数列极限复习

时间:2019-05-13 09:02:30下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《数列极限复习》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《数列极限复习》。

第一篇:数列极限复习

数列极限复习题

姓名

242n1、lim=; n139(3)n

an22n1a2、若lim(2n)1,则=; nbn2b

1an3、如果lim()0,则实数a的取值范围是;n2a

n4、设数列{an}的通项公式为an(14x),若liman存在,则x的取值范围是n

___;

a5.已知无穷等比数列n的前n项和

穷等比数列各项的和是;

6、数列an满足a1Sn1a(nN*)n3,且a是常数,则此无1,且对任意的正整数m,n都有amnaman,则数列an的3所有项的和为;

7、无穷等比数列an的首项是某个自然数,公比为单位分数(即形如:数,m为正整数),若该数列的各项和为3,则a1a2;

8、无穷等比数列an的各项和为2,则a1的取值范围是

1的分m



9、无穷等比数列an中,为;

lim(a2a3...an)

n

=1,则a1的取值范围

cosnsinn

10、计算: lim,[0,]

ncosnsinn

222na2n111、若lim2n1,则实数a的取值范围是; 2n

12a

23n2n(1)n(3n2n)

12、若数列{an}的通项公式是an=,n=1,2,„,则

lim(a1a2an)__________;

n

1

1n2012n(n1)

13、若an,Sn为数列an的前n项和,求limSn____;

n

31n2013n1

214、等差数列an,bn的前n项和分别为Sn,Tn且

an

 nbn

Sn2n

,则Tn3n

1lim15、设数列an、bn都是公差不为0的等差数列,且lim

lim

b1b2b3n

na4n

an

3,则bn16、已知数

列为等差数列,且,则

a117、设等比数列{an}的公比为q,且lim1qn),则a1的取值范围是

n1q

2__________;

18、已知等比数列{an}的首项a11,公比为q(q0),前n项和为Sn,若

lim

Sn

11,则公比q的取值范围是.;

nSn19、已知数列{an}的各项均为正数,满足:对于所有nN*,有4Sn(an1)2,n

()其中Sn表示数列{an}的前n项和.则limnan

A.0B.1C.D.

220、下列命题正确的是 „„„„„„„„„„„„„„„„„„„„„„„„„()

(A)limanA, limbnB则lim

n

n

anA

(bn0,nN)

nbBn

(B)若数列{an}、{bn}的极限都不存在,则{anbn}的极限也不存在(C)若数列{an}、{anbn}的极限都存在,则{bn}的极限也存在(D)设Sna1a2an,若数列{an}的极限存在,则数列{Sn}的极限也存在21、用记号“○+”表示求两个实数a与b的算术平均数的运算, 即a○+b=已知数列{xn}满足x1=0,x2=1,xn=xn-1○+xn-2(n≥3),则limxn等于()

n

ab

.2A.2

3B.12

C.0D.122、连结ABC的各边中点得到一个新的A1B1C1,又A1B1C1的各边中点得到一个新的A2B2C2,如此无限继续下去,得到一系列三角形,A1B1C1,A2B2C2,A3B3C3,, 这一系列三角形趋向于一个点M。已知

A0,0,B3,0,C2,2,则点M的坐标是()

52522A、(,)B、(,1)C、(,1)D、(1,)

3333323、已知数列

lim

{an},{bn}

都是无穷等差数列,其中

a13,b12,b2是a2和a

3的等差中

an1111lim(...)nbn2,求极限a1b1a2b2anbn的值; n项,且

24、设正数数列

lga

lin

1n

an

为一等比数列,且a24,a416,求

lagn2n

2al2ng;

bnlgan,25、数列{an}是由正数组成的数列,其中c为正常数,数列bna1c,成等差数列且公差为lgc(1)求证an是等比数列;(2)an的前n项和为Sn,求lim26、已知f(x)logax(ao且a1),an

nSn

且2,f(a1),f(a2),f(a3),,f(an),2n1,(nN)成等差数列,(1)求数列an的通项公式;

(2)若数列an的前n项和为Sn,当a1时,求lim

Sn

nan

第二篇:数列极限例题

三、数列的极限

(1)n1}当n时的变化趋势.观察数列{1n问题:

当n无限增大时, xn是否无限接近于某一确定的数值?如果是, 如何确定? 通过上面演示实验的观察:

(1)n1当n无限增大时, xn1无限接近于1.n问题:“无限接近”意味着什么?如何用数学语言刻划它.xn1(1)n1给定

11 nn1111, 由, 只要n100时, 有xn1, 100n10010011,只要n1000时, 有xn1, 给定1000100011,只要n10000时, 有xn1, 给定10000100001给定0,只要nN([])时, 有xn1成立.定义

如果对于任意给定的正数(不论它多么小), 总存在正整数N, 使得对于nN时的一切xn, 不等式xna都成立, 那末就称常数a是数列xn的极限, 或者称数列xn收敛于a, 记为

limxna,或xna(n).n如果数列没有极限, 就说数列是发散的.注意:

N定义:limxna0,N0, 使nN时, 恒有xna.n其中记号:每一个或任给的;:至少有一个或存在.数列收敛的几何解释:

a2axN2x2x1xN1ax3x

当nN时, 所有的点xn都落在(a,a)内, 只有有限个(至多只有N个)落在其外.注意:数列极限的定义未给出求极限的方法.n(1)n11.例1 证明limnnn(1)n111 .证

注意到xn1 nn任给0, 若要xn1, 只要

11,或 n, n所以, 取 N[], 则当nN时, 就有 1n(1)n11.nn(1)n11.即limnn

重要说明:(1)为了保证正整数N,常常对任给的0,给出限制01;

n(1)n11”的详细推理

(2)逻辑“取 N[], 则当nN时, 就有

n1见下,以后不再重复说明或解释,对函数极限同样处理逻辑推理.由于N立.严格写法应该是:任给0, 不妨取01,若要11N1,所以当nN时一定成立nN11,即得

1成nn(1)n11111< ,只要 n,所以, 取 N[], 则当nN时, 由于xn1=nn1111NN1,所以当nN时一定成立nN1,即得成立.也就

n是成立

n(1)n111.xn1=

nnn(1)n11.即limnn小结: 用定义证数列极限存在时, 关键是任意给定0,寻找N, 但不必要求最小的N.例3证明limq0, 其中q1.nn证

任给0(要求ε<1)若q0, 则limqlim00;

nnn若0q1, xn0q, nlnqln,nnlnln, 取N[](1), 则当nN时, 就有qn0, lnqlnqlimqn0.n0, q1,q1,, n

说明:当作公式利用:limq

n1, q1,不存在,q1.

第三篇:数列极限教案

数列的极限教案

授课人:###

一、教材分析

极限思想是高等数学的重要思想。极限概念是从初等数学向高等数学过渡所必须牢固掌握的内容。

二、教学重点和难点

教学重点:数列极限概念的理解及数列极限N语言的刻画。

教学难点:数列极限概念的理解及数列极限N语言的刻画,简单数列的极限进行证明。

三、教学目标

1、通过学习数列以及数列极限的概念,明白极限的思想。

2、通过学习概念,发现不同学科知识的融会贯通,从哲学的量变到质变的思想的角度来看待数列极限概念。

四、授课过程

1、概念引入

例子一:(割圆术)刘徽的割圆术来计算圆的面积。

.........内接正六边形的面积为A1,内接正十二边形的面积为A2......内接正62n1形的面积为An.A1,A2,A3......An......圆的面积S.用圆的内接正六n边形来趋近,随着n的不断增加,内接正六n边形的面积不断

1接近圆的面积。

例子二:庄子曰“一尺之锤,日取其半,万世不竭”。

第一天的长度1第二天的剩余长度 第二天的剩余长度

第四天的剩余长度 8

.....第n天的剩余长度n1.......2

随着天数的增加,木杆剩余的长度越来越短,越来越接近0。

这里蕴含的就是极限的概念。

总结:极限是变量变化趋势结果的预测。例一中,内接正六n边形的边数不断增加,多边形的面积无限接近圆面积;例二中,随着天数的不断增加,木杆的剩余长度无限接近0.在介绍概念之前看几个具体的数列:

1111(1): 1,,......; 23nn

1n1111:1,,,......;(2)n2345

(3)n2:1,4,9,16,......;

(4)1:1,1,1,1,......,1,......; nn

我们接下来讨论一种数列xn,在它的变化过程中,当n趋近于时,xn不断接近于某一个常数a。如随着n的增大,(1),(2)中的数列越来越接近0;(3)

(4)中的数列却没有这样的特征。

此处“n趋近于时”,“xn无限接近于数a”主要强调的是“一个过程”和一种“接近”程度。

可是只凭定性的描述和观察很难做到准确无误,所以需要精确的,定量的数学语言来刻画数列的概念。本节课的重点就是将数列的这样一个特征用数学语言刻画出来,并引入数列极限的概念。

2、内容讲授

(定义板书)设xn是一个数列,a是实数。如果对于任意给定的数0,总存在一个正整数N,当nN时,都有xna,我们称a是数列x

n的极限,或者说数列xn收敛且收敛于数a。

写作:limxna或xnan。

n

如果数列没有极限,就说数列是发散的。

注意:(1)理解定义中的“任意给定”:是代表某一个正数,但是这个数在选取时是任意的,选定以后就是固定的。不等式xna是表示xn与a的接近程度,所以可以任意的小。

(2)N的选取是与任意给定的有关的。11以数列为例,欲若取,则存在N100,当nNxna; 100n

若取1,则存在N1000,当nN时,xna。1000

数列极限的N语言:

limx

nna0,N,nNxna.数列极限的几何解释:

3、例题讲解

n211。例题1用数列极限的定义证明limnnn

n21证明:设xn,因为 nn

n21212xn1nnnnn

0,欲使xn,只要22即n,n

2我们取N1,当nN时,

n2122.nnNn

n21所以lim1.nnn

2注:N的取法不是唯一的,在此题中,也可取N10等。

例题2 设xnC(C为常数),证明limxnC。n

证明:任给的0,对于一切正整数n,xnCCC0,所以limxnC。n

小结:用定义证数列极限存在时,关键是任意给定寻找N,但不必要求最小的N.五、课后作业

第四篇:数列极限的证明

例1 设数列xn满足0x1,xn1sinxnn1,2,。(Ⅰ)证明limxn存在,并求该极限;

n

xn1xn(Ⅱ)计算lim。n

xn

解(Ⅰ)用归纳法证明xn单调下降且有下界,由0x1,得

0x2sinx1x1,设0xn,则

0xn1sinxnxn,所以xn单调下降且有下界,故limxn存在。

n

记alimxn,由xn1sinxn得

x

asina,所以a0,即limxn0。

n

(Ⅱ)解法1 因为

sinxlimx0

x

1xlime

x0

1sinxlnx2x

lime

x0

1cosx1



2xsinxx

xsinx6x2

xcosxsinx

lime

x0

2x3

lime

x0

e

又由(Ⅰ)limxn0,所以

n

1xn

xn1sinxnxn2

limlimnnxxnn

sinx

limx0x

解法2 因为

1xxe

sinxx

sinxx

sinxx1x

xsinxx



x3,又因为

limsinxx1sinxx,lim1x0x36x0x

xnxsinxxe,sinx6所以lim,ex0x1

11xlimn1nxnxnsinxnlimnxn

sinxlimx0xxn1x e1

6.

第五篇:数列、极限、数学归纳法·数学归纳法

数列、极限、数学归纳法·数学归纳法·教案

教学目标

1.了解归纳法的意义,培养学生观察、归纳、发现的能力.

2.了解数学归纳法的原理,并能以递推思想作指导,理解数学归纳法的操作步骤. 3.抽象思维和概括能力进一步得到提高. 教学重点与难点

重点:归纳法意义的认识和数学归纳法产生过程的分析. 难点:数学归纳法中递推思想的理解. 教学过程设计

(一)引入

师:从今天开始,我们来学习数学归纳法.什么是数学归纳法呢?应该从认识什么是归纳法开始.

(板书课题:数学归纳法)

(二)什么是归纳法(板书)

师:请看下面几个问题,并由此思考什么是归纳法,归纳法有什么特点.

问题1:这里有一袋球共十二个,我们要判断这一袋球是白球,还是黑球,请问怎么办?(可准备一袋白球、问题用小黑板或投影幻灯片事先准备好)生:把它倒出来看一看就可以了.

师:方法是正确的,但操作上缺乏顺序性.顺序操作怎么做? 生:一个一个拿,拿一个看一个. 师:对.问题的结果是什么呢?(演示操作过程)

第一个白球,第二个白球,第三个白球,„„,第十二个白球,由此得到:这一袋球都是白球.

特点吗?

生:归纳法是由一些特殊事例推出一般结论的推理方法. 特点是由特殊→一般(板书).

师:很好!其实在中学数学中,归纳法我们早就接触到了.例如,给出数列的前四项,求它的一个通项公式用的是归纳法,确定等差数列、等比数列通项公式用的也是归纳法,今后的学习还会看到归纳法的运用.

在生活和生产实际中,归纳法也有广泛应用.例如气象工作者、水文工作者依据积累的历史资料作气象预测,水文预报,用的就是归纳法.

还应该指出,问题1和问题2运用的归纳法还是有区别的.问题1中,一共12个球,全看了,由此而得到了结论.这种把研究对象一一都考查到了而推出结论的归纳法称为完全归纳法.对于问题2,由于自然数有无数个,用完全归纳法去推出结论就不可能,它是由前4项体现的规律,进行推测,得出结论的,这种归纳法称为不完全归纳法.

(三)归纳法的认识(板书)

归纳法分完全归纳法和不完全归纳法(板书). 师:用不完全归纳法既然要推测,推测是要有点勇气的,请大家鼓起勇气研究问题3.

资料1(事先准备好,由学生阅读)

费马(Fermat)是17世纪法国著名的数学家,他是解析几何的发明者之一,是对微积分的创立作出贡献最多的人之一,是概率论的创始者之一,他对数论也有许多贡献. 但是,费马曾认为,当n∈N时,22n+1一定都是质数,这是他对n=0,1,2,3,4作了验证后得到的.

18世纪伟大的瑞士科学家欧拉(Euler)却证明了225+1=4 294 967 297=6 700 417×641,从而否定了费马的推测.

师:有的同学说,费马为什么不再多算一个数呢?今天我们是无法回答的.但是要告诉同学们,失误的关键不在于多算一个上!再请看数学史上的另一个资料(仍由学生阅读):

师:算了39个数不算少了吧,但还不行!我们介绍以上两个资料,不是说世界级大师还出错,我们有错就可以原谅,也不是说归纳法不行,不去学了,而是要找出运用归纳法出错的原因,并研究出对策来. 师:归纳法为什么会出错呢? 生:完全归纳法不会出错.

师:对!但运用不完全归纳法是不可避免的,它为什么会出错呢? 生:由于用不完全归纳法时,一般结论的得出带有猜测的成份. 师:完全同意.那么怎么办呢? 生:应该予以证明.

师:大家同意吧?对于生活、生产中的实际问题,得出的结论的正确性,应接受实践的检验,因为实践是检验真理的唯一标准.对于数学问题,应寻求数学证明.

(四)归纳与证明(板书)

师:怎么证明呢?请结合以上问题1思考.

生:问题1共12个球,都看了,它的正确性不用证明了.

师:也可以换个角度看,12个球,一一验看了,这一一验看就可以看作证明.数学上称这种证法为穷举法.它体现了分类讨论的思想.

师:如果这里不是12个球,而是无数个球,我们用不完全归纳法得到,这袋球全是白球,那么怎么证明呢?

(稍作酝酿,使学生把注意力更集中起来)

师:这类问题的证明确不是一个容易的课题,在数学史上也经历了多年的酝酿.第一个正式研究此课题的是意大利科学家莫罗利科.他运用递推的思想予以证明. 结合问题1来说,他首先确定第一次拿出来的是白球. 然后再构造一个命题予以证明.命题的条件是:“设某一次拿出来的是白球”,结论是“下一次拿出来的也是白球”.

这个命题不是孤立地研究“某一次”,“下一次”取的到底是不是白球,而是研究若某一次是白球这个条件能保证下一次也是白球的逻辑必然性. 大家看,是否证明了上述两条,就使问题得到解决了呢?

生:是.第一次拿出的是白球已确认,反复运用上述构造的命题,可得第二次、第三次、第四次、„„拿出的都是白球.

师:对.它使一个原来无法作出一一验证的命题,用一个推一个的递推思想得到了证明. 生活上,体现这种递推思想的例子也是不少的,你能举出例子来吗? 生:一排排放很近的自行车,只要碰倒一辆,就会倒下一排. 生:再例如多米诺骨牌游戏.(有条件可放一段此种游戏的录相)

师:多米诺骨牌游戏要取得成功,必须靠两条:

(1)骨牌的排列,保证前一张牌倒则后一张牌也必定倒;(2)第一张牌被推倒.

用这种思想设计出来的,用于证明不完全归纳法推测所得命题的正确性的证明方法就是数学归纳法.

(五)数学归纳法(板书)

师:用数学归纳法证明以上问题2推测而得的命题,应该证明什么呢? 生:先证n=1时,公式成立(第一步);

再证明:若对某个自然数(n=k)公式成立,则对下一个自然数(n=k+1)公式也成立(第二步). 师:这两步的证明自己会进行吗?请先证明第一步.

师:于是由上述两步,命题得到了证明.这就是用数学归纳法进行证明的基本要求. 师:请小结一下用数学归纳法作证明应有的基本步骤. 生:共两步(学生说,教师板书):(1)n=1时,命题成立;

(2)设n=k时命题成立,则当n=k+1时,命题也成立.

师:其实第一步一般来说,是证明开头者命题成立.例如,对于问题3推测得的命

(若有时间还可讨论此不等关系证明的第二步,若无时间可布置学生课下思考)

(六)小结

师:把本节课内容归纳一下:

(1)本节的中心内容是归纳法和数学归纳法.

(2)归纳法是一种由特殊到一般的推理方法.分完全归纳法和不完全归纳法二种.(3)由于不完全归纳法中推测所得结论可能不正确,因而必须作出证明,证明可用数学归纳法进行.(4)数学归纳法作为一种证明方法,它的基本思想是递推(递归)思想,它的操作步骤必须是二步.

数学归纳法在数学中有广泛的应用,将从下节课开始学习.

(七)课外作业

(1)阅读课本P112~P115的内容.(2)书面作业P115练习:1,3. 课堂教学设计说明

1.数学归纳法是一种用于证明与自然数n有关的命题的正确性的证明方法.它的操作步骤简单、明确,教学重点应该是方法的应用.但是我们认为不能把教学过程当作方法的灌输,技能的操练.对方法作简单的灌输,学生必然疑虑重重.为什么必须是二步呢?于是教师反复举例,说明二步缺一不可.你怎么知道n=k时命题成立呢?教师又不得不作出解释,可学生仍未完全接受.学完了数学归纳法的学生又往往有应该用时但想不起来的问题,等等.为此,我们设想强化数学归纳法产生过程的教学,把数学归纳法的产生寓于对归纳法的分析、认识当中,把数学归纳法的产生与不完全归纳法的完善结合起来.这样不仅使学生可以看到数学归纳法产生的背景,从一开始就注意它的功能,为使用它打下良好的基础,而且可以强化归纳思想的教学,这不仅是对中学数学中以演绎思想为主的教学的重要补充,也是引导学生发展创新能力的良机.

数学归纳法产生的过程分二个阶段,第一阶段从对归纳法的认识开始,到对不完全归纳法的认识,再到不完全归纳法可靠性的认识,直到怎么办结束.第二阶段是对策酝酿,从介绍递推思想开始,到认识递推思想,运用递推思想,直到归纳出二个步骤结束. 把递推思想的介绍、理解、运用放在主要位置,必然对理解数学归纳法的实质带来指导意义,也是在教学过程中努力挖掘、渗透隐含于教学内容中的数学思想的一种尝试. 2.在教学方法上,这里运用了在教师指导下的师生共同讨论、探索的方法.目的是在于加强学生对教学过程的参与程度.为了使这种参与有一定的智能度,教师应做好发动、组织、引导和点拨.学生的思维参与往往是从问题开始的,尽快提出适当的问题,并提出思维要求,让学生尽快投入到思维活动中来,是十分重要的.这就要求教师把每节课的课题作出层次分明的分解,并选择适当的问题,把课题的研究内容落于问题中,在逐渐展开中,引导学生用已学的知识、方法予以解决,并获得新的发展.本节课的教学设计也想在这方面作些研究.

3.理解数学归纳法中的递推思想,还要注意其中第二步,证明n=k+1命题成立时必须用到n=k时命题成立这个条件.

下载数列极限复习word格式文档
下载数列极限复习.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    数列、极限、数学归纳法专题

    数列专 题复习选题人:董越【考点梳理】 一、考试内容 1.数列,等差数列及其通项公式,等差数列前n项和公式。 2.等比数列及其通项公式,等比数列前n项和公式。 3.数列的极限及其四......

    作业2数列极限

    作业2数列极限1、用数列极限的N定义证明下列极限:4n241)lim2nnn证明:04n2442 nnn14n2取N1,当nN时,恒有24 nn44n24所以lim2nnn2)limnn1n0 证明:0n1n011n1n1n取N2,当nN时,恒有n1n0所以l......

    数列极限的证明

    例1 设数列xn满足0x1,xn1sinxnn1,2,。 (Ⅰ)证明limxn存在,并求该极限; n1xn1xn2(Ⅱ)计算lim。 nxn解 (Ⅰ)用归纳法证明xn单调下降且有下界, 由0x1,得 0x2sinx1x1, 设0xn,则 0xn1sinxnxn,......

    数列极限的证明

    数列极限的证明X1=2,Xn+1=2+1/Xn,证明Xn的极限存在,并求该极限 求极限我会 |Xn+1-A|......

    数列极限和函数极限(最终版)

    数列极限和函数极限极限概念是数学分析中最重要的概念,如连续、导数、积分等都要用极限来定义,而且由极限出发产生的极限方法,是数学分析的最基本的方法.更好的理解极限思想,掌......

    数列极限的定义

    第十六教时 教材:数列极限的定义 目的:要求学生首先从实例(感性)去认识数列极限的含义,体验什么叫无限地“趋 近”,然后初步学会用N语言来说明数列的极限,从而使学生在学习数学中的......

    浅谈数列极限的求法

    浅谈数列极限的求法龙门中小李海东摘要:本文主要介绍了数列极限的几种求法,并通过一个例题说明利用函数极限的求法,帮助寻找数列极限的方法,帮助学生理解和掌握求极限的方法。关......

    数列极限教学设计

    数列极限教学设计复习目的:1.理解数列极限的概念,会用“”定义证明简单数列的极限。2.掌握三个最基本的极限和数列极限的运算法则的运用。3.理解无穷数列各项和的概念。4.培养......