x→x0),证明:

f(x)-g(x)= o(f(x))或 f(x)-g(x)= o(g(x))

总 练习题

1. 求下列极限:

1

(x[x])lim([x]1)(1)lim;(2)

x3

x1

(3)lim(x

axbxaxbx)

xxa

(4)lim

x

(5)lim

xxa

x

(6)lim

xxxx

x0

(7)lim

nm,m,n 为正整数 nx11xm1x

2. 分别求出满足下述条件的常数a与b:

x21

(1)limaxb0 xx1

x(3)limx

(2)lim

xxx2

x1axb0

x1axb0

x2

3. 试分别举出符合下列要求的函数f:

(1)limf(x)f(2);(2)limf(x)不存在。

4. 试给出函数f的例子,使f(x)>0恒成立,而在某一点x0处有limf(x)0。这同极限的xx0

局部保号性有矛盾吗?

5. 设limf(x)A,limg(u)B,在何种条件下能由此推出

xa

gA

limg(f(x))B?

xa

6. 设f(x)=x cos x。试作数列

(1){xn} 使得 xn→∞(n→∞), f(xn)→0(n→∞);(2){yn} 使得 yn→∞(n→∞), f(yn)→0(n→∞);(3){zn} 使得 zn→∞(n→∞), f(zn)→0(n→∞).7. 证明:若数列{an}满足下列条件之一,则{an}是无穷大数列:

(1)limanr1

n

(2)lim

an1

s1(an≠0,n=1,2,…)

nan

n2

n2

8. 利用上题(1)的结论求极限:

(1)lim1

n

11(2)lim1

nnn

9. 设liman,证明

n

(1)lim

(a1a2an) nn

n

(2)若an > 0(n=1,2,…),则lima1a2an 10.利用上题结果求极限:

(1)limn!(2)lim

n

In(n!)

nn

11.设f为U-0(x0)内的递增函数。证明:若存在数列{xn}U-0(x0)且xn→x0(n→∞),使得

limf(xn)A,则有

n

f(x0-0)=

supf(x)A

0xU(x0)

12.设函数f在(0,+∞)上满足方程f(2x)=f(x),且limf(x)A。证明:f(x)A,x∈(0,+∞)

x

13.设函数f在(0,+∞)此上满足方程f(x2)= f(x),且

f(x)=limf(x)f(1)lim

x0

x

证明:f(x)f(1),x∈(0,+∞)

14.设函数f定义在(a,+∞)上,f在每一个有限区间内(a,b)有界,并满足

x

lim(f(x1)f(1))A证明

x

lim

f(x)

A x

第四篇:函数极限

《数学分析》教案

第三章 函数极限

xbl

第三章 函数极限

教学目的:

1.使学生牢固地建立起函数极限的一般概念,掌握函数极限的基本性质; 2.理解并运用海涅定理与柯西准则判定某些函数极限的存在性; 3.掌握两个重要极限

和,并能熟练运用;

4.理解无穷小(大)量及其阶的概念,会利用它们求某些函数的极限。教学重(难)点:

本章的重点是函数极限的概念、性质及其计算;难点是海涅定理与柯西准则的应用。

教学时数:16学时

§ 1 函数极限概念(3学时)

教学目的:使学生建立起函数极限的准确概念;会用函数极限的定义证明函数极限等有关命题。

教学要求:使学生逐步建立起函数极限的定义的清晰概念。会应用函数极限的定义证明函数的有关命题,并能运用语言正确表述函数不以某实数为极限等相应陈述。

教学重点:函数极限的概念。

教学难点:函数极限的定义及其应用。

一、复习:数列极限的概念、性质等

二、讲授新课:

(一)时函数的极限:

《数学分析》教案

第三章 函数极限

xbl

例4 验证

例5 验证

例6 验证

证 由 =

为使

需有

需有

为使

于是, 倘限制 , 就有

例7 验证

例8 验证(类似有

(三)单侧极限:

1.定义:单侧极限的定义及记法.几何意义: 介绍半邻域

《数学分析》教案

第三章 函数极限

xbl

我们引进了六种极限:.以下以极限,为例讨论性质.均给出证明或简证.二、讲授新课:

(一)函数极限的性质: 以下性质均以定理形式给出.1.唯一性:

2.局部有界性:

3.局部保号性:

4.单调性(不等式性质):

Th 4 若使,证 设

和都有 =

(现证对 都存在, 且存在点 的空心邻域),有

註: 若在Th 4的条件中, 改“ 就有

5.6.以

迫敛性:

”为“ 举例说明.”, 未必

四则运算性质:(只证“+”和“ ”)

(二)利用极限性质求极限: 已证明过以下几个极限:

《数学分析》教案

第三章 函数极限

xbl

例8

例9

例10 已知

求和

补充题:已知

求和()§ 3 函数极限存在的条件(4学时)

教学目的:理解并运用海涅定理与柯西准则判定某些函数极限的存在性。教学要求:掌握海涅定理与柯西准则,领会其实质以及证明的基本思路。教学重点:海涅定理及柯西准则。教学难点:海涅定理及柯西准则 运用。

教学方法:讲授为主,辅以练习加深理解,掌握运用。本节介绍函数极限存在的两个充要条件.仍以极限

为例.一.Heine归并原则——函数极限与数列极限的关系:

Th 1 设函数在,对任何在点

且的某空心邻域

内有定义.则极限都存在且相等.(证)

存Heine归并原则反映了离散性与连续性变量之间的关系,是证明极限不存在的有力工具.对单侧极限,还可加强为

单调趋于

.参阅[1]P70.例1 证明函数极限的双逼原理.7 《数学分析》教案

第三章 函数极限

xbl

教学难点:两个重要极限的证明及运用。

教学方法:讲授定理的证明,举例说明应用,练习。一.

(证)(同理有)

例1

例2.例3

例4

例5 证明极限 不存在.二.证 对

例6

特别当 等.例7

例8

《数学分析》教案

第三章 函数极限

xbl

三. 等价无穷小:

Th 2(等价关系的传递性).等价无穷小在极限计算中的应用: Th 3(等价无穷小替换法则)

几组常用等价无穷小:(见[2])

例3 时, 无穷小

是否等价? 例4

四.无穷大量:

1.定义:

2.性质:

性质1 同号无穷大的和是无穷大.性质2 无穷大与无穷大的积是无穷大.性质3 与无界量的关系.无穷大的阶、等价关系以及应用, 可仿无穷小讨论, 有平行的结果.3.无穷小与无穷大的关系:

无穷大的倒数是无穷小,非零无穷小的倒数是无穷大

习题 课(2学时)

一、理论概述:

《数学分析》教案

第三章 函数极限

xbl

例7.求

.注意 时, 且

.先求

由Heine归并原则

即求得所求极限

.例8 求是否存在.和.并说明极限

解;

可见极限 不存在.--32

第五篇:函数极限

数学之美2006年7月第1期

函数极限的综合分析与理解

经济学院 财政学 任银涛 0511666

数学不仅仅是工具,更是一种能力。一些数学的方法被其它学科广泛地运用。例如,经济学中的边际分析、弹性分析等方法。函数极限是高等数学中的一个重要问题。极限可以与很多的数学问题相联系。例如,导数从根本上是求极限;函数连续首先要求函数在某一点的左极限等于右极限。有鉴于函数极限的重要性,结合自己的学习心得,笔者写下了此文。其目的在于归纳和总结解决函数极限问题的实用方法和技巧,以期对函数极限问题的学习有所帮助。局限于笔者的认知水平,缺点和不足在所难免,欢迎批评指正。

一、函数极限的定义和基本性质

函数极限可以分成x→x0,x→∞两类,而运用ε-δ定义更多的见诸于已知

极限值的证明题中。掌握这类证明对初学者深刻理解运用极限定义大有裨益。以xx0的极限为例,fx在点x0以A极限的定义是:0,0,使当0xx0时,有f(x)A(A为常数).问题的关键在于找到符合定义要求的,在这一过程中会用到一些不等式技巧,例如放缩法等。1999年的研究生考试试题中,更是直接考察了考生对定义的掌握情况。详见附例1。

函数极限性质的合理运用。常用的函数极限的性质有函数极限的唯一性、局部有界性、保序性以及函数极限的运算法则和复合函数的极限等等。如函数极限的唯一性(若lim存在,则在该点的极限是唯一的)可以体现在用海涅定理证明xx0

''即如果fxnA,fxn,fx在x0处的极限不存在。B(n,xn和xnx0)

则fx在x0处的极限不存在。

运用函数极限的性质可以方便地求出一些简单函数的极限值。例如对于有理分式fxPxPx,Qx均为多项式,Qx0)。设Px的次数为n,Qx的Qx次数为m,当x时,若nm,则fx0;若nm,则fxPx与Qx的最高次项系数之比;若nm,则fx。当xx0时,f(x)P(x0)(Q(x0)0)。Q(x0)

二、运用函数极限的判别定理

最常用的判别定理包括单调有界定理和夹挤定理,在运用它们去求函数的极限时尤需注意以下关键之点。一是先要用单调有界定理证明收敛,然后再求极限值,参见附例2。二是应用夹挤定理的关键是找到极限值相同的函数gx与

hx,并且要满足gxfxhx,从而证明或求得函数fx的极限值。

三、应用等价无穷小代换求极限

掌握常用的等价无穷小很重要。等价无穷小代换可以将复杂的极限式变的简单明了,让求解过程变得简明迅速。

x0时,sinx与x,tanx与x,arcsinx与x,arctanx与x,1cosx与x2,xa,ax1与xlna,1a与ax(a0)等等可ln1x与x,loga1x与lna

以相互替换。特别需要注意的是,等价无穷小代换只能用于分子、分母中的乘积

sinxx

因子,而对于加减法运算则不能运用。例如lim,不能直接把sinx替换

x0x

3sinxx

1成x,得出极限值为0,实际上lim。

x0x36

四、运用洛必达法则求函数极限

设函数fx,gx在点a的某空心邻域可导,且g'(x)0。当xa时,fxf'x,fx和gx的极限同时为0或时才适用'A(A为常数或)

gxgx洛必达法则。洛必达法则实际上把求函数极限问题转化为学生较为拿手的求导数

0、00、1、0等类型则需要问题。这使得求解思路简单程序化。而对于、0

对式子进行转化,或通分或取倒数或取对数等转化为型,再使用洛必达法

0

则求极限。例如fx

gx的极限转化为求egxlnfx的极限等等。然而,对于数列,则必须转化为函数再运用洛必达法则。这是因为如果把数列看作是自变量为n的函数时,它的定义域是一系列孤立的点,不存在导数。这是使用洛必达法则时必须要注意的一点。参见附例3。

五、泰勒公式的运用

对于使用洛必达法则不易求出结果的复杂函数式,可以考虑使用泰勒公式。这样将函数式化为最高次项为相同或相近的式子,这时就变成了求多项式的极限值(接着求值见上文所述方法),使计算一目了然。因此掌握和记忆常用基本初

等函数的麦克劳林展开式是十分必要的。如ex,sinx,cosx,ln1x等等。至于展开式展开多少,则要与题干中的自变量x最高次项保持一致。如

cosxelimx0x4x4)。

x

2利用泰勒公式展开cosx,e

x22,展开到x4即可(原式x最高次项为

六、利用微分中值定理来求极限

f(x)在a,b上连续,在a,b上可导,则至少存在一点a,b,使

f'()

f(b)f(a)'f(b)f(a),f()即可看成特殊的极限,用来求解。一般需

baba

要函数式可以看成同一函数的区间端点的差,这样可以使用微分中值定理。参见附例4。

另外,一些重要的结论往往在求极限时可以直接加以引用,例如

lim(1x)e,lim

x0

1x

sinx

1,

1,1等等。

x0nnx

求极限的方法和技巧更多的在于实践中的摸索和探讨,上述方法只是笔者在高等数学学习和练习的一些心得,求极限的方法还有很多。局限于笔者的认知水平,缺点和不足在所难免,敬请批评指正。

南开大学张阳和张效成老师的课堂教学给了笔者很大的启发,在此向两位老师表示感谢。

附:例1:对任意给定的0,1,总存在正整数N,使得当nN时,恒有。xna2,是数列xn收敛于a的()

A 充分非必要条件 B必要非充分条件C充分必要条件D既非充分又非必要条件

解析:这道题是1999年全国考研试卷(二)的数学选择题,这道题直接考察了对极限定义的掌握和理解。

例2:若x1a,y1b(ba0),xn1xnyn,yn1明数列xn,yn有相同的极限。(见习题册1 Page.18)

解析:由已知条件易知,by1y2……yn1xn1……x1a,数列

xn1yn

1,试证

2文中习题册是指南开大学薛运华,赵志勇主编的《高等数学习题课讲义(上册)》,为学生用数学练习册。

xyn

limyn1linxn,yn单调有界,可以推出xn,yn收敛。nn

n

。设

limynA,limxnB,则A

n

AB,AB。2

例3:求lim(ntan)n的值。(见课本2 Page.153)

nn

1

解析:这是数列。设fxxtan,则对limfx可以运用洛必达法则,xx且原式=limfx。

x

x2

aa

arctan),a0

nnn1

arctan解析:如例题3,设fxa,则在x,x1上fx连续,在x,x1内

x

例4:求limn2(arctan

可导。于是,x,x1,f'()arctan

aaaarctan2(使用微分中x1xa2

a)a。22

a

值定理可得)。x,则,原式=lim2(

参考书目

[1] 张效成主编,《经济类数学分析(上册)》,天津大学出版社,2005年7月 [2] 薛运华,赵志勇主编,《高等数学习题课讲义(上册)》,南开大学 [3] 张友贵等,《掌握高等数学(理工类、经济类)》,大连理工出版社,2004年11月

[4]《硕士研究生入学考试试题》,1984—2005

※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○

文中课本是指笔者使用的天津大学出版社05年7月版的《经济类数学分析(上册)》张效成主编

下载数列极限和函数极限(最终版)word格式文档
下载数列极限和函数极限(最终版).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    10专题十数列极限与函数极限

    2012年高考复习资料—第二轮复习专题练习题华中师大一附中孟昭奎专题十数列极限与函数极限一、选择题(1x)mab,则a·b=1.(2008年高考·湖北卷)已知m∈N, a、b∈R,若lim n0xA.-mB.mC.-......

    数列极限例题

    三、数列的极限 (1)n1}当n时的变化趋势. 观察数列{1n问题: 当n无限增大时, xn是否无限接近于某一确定的数值?如果是, 如何确定? 通过上面演示实验的观察: (1)n1当n无限增大......

    数列极限教案

    数列的极限教案授课人:###一、教材分析极限思想是高等数学的重要思想。极限概念是从初等数学向高等数学过渡所必须牢固掌握的内容。二、教学重点和难点教学重点:数列极限概念......

    数列极限复习

    数列极限复习题姓名242n1、lim=; n139(3)nan22n1a2、若lim(2n)1,则=; nbn2b1an3、如果lim0,则实数a的取值范围是;n2an4、设数列{an}的通项公式为an(14x),若liman存在,则x的取值范......

    函数极限证明

    函数极限证明记g(x)=lim^(1/n),n趋于正无穷;下面证明limg(x)=max{a1,...am},x趋于正无穷。把max{a1,...am}记作a。不妨设f1(x)趋于a;作b>a>=0,M>1;那么存在N1,当x>N1,有a/MN2......

    1-2函数极限

    高等数学教案§1.2函数极限教学目标:1. 掌握各种情形下的函数极限的基本概念和性质。2. 掌握极限存在性的判定及应用。3. 熟练掌握求函数极限的基本方法。教学重难点:函数极限......

    函数极限概念

    一. 函数极限的概念 1.x趋于时函数的极限 设函数f定义在,上,类似于数列情形,我们研究当自变量x趋于+时,对应的函数值能否无线地接近于某个定数A.例如,对于函数fx=,从图象上可见,当......

    2.3函数极限

    高三极限同步练习3(函数的极限) 求第一类函数的极限 例1、讨论下列函数当x,x,x时的极限: 1(1)f(x)1 2 (2)f(x)x1 x1 (x0)2(3)h(x)x2 x0)x1求函数的左右极限 例2、讨论下列函数在点x1处的......