第一篇:上海高中数学数列的极限
7.6
数列的极限
课标解读:
1、理解数列极限的意义;
2、掌握数列极限的四则运算法则。
目标分解:
1、数列极限的定义:一般地,如果当项数n无限增大时,无穷数列限地趋近于某个常数注:
an的项an无a(即|anna|无限地接近于0),那么就说数列an以a为极限。
a不一定是a中的项。
1lim0limCCnn2、几个常用的极限:①n(C为常数);②;③limqn0(|q|1)n;
3、数列极限的四则运算法则:设数列an、bn,当limanan,limbnbn时,nlimlim(anbn)ab;
lim(anbn)abnana(b0)nbbn;
4、两个重要极限:
①c001limc1c0nn不存在c0
|r|10nlimr1r1 ②n不存在|r|1或r1 问题解析:
一、求极限:
例1:求下列极限:
2(1)lim4nn1lim3n3nn2n23
(2)
n2n4n(3)
nlim(n2nn)
例2:求下列极限:(1)nlim(1n24n273n2n2n2);
(2)lim1n[2515818111(3n1)(3n2)]
例3:求下式的极限:
limcosnsinnncosnsinn,(0,2)
二、极限中的分数讨论:
例4:已知数列an是由正数构成的数列,a13,lganlgan1lgc,其中n是大于1的整数,c是正数。
(1)求数列an的通项公式及前n项和Sn;
且满足2n1an(2)求lim的值。n2nan1
三、极限的应用:
1(1)p1n例5:已知p、q是两个不相等的正整数,且q2,求lim的值。
n1q(1)1n
知识内化:
1、limn2__________________。
n12n113n2lim[]______________。
2、nn(n1)n(n1)n(n1)2n1n3n___________________。
3、limn1n1n2n3
4、下列四个命题中正确的是()
2A、若limanA,则limanA
nn2B、若an0,limanA,则A0
n2C、若limanA,则limanA
n2nnnD、若lim(ab)0,则limanlimbn
nnnq,q1,5、已知数列an、公比分别为p、其中pq且p1,bn都是由正数组成的等比数列,设cnanbn,Sn为数列cn的前n项和,求lim
能力迁移:
Sn。
nSn1
1、数列an、bn都是无穷等差数列,其中a13,b12,b2是a2与a3的等差中项,且liman1111)的值。,求极限lim(nnba1b1a2b2anbn2n
基本练习:
一、填空题:
n22n___________________。
1.limnb2n23 2.若lim(2x1)的极限存在,则实数x的取值范围__________________。
nnn21anb)1,则a=______________,b=____________________。
3.lim(nn1 4.数列an中,a13,且对任意大于1的正整数n,点(an,则liman1)在直线xy30上,an__________________。
n(n1)2f(n2)5.已知f(n)12n,则lim__________________。
n[f(n)]2ann2 6.数列an的公差d是2,前n项的和为Sn,则lim_________________。
nSn 7.设数列an、bn都是公差不为0的等差数列,且lim ______________________。
anbb2b2n等于 2,则lim1nbnna3nnn3n1
8、将lim,则实数x的取值范围是__________________。nn(x2)nn3n13n3
9、已知数列an: 112123129,…,那么数列,,,…,2334441010101的所有项的和为________________。anan1
10、已知等比数列an的首项a1,公比q,且有lim(na11qn),则首项a1的取值范围 1q2 是__________________。
二、选择题
bn2can2c3,则lim211、已知a、b、c是实常数,且lim2的值是()
ncnbncna A、2 B、3
C、1
2D、6 1,1n100012、a中,annn2,则数列an的极限值()n2 n22n,n1001 A、等于0
B、等于1
C、等于0或1 13、1111nlim[n(13)(14)(15)(1n2)]等于()A、0 B、1
C、2
D、3
14、已知lim2nann2nan1,aR,则a的取值范围是()A、a0 B、a2,a2
C、2a2
a2
三、解答题
15、已知等差数列前三项为a、4、3a,前n项和为Sn,Sk2550
(1)求a及k的值;(2)求lim11n(S1)1S2Sn16、曲线C:xy1(x0)与直线l:yx相交于A1,作A1B1l交x辆于B1,作B1A2//l交曲线C于A2……依此类推。
D、不存在
D、a2且(1)求点A1,A2,A3和B1,B2,B3的坐标;(2)猜想An的坐标,并加以证明;(3)求lim |BnBn1|
nBBn1n17、已知数列{an}满足(n1)an1(n1)(an1)且a26,设bnann(nN)(1)求{bn}的通项公式;(2)求lim(n 1111)的值。b22b32b42bn23(an1)(nN)。数列{bn}的通项公式为bn4n3(nN)2Tn
18、设Tn为数列{an}前n项的和,(1)求数列{an}的通项公式;
(2)若c{a1,a2,a3,an,}{b1,b2,b3,bn,},则c称为数列{an},{bn}的公共项,将数列{an}与{bn}的公共项按它们在原数列中的先后顺序排成一个新的数列,证明:数列{cn}的通项公式为cn32n1(nN);(3)设数列{cn}中的第n项是数列{bn}中的第m项,Bm为数列{bn}前m项的和;Dn为数列{cn}前n项的和,且AnBmDn;求:lim
An。
n(a)4n
第二篇:高中数学《数列的极限》教学设计
高中数学《数列的极限》教学设计
一、教学目标
1.知识与能力目标
①使学生理解数列极限的概念和描述性定义。
②使学生会判断一些简单数列的极限,了解数列极限的“e-N"定义,能利用逐步分析的方法证明一些数列的极限。
③通过观察运动和变化的过程,归纳总结数列与其极限的特定关系,提高学生的数学概括能力和抽象思维能力。
2.过程与方法目标
培养学生的极限的思想方法和独立学习的能力。
3.情感、态度、价值观目标
使学生初步认识有限与无限、近似与精确、量变与质变的辩证关系,培养学生的辩证唯物主义观点。
二、教学重点和难点
教学重点:数列极限的概念和定义。
教学难点:数列极限的“ε―N”定义的理解。
三、教学对象分析
这节课是数列极限的第一节课,足学生学习极限的入门课,对于学生来说是一个全新的内容,学生的思维正处于由经验型抽象思维向理论型抽象思维过渡阶段,在《立体几何》内容求球的表面积和体积时对极限思想已有接触,而学生在以往的数学学习中主要接触的是关于“有限”的问题,很少涉及“无限”的问题。极限这一抽象概念能够使他们做基于直观的理解,并引导他们作出描述性定义“当n无限增大时,数列{an}中的项an无限趋近于常数A,也就是an与A的差的绝对值无限趋近于0”,并能用这个定义判断一些简单数列的极限。但要使他们在一节课内掌握“ε-N”语言求极限要求过高。因此不宜讲得太难,能够通过具体的几个例子,归纳研究一些简单的数列的极限。使学生理解极限的基本概念,认识什么叫做数列的极限以及数列极限的定义即可。
四、教学策略及教法设计
本课是采用启发式讲授教学法,通过多媒体课件演示及学生讨论的方法进行教学。通过学生比较熟悉的一个实际问题入手,引起学生的注意,激发学生的学习兴趣。然后通过具体的两个比较简单的数列,运用多媒体课件演示向学生展示了数列中的各项随着项数的增大,无限地趋向于某个常数的过程,让学生在观察的基础上讨论总结出这两个数列的特征,从而得出数列极限的一个描述性定义。再在教师的引导下分析数列极限的各种不同情况。从而对数列极限有了直观上的认识,接着让学生根据数列中各项的情况判断一些简单的数列的极限。从而达到深化定义的效果。最后进行练习巩固,通过这样的一个完整的教学过程,由观察到分析、由定量到定性,由直观到抽象,并借助于多媒体课件的演示,使得学生逐步地了解极限这个新的概念,为下节课的极限的运算及应用做准备,为以后学习高等数学知识打下基础。在整个教学过程中注意突出重点,突破难点,达到教学目标的要求。
五、教学过程
1.创设情境
课件展示创设情境动画。
今天我们将要学习一个很重要的新的知识。
情境
1、我国古代数学家刘徽于公元263年创立“割圆术”,“割之弥细,所失弥少。割之又割,以至不可割,则与圆周合体而无所失矣”。
情境
2、我国古代哲学家庄周所著的《庄子?天下篇》引用过一句话:一尺之棰,日取其半,万世不竭。也就是说拿一根木棒,将它切成一半,拿其中一半来再切成一半,得到四分之一,再切成一半,就得到了八分之„„?如此下去,无限次地切,每次都切一半,问是否会切完?
大家都知道,这是不可能切完的,但是每次切了以后,木棒都比原来的少了一半,也就是说木棒的长度越来越短,但永远不会变成零。从而引出极限的概念。
2.定义探究
展示定义探索(一)动画演示。
问题1:请观察以下无穷数列,当n无限增大时,a,I的变化趋势有什么特点?
(1)1/2,2/3,3/4,„n/n-1(2)0.9,0.99,0.999,0.9999,1-1/10n„„
问题2:观察课件演示,请分析以上两个数列随项数n的增大项有那些特点?
师生一起归纳总结出以下结论:数列(1)项数n无限增大时,项无限趋近于1;数列(2)项数n无限增大时,项无限趋近于1。
那么就把1叫数列(1)的极限,1叫数列(2)的极限。这两个数列只是形式不同,它们都是随项数n的无限增大,项无限趋近于某一确定常数,这个常数叫做这个数列的极限。
那么,什么叫数列的极限呢?对于无穷数列an,如果当n无限增大时,an无限趋向于某一个常数A,则称A是数列an的极限。
提出问题3:怎样用数学语言来定量描述呢?怎样用数学语言来描述上述数列的变化趋势?
展示定义探索(二)动画演示,师生共同总结发现在数轴上两点间距离越小,项与1越趋近,因此可以借助两点间距离无限小的方式来描述项无限趋近常数。无论预先指定多么小的正数e,如取e=O-1,总能在数列中找到一项am,使得an项后面的所有项与1的差的绝对值都小于ε,若取£=0。0001,则第6项后面的所有项与1的差的绝对值都小于ε,即1是数列(1)的极限。最后,师生共同总结出数列的极限定义中应包含哪量(用这些量来描述数列1的极限)。
数列的极限为:对于任意的ε>0,如果总存在自然数N,当n>N时,不等式|an-A|n的极限。
定义探索动画(一):
课件可以实现任意输入一个n值,可以计算出相应的数列第n项的值,并且动画演示数列的变化过程。如图1所示是课件运行时的一个画面。
定义探索动画(二)课件可以实现任意输入一个n值,可以计算出相应的数列第n项的值和I an一1I的值,并且动画演示出第an项和1之间的距离。如图2所示是课件运行时的一个画面。
3.知识应用
这里举了3道例题,与学生一块思考,一起分析作答。
例1.已知数列:
1,-1/2,1/3,-1/4,1/5„„,(-1)n+11/n,„„
(1)计算|an-0|(2)第几项后面的所有项与0的差的绝对值都小于0.017都小于任意指定的正数。
(3)确定这个数列的极限。
例2.已知数列:
已知数列:3/2,9/4,15/8„„,2+(-1/2)n,„„。
猜测这个数列有无极限,如果有,应该是什么数?并求出从第几项开始,各项与这个极限的差都小于0.1,从第几项开始,各项与这个极限的差都小于0.017
例3.求常数数列一7,一7,一7,一7,„„的极限。
5.知识小结
这节课我们研究了数列极限的概念,对数列极限有了初步的认识。数列极限研究的是无限变化的趋势,而通过对数列极限定义的探讨,我们看到这一过程又是通过有限来把握的,有限与无限、近似与精确、量变与质变之间的辩证关系在这里得到了充分的体现。
课后练习:
(1)判断下列数列是否有极限,如果有的话请求出它的极限值。①an=4n+l/n;②an=4-(1/3)m;③an=(-1)n/3n;④aan=-2;⑤an=n;⑥an=(-1)n。
(2)课本练习1,2。
6.探究性问题
设计研究性学习的思考题。
提出问题:
芝诺悖论:阿基里斯是《荷马史诗》中的善跑英雄。奔跑中的阿基里斯永远也无法超过在他前面慢慢爬行的乌龟,因为当阿基里斯到达乌龟的起跑点时,乌龟已经走在前面一小段路了,阿基里斯又必须赶过这一小段路,而乌龟又向前走了。这样,阿基里斯可无限接近它,但不能追到它。假定阿基里斯跑步的速度是乌龟速度的10倍,阿基里斯与乌龟赛跑的路程是1公里。如果让乌龟先跑0.1公里,当阿基里斯追到O.1公里的地方,乌龟又向前跑了0.01公里。当阿基里斯追到0.01公里的地方,乌龟又向前跑了0.001公里„„这样一直追下去,阿基里斯能追上乌龟吗?
这里是研究性学习内容,以学生感兴趣的悖论作为课后作业,巩固本节所学内容,进一步提高了学生学习数列的极限的兴趣。同时也为学生创设了课下交流与讨论的情境,逐步培养学生相互合作、交流和讨论的习惯,使学生感受到了数学来源于生活,又服务于生活的实质,逐步养成用数学的知识去解决生活中遇到的实际问题的习惯。
第三篇:数列极限例题
三、数列的极限
(1)n1}当n时的变化趋势.观察数列{1n问题:
当n无限增大时, xn是否无限接近于某一确定的数值?如果是, 如何确定? 通过上面演示实验的观察:
(1)n1当n无限增大时, xn1无限接近于1.n问题:“无限接近”意味着什么?如何用数学语言刻划它.xn1(1)n1给定
11 nn1111, 由, 只要n100时, 有xn1, 100n10010011,只要n1000时, 有xn1, 给定1000100011,只要n10000时, 有xn1, 给定10000100001给定0,只要nN([])时, 有xn1成立.定义
如果对于任意给定的正数(不论它多么小), 总存在正整数N, 使得对于nN时的一切xn, 不等式xna都成立, 那末就称常数a是数列xn的极限, 或者称数列xn收敛于a, 记为
limxna,或xna(n).n如果数列没有极限, 就说数列是发散的.注意:
N定义:limxna0,N0, 使nN时, 恒有xna.n其中记号:每一个或任给的;:至少有一个或存在.数列收敛的几何解释:
a2axN2x2x1xN1ax3x
当nN时, 所有的点xn都落在(a,a)内, 只有有限个(至多只有N个)落在其外.注意:数列极限的定义未给出求极限的方法.n(1)n11.例1 证明limnnn(1)n111 .证
注意到xn1 nn任给0, 若要xn1, 只要
11,或 n, n所以, 取 N[], 则当nN时, 就有 1n(1)n11.nn(1)n11.即limnn
重要说明:(1)为了保证正整数N,常常对任给的0,给出限制01;
n(1)n11”的详细推理
(2)逻辑“取 N[], 则当nN时, 就有
n1见下,以后不再重复说明或解释,对函数极限同样处理逻辑推理.由于N立.严格写法应该是:任给0, 不妨取01,若要11N1,所以当nN时一定成立nN11,即得
1成nn(1)n11111< ,只要 n,所以, 取 N[], 则当nN时, 由于xn1=nn1111NN1,所以当nN时一定成立nN1,即得成立.也就
n是成立
n(1)n111.xn1=
nnn(1)n11.即limnn小结: 用定义证数列极限存在时, 关键是任意给定0,寻找N, 但不必要求最小的N.例3证明limq0, 其中q1.nn证
任给0(要求ε<1)若q0, 则limqlim00;
nnn若0q1, xn0q, nlnqln,nnlnln, 取N[](1), 则当nN时, 就有qn0, lnqlnqlimqn0.n0, q1,q1,, n
说明:当作公式利用:limq
n1, q1,不存在,q1.
第四篇:数列极限教案
数列的极限教案
授课人:###
一、教材分析
极限思想是高等数学的重要思想。极限概念是从初等数学向高等数学过渡所必须牢固掌握的内容。
二、教学重点和难点
教学重点:数列极限概念的理解及数列极限N语言的刻画。
教学难点:数列极限概念的理解及数列极限N语言的刻画,简单数列的极限进行证明。
三、教学目标
1、通过学习数列以及数列极限的概念,明白极限的思想。
2、通过学习概念,发现不同学科知识的融会贯通,从哲学的量变到质变的思想的角度来看待数列极限概念。
四、授课过程
1、概念引入
例子一:(割圆术)刘徽的割圆术来计算圆的面积。
.........内接正六边形的面积为A1,内接正十二边形的面积为A2......内接正62n1形的面积为An.A1,A2,A3......An......圆的面积S.用圆的内接正六n边形来趋近,随着n的不断增加,内接正六n边形的面积不断
1接近圆的面积。
例子二:庄子曰“一尺之锤,日取其半,万世不竭”。
第一天的长度1第二天的剩余长度 第二天的剩余长度
第四天的剩余长度 8
.....第n天的剩余长度n1.......2
随着天数的增加,木杆剩余的长度越来越短,越来越接近0。
这里蕴含的就是极限的概念。
总结:极限是变量变化趋势结果的预测。例一中,内接正六n边形的边数不断增加,多边形的面积无限接近圆面积;例二中,随着天数的不断增加,木杆的剩余长度无限接近0.在介绍概念之前看几个具体的数列:
1111(1): 1,,......; 23nn
1n1111:1,,,......;(2)n2345
(3)n2:1,4,9,16,......;
(4)1:1,1,1,1,......,1,......; nn
我们接下来讨论一种数列xn,在它的变化过程中,当n趋近于时,xn不断接近于某一个常数a。如随着n的增大,(1),(2)中的数列越来越接近0;(3)
(4)中的数列却没有这样的特征。
此处“n趋近于时”,“xn无限接近于数a”主要强调的是“一个过程”和一种“接近”程度。
可是只凭定性的描述和观察很难做到准确无误,所以需要精确的,定量的数学语言来刻画数列的概念。本节课的重点就是将数列的这样一个特征用数学语言刻画出来,并引入数列极限的概念。
2、内容讲授
(定义板书)设xn是一个数列,a是实数。如果对于任意给定的数0,总存在一个正整数N,当nN时,都有xna,我们称a是数列x
n的极限,或者说数列xn收敛且收敛于数a。
写作:limxna或xnan。
n
如果数列没有极限,就说数列是发散的。
注意:(1)理解定义中的“任意给定”:是代表某一个正数,但是这个数在选取时是任意的,选定以后就是固定的。不等式xna是表示xn与a的接近程度,所以可以任意的小。
(2)N的选取是与任意给定的有关的。11以数列为例,欲若取,则存在N100,当nNxna; 100n
若取1,则存在N1000,当nN时,xna。1000
数列极限的N语言:
limx
nna0,N,nNxna.数列极限的几何解释:
3、例题讲解
n211。例题1用数列极限的定义证明limnnn
n21证明:设xn,因为 nn
n21212xn1nnnnn
0,欲使xn,只要22即n,n
2我们取N1,当nN时,
n2122.nnNn
n21所以lim1.nnn
2注:N的取法不是唯一的,在此题中,也可取N10等。
例题2 设xnC(C为常数),证明limxnC。n
证明:任给的0,对于一切正整数n,xnCCC0,所以limxnC。n
小结:用定义证数列极限存在时,关键是任意给定寻找N,但不必要求最小的N.五、课后作业
第五篇:数列极限复习
数列极限复习题
姓名
242n1、lim=; n139(3)n
an22n1a2、若lim(2n)1,则=; nbn2b
1an3、如果lim()0,则实数a的取值范围是;n2a
n4、设数列{an}的通项公式为an(14x),若liman存在,则x的取值范围是n
___;
a5.已知无穷等比数列n的前n项和
穷等比数列各项的和是;
6、数列an满足a1Sn1a(nN*)n3,且a是常数,则此无1,且对任意的正整数m,n都有amnaman,则数列an的3所有项的和为;
7、无穷等比数列an的首项是某个自然数,公比为单位分数(即形如:数,m为正整数),若该数列的各项和为3,则a1a2;
8、无穷等比数列an的各项和为2,则a1的取值范围是
1的分m
9、无穷等比数列an中,为;
lim(a2a3...an)
n
=1,则a1的取值范围
cosnsinn
10、计算: lim,[0,]
ncosnsinn
222na2n111、若lim2n1,则实数a的取值范围是; 2n
12a
23n2n(1)n(3n2n)
12、若数列{an}的通项公式是an=,n=1,2,„,则
lim(a1a2an)__________;
n
1
1n2012n(n1)
13、若an,Sn为数列an的前n项和,求limSn____;
n
31n2013n1
214、等差数列an,bn的前n项和分别为Sn,Tn且
an
nbn
Sn2n
,则Tn3n
1lim15、设数列an、bn都是公差不为0的等差数列,且lim
lim
b1b2b3n
na4n
an
3,则bn16、已知数
列为等差数列,且,则
a117、设等比数列{an}的公比为q,且lim1qn),则a1的取值范围是
n1q
2__________;
18、已知等比数列{an}的首项a11,公比为q(q0),前n项和为Sn,若
lim
Sn
11,则公比q的取值范围是.;
nSn19、已知数列{an}的各项均为正数,满足:对于所有nN*,有4Sn(an1)2,n
()其中Sn表示数列{an}的前n项和.则limnan
A.0B.1C.D.
220、下列命题正确的是 „„„„„„„„„„„„„„„„„„„„„„„„„()
(A)limanA, limbnB则lim
n
n
anA
(bn0,nN)
nbBn
(B)若数列{an}、{bn}的极限都不存在,则{anbn}的极限也不存在(C)若数列{an}、{anbn}的极限都存在,则{bn}的极限也存在(D)设Sna1a2an,若数列{an}的极限存在,则数列{Sn}的极限也存在21、用记号“○+”表示求两个实数a与b的算术平均数的运算, 即a○+b=已知数列{xn}满足x1=0,x2=1,xn=xn-1○+xn-2(n≥3),则limxn等于()
n
ab
.2A.2
3B.12
C.0D.122、连结ABC的各边中点得到一个新的A1B1C1,又A1B1C1的各边中点得到一个新的A2B2C2,如此无限继续下去,得到一系列三角形,A1B1C1,A2B2C2,A3B3C3,, 这一系列三角形趋向于一个点M。已知
A0,0,B3,0,C2,2,则点M的坐标是()
52522A、(,)B、(,1)C、(,1)D、(1,)
3333323、已知数列
lim
{an},{bn}
都是无穷等差数列,其中
a13,b12,b2是a2和a
3的等差中
an1111lim(...)nbn2,求极限a1b1a2b2anbn的值; n项,且
24、设正数数列
lga
lin
1n
an
为一等比数列,且a24,a416,求
lagn2n
2al2ng;
bnlgan,25、数列{an}是由正数组成的数列,其中c为正常数,数列bna1c,成等差数列且公差为lgc(1)求证an是等比数列;(2)an的前n项和为Sn,求lim26、已知f(x)logax(ao且a1),an
nSn
且2,f(a1),f(a2),f(a3),,f(an),2n1,(nN)成等差数列,(1)求数列an的通项公式;
(2)若数列an的前n项和为Sn,当a1时,求lim
Sn
nan